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ABSTRACT

We identify 231 objects in the newly released Cycle 0 dataset from the Kepler Mission as double-
eclipse, detached eclipsing binary systems with Teff < 5500 K and orbital periods shorter than ∼32
days. We model each light curve using the JKTEBOP code with a genetic algorithm to obtain precise
values for each system. We identify 95 new systems with both components below 1.0 M⊙ and eclipses
of at least 0.1 magnitudes, suitable for ground-based follow-up. Of these, 14 have periods less than
1.0 day, 52 have periods between 1.0 and 10.0 days, and 29 have periods greater than 10.0 days. This
new sample of main-sequence, low-mass, double-eclipse, detached eclipsing binary candidates more
than doubles the number of previously known systems, and extends the sample into the completely
heretofore unexplored P > 10.0 day period regime. We find preliminary evidence from these systems
that the radii of low-mass stars in binary systems decrease with period. This supports the theory
that binary spin-up is the primary cause of inflated radii in low-mass binary systems, although a full
analysis of each system with radial-velocity and multi-color light curves is needed to fully explore
this hypothesis. As well, we present 7 new transiting planet candidates that do not appear among
the recently released list of 706 candidates by the Kepler team, nor in the Kepler False Positive
Catalog, along with several other new and interesting systems. We also present novel techniques for
the identification, period analysis, and modeling of eclipsing binaries.
Subject headings: stars: binaries: eclipsing — stars: binaries: general — stars: fundamental parame-

ters — stars: late-type — stars: low-mass

1. INTRODUCTION

A double-lined, detached, eclipsing binary (DDEB) is a
system that contains two non-interacting, eclipsing stars,
in which the spectra of both components can be clearly
seen, allowing for the radial-velocity (RV) of each com-
ponent to be obtained. In these systems, the mass and
radius of each star can be determined with errors usually
less than 1-2%, thus making DDEBs currently the most
accurate method of obtaining masses and radii of stars.
Models of main-sequence stars with masses similar to or
greater than the Sun have been tested over the years
using DDEBs. Popper (1980) compiled available masses
and radii of DDEB’s with accuracies of ≤ 15%, up to that
date, and found general agreement with stellar models,
though stressed the need for more accurate observations
and models. Andersen (1991) provided a compilation of
all available DDEB systems up to that date, with accura-
cies ≤ 2%, and showed that the masses and radii of these
stars were in general agreement with the current stellar
evolution models, with any discrepancies attributable to
abundance variations. Torres et al. (2010) recently per-
formed a similar review with nearly double the sample of
DDEBs. They were able to show the need to include non-
classical effects such as diffusion and convection in stel-
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lar models, definitively demonstrate the existence of sig-
nificant structural differences in magnetically active and
fast-rotating stars, test theories of rotational synchro-
nization and orbital circularization, and validate General
Relativity via apsidal motion rates. However, while ob-
servations of DDEBs have enhanced our understanding
of stellar structure and evolution for stars with M ≥ 1.0
M⊙, low-mass, main-sequence (LMMS) stars, (M < 1.0
M⊙ and Teff < 5800 K), have not been tested to the
same extent.
Although a couple systems with late G or early K type

components had been studied prior to 2000, (c.f. Popper
1980; Andersen 1991; Torres et al. 2006; Clausen et al.
2009, and references therein), only three LMMS DDEBs
with late K or M type components were known (Lacy
1977; Leung & Schneider 1978; Delfosse et al. 1999).
This number had only increased to nine by the begin-
ning of 2007 (cf. López-Morales 2007, Table 1). De-
spite the fact that the majority of main-sequence stars
are low-mass, these stars are both intrinsically fainter,
and physically smaller, than their more massive coun-
terparts. Therefore, they have a lower eclipse proba-
bility and are harder to discover and study. As out-
lined by López-Morales (2007), analysis of these systems
showed that the observed radii for these stars are con-
sistently ∼10-20% larger than predicted by stellar mod-
els (Baraffe et al. 1998) for 0.3 M⊙ . M . 0.8 M⊙.
Fernandez et al. (2009) recently showed this was also
likely the case for five M dwarfs in short-period eclips-
ing systems with an F type primary, though since the
systems are only single-lined, the masses could not be
determined directly. This discrepancy between the radii
derived from models and from observations either reveals
a flaw in the stellar models for this mass regime, or is
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due to differences in metallicity, magnetic activity, or
interpretation of the light curve data when star spots
are present (Morales et al. 2008). As to this last point,
Morales et al. (2010) recently noted that improperly tak-
ing polar spots into account in the light curve modeling
process may possibly cause the derivation of stellar radii
a few percent larger than the true values for some of
these systems. Of all of these scenarios, enhanced mag-
netic activity has been proposed as the principal cause of
inflated radii (Chabrier et al. 2007; López-Morales 2007;
Morales et al. 2008).
If enhanced magnetic activity is the principal cause of

the inflated radii, shorter-period binary systems, with
the stellar rotation rate enhanced by the revolution of
the system, would be expected to show greater activ-
ity and thus larger radii than longer-period systems
(Chabrier et al. 2007). Binary systems with component
masses of 0.5 M⊙ are expected to synchronize, and there-
fore be spun-up, in less than 0.1 Gyr for periods less than
4 days, and in less than 1 Gyr for periods less than 8
days (Zahn 1977, 1994). Thus, the discovery of LMMS
DDEBs with P & 10 days, where the binary components
should have natural rotation rates, is crucial to prob-
ing if enhanced rotation due to binarity is the under-
lying cause of this phenomenon. This theory might be
supported by measurements of a couple isolated field M
and K dwarf stars via very long baseline interferometry,
which Demory et al. (2009) found to match stellar mod-
els. However, recently a much larger sample of nearly
two dozen isolated M and K dwarf stars finds, for ∼80%
of the sample, larger radii than the model predictions for
0.35 < M < 0.65 M⊙ (Boyajian 2010), indicating that
there are likely multiple causes of inflation at work, or a
remaining flaw in the stellar models.
Though several more LMMS DDEB systems

have been found since 2007, (Coughlin & Shaw
2007; Shaw & López-Morales 2007; Becker et al.
2008; Blake et al. 2008; Devor et al. 2008a,b;
Shkolnik et al. 2008; Hoffman et al. 2008; Irwin et al.
2009; Dimitrov & Kjurkchieva 2010; Shkolnik et al.
2010), there are to-date only 7 well-studied systems
with 1.0 < P < 3.0 days (López-Morales 2007, and
references therein) (Becker et al. 2008; Shkolnik et al.
2008), and only one has a larger period, at P = 8.4 days
(Devor et al. 2008b). This is mostly due to the fact that
ground-based photometric surveys, such as NSVS, TrES,
and OGLE, are either cadence, precision, magnitude,
or number limited, and thus not sensitive to long
periods. The Kepler Mission, with 3 years of constant
photometric monitoring of over 150,000 stars with V
. 17, at 30-minute cadence and sub-millimagnitude
precision, is the key to discovering a large number of
long-period, LMMS DDEBs.
In this paper we present the results of our search

through all the newly available Kepler Q0 and Q1 public
data for LMMS DDEBs. Section 2 describes the data
we use in this paper. Section 3 describes our binary
identification technique, and Section 4 describes how we
model the light curves. Our selection and list of new
LMMS DDEBs is presented in Section 5, and we present
new transiting planet candidates in Section 6. In Sec-
tion 7 we compare the new LMMS DDEBs with theoret-
ical models, and conclude with a summary of our results
in section 8. Once accurate mass and radius values exist

for a large range of both mass and period, our under-
standing of these objects should substantially improve,
and we will be one step closer to extending to the lower-
mass regime the advanced study of stellar structure and
evolution that sun-like and high-mass stars have been a
subject of for some time.

2. OBSERVATIONAL DATA

The data used in our analysis consists of the 201,631
light curves made public by the Kepler Mission6 as of
June 15, 2010 from Kepler Q0 and Q1 observations. All
light curves can be accessed through the Multi-mission
Archive at STScI (MAST)7. The data consist of 51,366
light curves from Kepler Q0, (observed from 2009-05-
02 00:54:56 to 2009-05-11 17:51:31 UT), and 150,265
light curves from Kepler Q1, (observed from 2009-05-
13 00:15:49 to 2009-06-15 11:32:57 UT), each at 29.43
minute cadence. Individual light curves for Q0 con-
tain ∼470 data points, and for Q1 contain ∼1,600 data
points. Targets range in Kepler magnitude from 17.0 at
the faintest, to 5.0 at the brightest.
The Kepler team has performed pixel level calibra-

tions, (including bias, dark current, flat-field, gain, and
non-linearity corrections), identified and cleaned cosmic-
ray events, estimated and removed background signal,
and then extracted time-series photometry using an op-
timum photometric aperture. They have also removed
systematic trends due to spacecraft pointing, tempera-
ture fluctuations, and other sources of systematic error,
and corrected for excess flux in the optimal photometric
aperture due to crowding (Van Cleve 2010). It is this
final, “corrected” photometry that we have downloaded
for use in our analysis.

3. ECLIPSING BINARY IDENTIFICATION

Prša et al. (2010) have recently released an initial cata-
log of eclipsing binary stars they find in the Kepler field
from the same Q0 and Q1 data we use in this paper.
They first identified EB candidates via Kepler’s Transit
Planet Search (TPS) algorithm, eliminating those tar-
gets already identified as exoplanet candidates. To deter-
mine the ephemeris of each candidate, they used Lomb-
Scargle, Analysis of Variance, and Box-fitting Least
Squares periodogram techniques, combined with manual
inspection and modification. They then culled, through
manual inspection, non-EB candidates, such as pulsat-
ing and heavily spotted stars, as well as duplicates due
to contamination from nearby stars, and arrive at their
final list of 1,832 binaries, which are manually classified
as detached, semi-detached, over-contact, ellipsoidal, or
unknown. Next, they estimate the principal parameters
of each system, (temperature ratio, sum of the fractional
radii, e·cos(ω), e·sin(ω), and sin(i) for detached systems),
via a neural network technique called Eclipsing Bina-
ries via Artificial Intelligence (“EBAI” Prša et al. 2008).
For our search, which focuses on the detection of LMMS
DDEBs, we have devised our own DDEB identification
technique, which we apply to the Q1 data. We do not
use the Q0 data in this part of the analysis to avoid
discrepant systematics between the two quarters, which
complicate the analysis.

6 http://kepler.nasa.gov/
7 http://archive.stsci.edu/kepler/
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Figure 1. Plot of standard deviation versus mean flux for the
150,265 stars in Q1. Black dots represent stars that vary by less
than 1-sigma from a best-fit power-law to the data, and thus we
classify them as non-variables. Red dots represent variables with a
flux ratio greater than 0.1. Blue dots represent variables with a flux
ratio less than 0.1, and thus are good candidates to be eclipsing
binaries.

Our search consisted of two steps. The first was to
identify variable stars, and to do so, we placed a light
curve standard deviation limit above which the objects
are classified as variables. We first subtracted an error-
weighted, linear fit of flux versus time from all data,
to remove any remaining linear systematic trends, and
then plotted the standard deviation of each light curve
versus its average flux and fit a power law. These
data are shown in Figure 1, where the black dots cor-
respond to light curves which deviate by less than 1σ
from the standard deviation versus average flux fit, and
we thus classify as non-variable. The colored dots indi-
cate the variable candidates that deviate by more than
1σ. Next, we used the flux ratio (FR) measurement cri-
terion, which we adapted from the magnitude ratio given
in Kinemuchi et al. (2006), and is defined as

FR =
maximum flux - median flux

maximum flux - minimum flux
(1)

as a measure of whether or not the variable spends most
of its time above (low FR value) or below (high FR value)
the median flux value. Perfectly sinusoidal variables have
FR = 0.50, pulsating variables, such as RR Lyrae’s, have
FR > 0.5, and eclipsing binaries have FR < 0.5. As we
are principally interested in finding well detached sys-
tems with relatively deep, narrow eclipses, which thus
have low FR values, we make a further cut of the sys-
tems and only examine those variables with FR < 0.1,
shown by blue dots in Figure 1.
The second step of the analysis was to determine the

orbital period of each candidate. This was done using
two independent techniques that are both well-suited for
detached eclipsing binary systems. The first is Phase Dis-
persion Minimization (PDM) (Stellingwerf 1978), which
attempts to find the period that best minimizes the vari-
ance in multiple phase bins of the folded light curve. This
technique is not sensitive to the shape of the light curve,
and thus is ideal for non-sinusoidal variables such as de-
tached eclipsing binaries. The downside of this technique
is that if strong periodic features exist in the light curve,
which do not correspond to the period of eclipses, such as

rapidly varying spots, stellar pulsations, or leftover sys-
tematics, they can weaken the signal of the eclipse period.
We use the latest implementation given by Stellingwerf
(2006), and determine the best three periods via this
technique to ensure that the true period is found, and
not just an integer multiple, or fraction, thereof.
The second technique we use is one we invented specif-

ically for detached eclipsing binaries, and call Eclipse
Phase Dispersion Minimization (EPDM). The idea be-
hind EPDM is that we want to automatically identify
and align the primary eclipses in an eclipsing binary, thus
finding the period of the system. To accomplish this,
EPDM finds the period that best minimizes the disper-
sion of the actual phase values of the faintest N points in
a light curve, i.e. the very bottom of the eclipses. Since
EPDM only selects the N faintest points in a light curve,
it is not affected by systematics or periodic features that
do not correspond to the period of eclipses, assuming the
systematics do not extend below the depth of the eclipses.
The technique works for all binary systems with equal
or unequal eclipse depths, and transiting planets, both
with either zero or non-zero eccentricity. Computation-
ally, EPDM is significantly faster than traditional PDM
techniques. For a detailed and illustrative explanation
of this new technique, please see Appendix A. We use
EPDM to find the three best fit periods for each system
as well, for the same reasons as we did with PDM.
We identify 577 EB candidates in the Q1 data. Of

these, 486 are listed by Prša et al. (2010) as detached
eclipsing binaries, and 20 are identified as semi-detached
eclipsing binaries. The 71 remaining candidates were
manually inspected by examining both the raw and
phased light curves at the 6 best periods found via PDM
and EPDM. Of these 71 remaining candidates, 48 turned
out to be false positives with significantly large, sharp
systematic features, and one is an apparent red giant,
(Kepler 010614012, Teff = 4859K, logg = 3.086, [M/H]
= -0.641, R⋆ = 5.708 R⊙), with an unusual, asymmet-
rical, eclipse-like feature that lasts for ∼3 days with a
depth of 1.2%, shown in Figure 2. This does not ap-
pear to be a systematic feature due to its very flat out of
eclipse baseline, contiguous nature, long duration, and
the actual time at which the feature occurs, compared
to the majority of other objects with strong systemat-
ics. The remaining 22 targets are: 2 transiting exoplanet
candidates contained in the recently released list of 306
candidates by Borucki & the Kepler Team (2010), 3 al-
ready published transiting planets, (Kepler-5b, Kepler-
6b, and TrES-2b), 7 shallow eclipsing systems with pri-
mary eclipse depths ranging from 1.4% to 5.7%, visible
secondary eclipses ranging from 0.05% to 4.6%, and pe-
riods ranging from 4.7 to 45.3 days, the already pub-
lished transiting hot compact object Kepler 008823868
(Rowe et al. 2010), a 6.4 day eclipsing binary with Teff

= 5893K and eclipse depths of 38.4% and 12.2% (Kepler
006182849), and 8 transiting exoplanet candidates with
transit depths ranging from 0.75% to 4.9%, and periods
ranging from 2.5 to 24.7 days. For the 7 new extremely
shallow eclipsing systems, we list their Kepler ID num-
bers, periods, effective temperatures, surface gravities,
and primary and secondary eclipse depths in Table 1,
and note they could be of interest for follow-up due to the
potential to contain brown dwarf or extremely low-mass
secondaries, or even anomalously hot exoplanet compan-
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Figure 2. Kepler 010614012. An apparent red giant, (Teff =
4859K, logg = 3.086, [M/H] = -0.641, R⋆ = 5.708 R⊙), with a
very unusual, shallow, eclipse-like feature.

ions. Of the 8 transiting candidates, only one is listed
in the Kepler false positive catalog8, Kepler 011974540.
None of them are in the list of the 306 released can-
didates by Borucki & the Kepler Team (2010), nor are
among the 400 planetary candidates currently reserved
for follow-up observations (Borucki & the Kepler Team
2010). These will be further discussed in Section 6.

4. LIGHT CURVE MODELING

Since the system parameters determined by Prša et al.
(2010) are only estimates and do not incorporate spots,
and since we seek to obtain as accurate physical param-
eters as possible, we modeled each system using a robust
global minimization scheme with a commonly used, phys-
ically detailed eclipsing binary modeling code. We took
all 314 detached eclipsing binaries with Teff < 5500K and
that are publicly available, (5 systems are still propri-
etary), identified from both our search and the Prša et al.
(2010) catalog, combined Q0 and Q1 data if available,
and via manual inspection classified systems as double-
eclipse (i.e. contained two visible eclipses), single-eclipse
(i.e. only contained one eclipse), or as spurious results
that were not recognizable as eclipsing systems. (Given
the errors in the KIC temperature determination, and to
ensure the primary is below 1.0 M⊙, we used 5500K as
our cutoff, instead of 5800K. As well, the definition of a
“double-lined” system is one in which the lines of both
components are visible in an observed spectrum. Al-
though in general if two eclipses are clearly visible in the
photometric light curve, it is likely to be “double-lined”,
this cannot be determined without an actual spectrum.
Thus, we use the term “double-eclipse” throughout the
paper, with the assumption that when observed spectro-
scopically, the majority of these systems will be observed
as “double-lined”.)
We then used the JKTEBOP eclipsing binary model-

ing program (Southworth et al. 2004a,b) to model every
double-eclipse eclipsing binary system, of which there
were 231, solving for the period, time of primary min-
imum, inclination, mass ratio, e·cos(ω), e·sin(ω), sur-
face brightness ratio, sum of the fractional radii, ratio
of the radii, and out of eclipse flux. In addition, we

8 http://archive.stsci.edu/kepler/false positives.html

Table 1
Period, Effective Temperature, Surface Gravity, and
Eclipse Depth Estimates for the 7 New Extremely

Shallow Eclipsing Systems

Kepler ID Period Teff logg Pri. Sec.
(Days) (K) (%) (%)

003098197 38.38403 5675 4.814 4.9 4.60
0041783891 45.26003 5645 4.670 3.4 2.80
0090162952 19.9858 5819 4.582 4.1 0.17
0090713861 4.68513 6324 4.267 1.4 0.05
0098389751 18.7000 5018 4.802 5.7 0.21
0120171402 22.8624 6026 4.500 4.7 0.11
0125049881 5.09473 5985 4.464 2.9 0.06

1 System is listed in the Kepler False Positive Catalog
as likely to be an EB.
2 System has non-zero eccentricity.
3 Period derived assuming zero eccentricity.

also solved for the amplitude and time of minimum of
a sinusoidal term imposed on the luminosity of the pri-
mary component, with the period fixed to that of the
binary, in order to account for spots. Note that in the
JKTEBOP model the mass ratio is only used to deter-
mine the amount of tidal deformation of the stars from
a pure sphere. Thus, it has no effect on the light curve
of long-period systems, which due to their large separa-
tions are almost perfectly spherical, but must be included
to properly model very short-period systems, where the
tidal deformation can have a significant impact on the
light curve. We used the quadratic limb darkening law,
which works well for late-type stars (e.g. Manduca et al.
1977; Wade & Rucinski 1985; Claret & Gimenez 1990),
with coefficients set to those found by Sing (2010) for the
Kepler bandpass via interpolation given the systems’ ef-
fective temperatures, surface gravities, and metallicities
as listed in the Kepler Input Catalog (KIC)9. We also
fixed the gravity darkening exponent based on the ef-
fective temperature as prescribed by Claret (2000). As
any contaminating flux from nearby stars in the photo-
metric aperture has already been compensated for in the
Kepler pipeline (Van Cleve 2010), we set the amount of
third light to 0.0. Note that third light might still exist
in some systems if there is a background star or tertiary
component that is unidentifiable from ground-based sur-
veys, (i.e. less than ∼1′′ separation), but since third light
is usually unconstrained in a single-color light curve, we
do not let it vary. If third light existed in a system and
was not accounted for, the solution would result in an
inclination determination lower than the true value, and
therefore an over-estimation of the stellar radius. How-
ever, this should only occur in a minority of systems.
For a couple binaries in our list, the light curves abso-
lutely could not be modeled without the inclusion of third
light, (i.e. very sharp eclipses with depths of less than
0.01 mag). For these cases only, we let the third light
vary, and thus be a non-zero parameter. Additionally, if
the effect of spots in a light curve deviates significantly
from the adopted sinusoidal shape, it could affect the
derived luminosity ratio to a minor extent, but it should
not affect the sum of the radii.
In order to model such a large number of systems over

9 http://archive.stsci.edu/kepler/kepler fov/search.php
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such a large solution space, and to ensure we have found
the best global solution, we adapted the JKTEBOP code
to use a modified version of the asexual genetic algo-
rithm (AGA) described by Cantó et al. (2009), coupled
with its standard Levenberg-Marquardt minimization al-
gorithm. Genetic algorithms (GA) are an extremely effi-
cient method of fitting computationally intensive, multi-
parameter models over a large and potentially discontin-
uous parameter space, and thus ideal for this work. For
the details of how genetic algorithms work, and the spe-
cific changes we made to the Cantó et al. (2009) AGA,
please see Appendix B.
We found that our modified AGA does an excellent

job of solving well-behaved light curves, simultaneously
varying all 12 aforementioned parameters over the entire
range of possible solutions. For some of the systems how-
ever, strong systematics and/or variable star spots intro-
duced a significant amount of noise, especially in systems
with shallow eclipses, for which it was more difficult to
arrive at a robust solution. For these systems we had to
manually correct the systematics, often by either elimi-
nating the Q0 or Q1 data, equalizing the base flux levels
of Q0 and Q1 data, or subtracting out a quasi-sinusoidal
variation in the base flux level due to remaining Kepler
systematics. When possible we attempted to minimize
the amount of manual interference. Hopefully this will
become much less of a problem with subsequent data re-
leases. We then re-ran the AGA using a larger initial
population until a good solution was found. Every light
curve in the end was visually inspected to be a good fit
compared to the scatter of the data points, and the ob-
tained parameters were confirmed to be reasonable when
visually inspecting the light curves.

5. NEW LOW-MASS BINARY CANDIDATES

In order to identify the main-sequence stars from our
list of 231 candidates, and determine the best candidates
for follow-up, we employ the following technique to es-
timate the temperature, mass, and radius of each star
using the sum of the fractional radii, rsum, and period,
P , obtained from our JKTEBOP models, the luminosity
ratio, Lr, (which is derived from the surface brightness
ratio, J , and radii ratio, k, obtained from the models),
and the effective temperature of the system, Teff , ob-
tained from the KIC, with an estimated error of ±200
K.
The value for Teff given in the KIC was determined

via interpolation of standard color magnitude relations
as determined by ground-based, multi-wavelength pho-
tometry (Van Cleve 2010). Although in principle one
might be able to deconvolve two separate spectral energy
distributions from this photometry, in reality given the
level of photometric error in the KIC and uncertainty at
which binary phase the photometry was obtained, this is
untenable. Instead, we assume the stars radiate as black-
bodies, and that each star contributes to the determined
Teff in proportion to its luminosity. Thus, following our
assumption, we obtain the following relation,

Teff =
L1T1 + L2T2

L1 + L2
(2)

where L1, L2, T1 and T2 are the luminosities and ef-
fective temperatures of star 1 and 2 respectively. Still

assuming the stars radiate as blackbodies, the luminos-
ity of each star is proportional to its radius squared and
temperature to the fourth power, with the temperature
proportional to is surface brightness to the one-fourth
power. Thus, we find that the luminosity ratio can be
expressed as,

Lr=
L1

L2
=

r21T
4
1

r22T
4
2

= k2T 4
r = k2

[

(

SB1

SB2

)1/4
]4

=k2
(

J
1

4

)4

= k2J (3)

where SB1 and SB2 are the surface brightnesses of
star 1 and star 2 respectively, and r1 and r2 are the
fractional radii of star 1 and 2 respectively, defined as
R1/a and R2/a, where R1 and R2 are the physical radius
of each star, and a is the semi-major axis of, or separation
between, the components. Combining equations 2 and 3
yields the expression,

Teff =
LrT1 + T2

Lr + 1
(4)

which has two known parameters, Teff and Lr, and
two unknown parameters, T1 and T2. To place a fur-
ther constraint upon the values of T1 and T2, we make
the assumption that both stars in the binary are on the
main-sequence, and employ the mass, temperature, ra-
dius, and average of the V-band and R-band luminos-
ity relations given in Baraffe et al. (1998) for 0.075 ≤ M
≤ 1.0 M⊙ and in Chabrier et al. (2000) for M < 0.075
M⊙, both assuming an age of 5.0 Gyr and [M/H] = 0.0.
(We average the V and R-band luminosities to obtain a
very close approximation to the Kepler bandpass.) From
these models, for a given value of T1, there is only one
value of T2 which will reproduce the observed value of
Lr. Thus, there only exists one set of unique values for
T1 and T2 that reproduces both the observed Teff and
Lr values for the system.
For each T1 and T2 then, we obtain the absolute

masses and radii, (M1, M2, R1, and R2), via interpo-
lation from the Baraffe et al. (1998) and Chabrier et al.
(2000) models. Then, utilizing Kepler’s 3rd law, given
the total mass of the system, we calculate the semi-major
axis, a, via

a = (GMtot)
1

3 (
P

2π
)

2

3 (5)

where Mtot is the total mass of the system, M1 + M2,
and G is the gravitational constant. We then multiply
each radius determined above by a constant so that the
sum of the fractional radii derived from the JKTEBOP
model, rsum, is equal to (R1 + R2)/a, the sum of the
fractional radii when using the physical values ofM1, M2,
R1, R2, and P . This technique is robust because while
individual parameters such as i, J , and k can suffer from
degeneracies, especially in systems with shallow eclipses,
the values of rsum and Lr = k2J , which we rely on, are
firmly set by the width of the eclipses and the difference
in their eclipse depths, respectively.
For clarity, we now illustrate the individual steps of

this procedure using the example of an actual system,
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Kepler 002437452. This system was found to have Teff

= 5398 K and Lr = 3.90 from the KIC and the JKTE-
BOP modeling respectively. Now, assuming the stars are
main-sequence, one could choose values of T1 = 4000 K
and T2 = 3620 K, and looking up their luminosities from
the Baraffe et al. (1998) models, find that the luminos-
ity ratio between two main-sequence stars with temper-
atures of 4000 K and a 3620 K is 3.90. In this case,
the luminosity ratio criterion would be satisfied, but Teff

would would be ∼3922 K, nowhere near the measured
value of 5398 K. Similarly, one could choose values of
T1 = 5400 and T2 = 5393, and this would yield Teff =
5398 K, but Lr would be 1.01, nowhere near the needed
value of 3.90. The unique solution that satisfies both the
effective temperature and luminosity ratio constraints is
that T1 = 5591 and T2 = 4647, which yields both Teff

= 5398 and Lr = 3.90. Now, given these temperatures,
interpolating from the Baraffe et al. (1998) models yields
values of M1 = 0.963 M⊙, R1 = 0.966 R⊙, M2 = 0.792
M⊙, and R2 = 0.783 R⊙. Taking the masses, and the pe-
riod of the system of 14.47184 days, and utilizing Eq. 5,
we find that the semi-major axis, a, would be 30.1 R⊙.
Dividing the sum of the estimated physical radii by the
semi-major axis just calculated, we find a value of 0.058
for the sum of fractional radii. Now, from the JKTE-
BOP model, this system was measured to have a sum of
the fractional radii of 0.084, and so it appears that the
current values for the radii are underestimated. Thus,
we multiply the radii by a factor of 0.084/0.058 = 1.45,
to obtain our final radii values of R1 = 1.40 R⊙ and R2

= 1.13 R⊙, with, as above, M1 = 0.96 M⊙, T1 = 5591
K, M2 = 0.79 M⊙, and T2 = 4647 K.
Kipping (2010) has recently examined the effects of

the long, (∼30 minute), integration time of long-cadence
Kepler observations on transit light curves, and found
that it can significantly alter the morphological shape of
a transit curve and result in erroneous parameters if not
properly taken into account in the modeling procedure.
Certainly, eclipsing binaries are also affected by long in-
tegration times, namely by a “smearing” of the eclipses
so that they appear to be shallower and have a longer du-
ration. Qualitatively, this would result in a lower inclina-
tion and larger sum of the fractional radii, while the lumi-
nosity ratio would remain unchanged, since both eclipse
depths are equally affected. To quantitatively investigate
the extent to which the long integration could affect the
derived parameters, we generated model light curves of a
typical eclipsing binary, varying its period and the sum of
the fractional radii. We then binned these light curves as
if they had a 29.43 minute integration time, and the same
number of data points as the Q1 Kepler light curves. We
then re-solved the light curves without accounting for the
integration time, and compared the computed parame-
ters to those used to generate the original light curve.
We found that for the long-cadence Kepler integration
time of 29.43 minutes, only systems with very low values
of rsum and P are significantly affected, as can be seen in
Figure 3. These types of systems are less than 2% of our
sample. Nevertheless, we modified the JKTEBOP pro-
gram to perform a numerical integration over a given ex-
posure time, as suggested by Kipping (2010). We tested
our modifications by solving the aforementioned gener-
ated light curves, now taking the integration time into
account, and successfully retrieved the inputted param-
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Figure 3. Top: The effect that the 29.43 minute integration time
has on the derivation on the sum of the fractional radii, rsum, at
a given period. As can be seen, only very small values of rsum
and P yield discrepancies & 10%, for example, combinations of P
< 3 days and rsum < 0.05, P < 1.5 days and rsum < 0.1, P <

0.75 days and rsum < 0.2, etc. Bottom: The values of rsum versus
period for the binaries we have modeled in this paper, presented
in Table 2. Very few of the systems, . 2%, in our sample lie in
a region where they would be significantly affected by the 29.43
minute integration time.

eters.
After estimating the individual mass, radius, and tem-

perature for each component, we re-computed the grav-
ity and limb-darkening coefficients for each individual
star, and performed a Levenberg-Marquardt minimiza-
tion starting from our previously best solutions, tak-
ing into account the 29.43 minute integration time.
We then repeated the processes of deriving the physi-
cal values of the components, interpolating gravity and
limb-darkening coefficients, and performing a Levenberg-
Marquardt minimization several more times to ensure
convergence. The JKTEBOP solutions for all initial 231
candidates are shown in Table 2, including the Kepler ID
number, effective temperature of the system, apparent
Kepler magnitude, magnitude range of the light curve,
period, time of primary minimum, inclination, eccentric-
ity, longitude of periastron, sum of the fractional radii,
surface brightness ratio, radii ratio, luminosity ratio, am-
plitude of the sine curve applied to the luminosity of the
primary star to account for spots, and the amount of
third light. Although we list the derived surface bright-
ness and radii ratios here, we note again that they are



7

 14.1

 14.2

 14.3

 14.4

 14.5

 14.6

 14.7
-0.25  0  0.25  0.5  0.75  1  1.25

K
ep

le
r 

M
ag

ni
tu

de

Phase

Kepler 002162994

Figure 4. Plots of the light curves of the 231 systems modeled
with the JKTEBOP code, presented in Table 2. Only the first plot,
Figure 4.1, is shown in the text for guidance. Figures 4.1-4.231 are
available in the online version of the Journal.

not always reliable on their own, and thus are combined
to obtain the luminosity ratio in our analysis via Eq. 3.
Plots of each of the eclipsing binaries with their model
fit are given in Figure 4.
As a check on the reliability of our analysis tech-

nique we took the well-studied low-mass eclipsing bi-
nary GU Boo (López-Morales & Ribas 2005), and mod-
eled only the R band light curve, (not using the ra-
dial velocity curves), via the exact same procedure as
stated above in Sections 4 and 5. The only differences
were that we used only the R-band luminosities from
the Baraffe et al. (1998) and Chabrier et al. (2000) mod-
els, and an integration time of 2 minutes as stated in
López-Morales & Ribas (2005). We used only the pe-
riod, time of primary minimum, and estimated effective
temperature of the system from broadband photometry
provided in López-Morales & Ribas (2005), as we did for
the systems in our main study. We find T1 = 3912 K,
M1 = 0.61 M⊙, R1 = 0.62 R⊙, T2 = 3813 K, M2 =
0.57 M⊙, and R2 = 0.59 via our technique. In compar-
ison, López-Morales & Ribas (2005) found with multi-
color light curves and radial-velocity curves of the sys-
tem, values of T1 = 3920 K, M1 = 0.610 M⊙, R1 =
0.623 R⊙, T2 = 3810 K, M2 = 0.599 M⊙, and R2 =
0.620. The values derived from our technique using only
a single color light curve are accurate to within a few
percent of the very precise values derived from a study
using multi-color light and radial-velocity curves, thus
validating our technique.
As noted above, Prša et al. (2010) estimated the pa-

rameters of temperature ratio, sum of the fractional radii,
e·cos(ω), e·sin(ω), and sin(i) for detached systems, via
the EBAI technique (Prša et al. 2008). Before compar-
ing to the parameters obtained by (Prša et al. 2010),
we note that the modeling approach between EBAI and
our AGA presented in this paper have some fundamen-
tal differences. EBAI is extremely computationally ef-
ficient, but relies on a fitted polynomial to the actual
data (Prša et al. 2008), which is then compared to a
neural network training set of 33,235 light curves gener-
ated by the Wilson-Devinney code (Wilson & Devinney
1971; Wilson 1993). Prša et al. (2008) notes that “...the
artificial neural network output is viable for statistical

analysis and as input to sophisticated modeling engines
for fine-tuning.” In comparison, the use of our AGA
coupled with JKTEBOP is computationally slower, but
models each actual data point, obtaining an actual best-
fit model while varying all physical parameters of inter-
est over the global solution space. As well, our AGA
takes into account the 29.43 minute integration time,
while EBAI does not. Thus, although the EBAI tech-
nique is excellent for mining large databases, identifica-
tion of light curve morphology, and obtaining estimates
of parameters for statistical studies, it is not intended
to model individual light curves as precisely and accu-
rately as possible. Keeping this in mind, comparing the
parameters obtained by Prša et al. (2010) to our solu-
tions for the same systems, we first note a moderate cor-
relation between the sum of radii given by Prša et al.
(2010) and our results, with an average discrepancy of
∼20%. However some of the Prša et al. (2010) solutions
are unphysical, (rsum < 0.0), and visual inspection of the
polyfit curves given by Prša et al. (2010) appears to re-
veal a systematic underestimation of the eclipse depths.
With respect to eccentricity, the parameters presented
by Prša et al. (2010) reveal an unusually large number
of eccentric systems, with only 3% of systems having e ≤
0.01, and 11% of systems with e ≤ 0.05. In contrast, our
parameters show 36% of systems with e ≤ 0.01, and 60%
of systems with e ≤ 0.05, which better matches the large
number of systems observed that do not show any offset
of secondary eclipse from phase 0.5, and no difference in
the eclipse widths, indicative of a circular orbit. There
is only a slight correlation between our inclination val-
ues and that of Prša et al. (2010), but as we previously
noted, the Prša et al. (2010) polyfit curves appear not to
fit the eclipse depths well. There is practically no corre-
lation between our values for the surface brightness ra-
tio and EBAI’s temperature ratio provided in Prša et al.
(2010), though Prša et al. (2010) notes that for detached
systems, the “...eclipse depth ratio is strongly affected
by eccentricity and star sizes as well, rendering T2/T1 a
poor proxy for the surface brightness ratio.”
In Table 2 we list the Kepler ID number, orbital pe-

riod, effective temperature of the system, and the es-
timated effective temperature, mass and radius of each
stellar component for the 95 systems that contain two
main-sequence stars, which we define as having a ra-
dius less than 1.5 times the Baraffe et al. (1998) and
Chabrier et al. (2000) model relationships, and a light
curve amplitude of at least 0.1 magnitudes, (suitable
for ground-based follow-up and less likely to contain any
third light). All of these 95 systems have both stars with
masses less than 1.0 M⊙. Note that we have ordered Ta-
ble 2 such that Star 1 is always the more massive star,
regardless if Lr was greater or less than 1.0 in Table 2.
Also note that since we are using V+R-band luminosi-
ties, which best correspond to the Kepler bandpass, one
cannot always use the simple R2·T4 relation to derive
luminosity ratios from Table 2 to compare to Table 2,
since that would correspond to the bolometric luminos-
ity. However, if one takes a system from Table 2, looks
up the V+R-band luminosity for each component, based
on their mass and temperature, from the Baraffe et al.
(1998) and Chabrier et al. (2000) models, and derives a
luminosity ratio, this will exactly match the luminosity
ratio in Table 2 from the JKTEBOP models, because
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the technique defines it as such. These results substan-
tially increase the number of LMMS DDEB candidates
in general, and provide 29 new LMMS DDEBs with both
components below one solar mass, and at least 0.1 magni-
tude eclipse depths, in the heretofore unexplored period
range of P > 10 days. We further discuss the impact of
these systems and comparison to theoretical models in
Section 7.
In Figure 5 we show an example of a system which did

not meet the main-sequence criterion, Kepler 004247791,
which has Teff = 4063K and a period of 4.100866 days.
If this system were main-sequence, via our method, it
would have a combined mass of 1.28 M⊙ and a combined
radius of 3.82 R⊙. This can be seen by the wide, shallow
eclipses for a system of this period and effective temper-
ature. Thus, this system contains one or two evolved
stars. An additional curiosity of this system is a periodic
transit-like feature that is superimposed on the eclips-
ing binary light curve. The transit feature occurs at just
slightly less than half the orbital period of the eclipsing
binary, so that it is seen twice per every revolution of
the eclipsing binary system, occurring at a slightly ear-
lier phase every revolution. We subtract the model fit
from the eclipsing binary, and plot the transit feature
at its period of 2.02484 days in the right panel of Fig-
ure 5. Some possible explanations may include, but are
certainly not limited to: 1) a background eclipsing binary
with no visible secondary eclipse at 0.49376 times the or-
bital period of the foreground binary, 2) a background
eclipsing binary with nearly identical primary and sec-
ondary eclipses at 0.98752 times the orbital period of
the foreground binary, 3) a circumbinary transiting ob-
ject, or 4) a transiting object around one of the stars in
an almost 2:1 resonant orbit with the binary. Follow-up
multi-color light curves, spectra, and radial velocities will
be needed to fully characterize this interesting system.

6. NEW TRANSITING PLANET CANDIDATES

For the 8 new transiting planet candidates mentioned
in Section 3, we combined Q0 and Q1 data, and modeled
the transit curves using JKTEBOP, accounting for the
29.43 minute integration time, and using our modified
AGA in the same manner described in Section 4. We
assumed zero eccentricity and negligible flux from each
planet, and interpolated the limb-darkening and gravity-
darkening coefficients via the effective temperature, sur-
face gravity, and metallicity from the relations of Sing
(2010) and Claret (2000). We then solved for the period,
time of primary minimum, inclination, sum of the frac-
tional radii, ratio of the radii, and the out of transit flux
level. With this narrowed set of parameters, the AGA
proved to be extremely quick and precise, and all fits
were confirmed by eye and χ2 values to accurately fit the
data. Plots of the transit light curves with model fits are
shown in Figure 6.
To estimate the physical radius of each transiting ex-

oplanet candidate, we took the value for the radius of
the host star from the KIC, and multiplied by the ratio
of the radii, k, found from the model. In Table 2 we
list the Kepler ID number, apparent Kepler magnitude,
time of primary minimum, period, effective temperature
of the star, inclination, radius of the star, and radius of
the exoplanet candidate in both solar radii and Jupiter
radii.
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Figure 5. Kepler 004247791. An example of a system which
was determined not to be main-sequence in Section 5. Top: The
light curve phased at its period of 4.100866 days with our best
model fit. Given the shallow, wide eclipses for a ∼4.1 day period
and Teff = 4063K, if this system were main-sequence, it would
have a combined mass of 1.28 M⊙ and a combined radius of 3.82
R⊙. Thus, this system contains one or more evolved stars. Bot-
tom: The model-fit subtracted light curved phased at a period of
2.02484 days, showing a transit-like feature imposed on the light
curve of the eclipsing binary. Possible explanations may include,
but are certainly not limited to a background eclipsing binary with
no visible secondary eclipse at 0.49376 times the orbital period of
the foreground binary, a background eclipsing binary with nearly
identical primary and secondary eclipses at 0.98752 times the or-
bital period of the foreground binary, a circumbinary transiting
object, or a transiting object around one of the stars in an almost
2:1 resonant orbit with the binary.

As can be seen, the radii for these transiting planet
candidates range from 0.56 to 2.1 RJup, with periods
between 4.1 and 24.6 days. Only one of these, Ke-
pler 011974540, has been ruled out as a planet from
follow-up RV measurements, which are needed for the
rest of the candidates to confirm or refute their plane-
tary nature. However, even if these objects turn out not
to be planetary mass, they then must be either brown
dwarfs or very low-mass stars, which still are valuable
finds. In the case of brown dwarfs, these targets would
be located within the so-called “brown dwarf desert”
(McCarthy & Zuckerman 2004).

7. COMPARISON OF THE NEW LOW-MASS BINARY
CANDIDATES TO MODELS

As described in the introduction, one of the current
outstanding questions in the study of low-mass stars is
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Table 4
Model Parameters for the 8 Transiting Exoplanet Candidates

Kepler ID Mkep T0 P Teff,⋆ i R⋆ Rp Rp

(BJD-2454900) (Days) (K) (◦) (R⊙) (R⊙) (RJup)

001571511 13.42 68.529019 14.02065 5804 89.28 1.08 0.14 1.43
003342592 14.92 69.190452 17.17864 5717 89.20 0.93 0.14 1.37
005372966 15.37 67.675070 9.286422 5464 88.91 0.92 0.19 1.87
006756669 15.33 65.860125 5.851827 5353 88.34 0.90 0.16 1.59
006805146 13.21 56.568771 13.77974 6214 89.14 1.41 0.21 2.11
008544996 15.20 65.898818 4.081488 5463 87.61 1.00 0.13 1.27
0119745401 13.22 65.862352 24.67058 6507 89.53 0.69 0.06 0.56
012251650 14.76 71.657743 17.76233 4952 88.97 1.00 0.16 1.64

1 Listed in the Kepler False Positive Catalog as “velocity measurements indicate eclipsing binary”
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Figure 6. Plots of the light curves of the 8 transiting planet can-
didates modeled with the JKTEBOP code, presented in Table 2.
Only the first plot, Figure 6.1, is shown in the text for guidance.
Figures 6.1-6.8 are available in the online version of the Journal.

whether the inflated radii observed in binaries is caused
by their enhanced stellar rotation, and therefore en-
hanced magnetic activity. We explore this problem in
this section using the list of the 95 new LMMS DDEB
candidates with estimated individual masses both below
1.0 M⊙ and light curve amplitudes greater than 0.1 mag-
nitudes, given in Table 2. This sample, for the first
time, provides a statistically significant number of sys-
tems with orbital periods larger than 10 days.
The left-side panels of Figure 7 show mass-radius dia-

grams using the mass and radius of each binary star com-
ponent estimated in Section 5. The LMMS DDEB can-
didates have been separated into three categories, with
orbital periods P < 1.0 day, 1.0 < P < 10 days, and P >
10 days. Each primary and secondary in a binary pair is
traced by a connecting line. We also plot in each panel
of Figure 7 the theoretical mass-radius relation predicted
by the Baraffe et al. (1998) models for M ≥ 0.075 M⊙,
and the Chabrier et al. (2000) models for M < 0.075 M⊙,
both for [M/H] = 0.0, and an age of 5.0 Gyrs. We have
also defined a main-sequence cutoff as 1.5 times the the-
oretical mass-radius relation, which is illustrated by the
solid line in each diagram. In the models we have used
an α = 1.0 for M ≤ 0.7 M⊙ and interpolated the radius
of the models for 0.7 M⊙ < M ≤ 1.0 M⊙ by fixing the
radius of the 1.0 M⊙ model to 1.0 R⊙, therefore avoiding
the dependence of the stellar radius with α between 0.7
M⊙ and 1.0 M⊙ (Baraffe et al. 1998). We also include in

the mass-radius diagrams estimations of the error in our
M and R values at several masses, computed by adding
and subtracting 200 K, (the error in the Teff determina-
tions given by the KIC), from a given temperature and
interpolating the mass and radius from the theoretical
relations. Note that one of the long-period stars, Kepler
008075618, falls well below the main-sequence, with two
identical components with M = 0.91 M⊙ and R = 0.53
R⊙. Inspection of this light curve, coupled with the light
curve model, reveals that this system could in fact be a
single-lined system at half the listed period.
In the figure, many of the stellar radii of binaries with

P < 1.0 days appear to fall above the model predictions,
but as the orbital period increases, a larger fraction of
the systems appear to have radii that are either consis-
tent with or fall below the models. There certainly is a
fair amount of scatter in these data introduced by the
large error in the mass and radius estimations, but a
histogram analysis of the radius distributions confirms
these apparent trends. On the right-side panels of Fig-
ure 7 we show 5% bin-size histograms representing how
many stars have a radius that deviates by a given per-
centage from the models. The average radius discrepancy
is 13.0%, 7.5%, and 2.0% for the short (P < 1.0 days),
medium (1.0 < P < 10.0 days), and long-period (P >
10.0 days) systems respectively. Although a full analysis
of each system with multi-color light and radial-velocity
data is still needed, these preliminary estimates support
the hypothesis that binary spin-up is the primary cause
of inflated radii in short period LMMS DDEBs.

8. SUMMARY

We present 231 new double-eclipse, detached eclips-
ing binary systems with Teff < 5500 K, found in the
Cycle 0 data release of the Kepler Mission, and pro-
vide their Kepler ID, estimated effective temperature,
Kepler magnitude, magnitude range of the light curve,
orbital period, time of primary minimum, inclination, ec-
centricity, longitude of periastron, sum of the fractional
radii, and luminosity ratio. We estimate the masses and
radii of the stars in these systems, and find that 95 of
them contain two main-sequence stars with both com-
ponents having M < 1.0 M⊙ and eclipse depths of at
least 0.1 magnitude, and thus are suitable for ground-
based follow-up. Of these 95 systems, 14 have periods
less than 1.0 day, 52 have periods between 1.0 and 10.0
days, and 29 have periods greater than 10.0 days. This
new sample of low-mass, double-eclipse, detached eclips-
ing binary candidates more than doubles the number of
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Figure 7. Left: Mass-radius diagrams for each binary with both components < 1.0 M⊙ and photometric amplitudes greater than 0.1 mag,
as given in Table 2, with systems connected by faint lines. The systems are sorted into short-period (P < 1.0 days, top panel), medium-
period, (1.0 < P < 10.0 days, middle panel), and long-period groupings, (P > 10.0 days, bottom panel). The theoretical mass-radius
relations of Baraffe et al. (1998) for 0.075 M⊙ ≤ M ≤ 1.0 M⊙, and of Chabrier et al. (2000) for M < 0.075 M⊙, both for [M/H] = 0.0 and
an age of 5.0 Gyr, are over-plotted. The solid line shows the main-sequence cutoff criterion. The error bars indicate the error in mass and
radius obtained when interpolating from the mass-temperature-radius relations with an error of 200K. Right: Histograms of the fraction of
stars in the sample versus their deviance from the models for each period grouping. As can be seen by both the mass-radius relation plots
and the histograms, shorter period binaries in general appear to exhibit larger radii compared to the models than longer period systems.
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previously known systems, and extends the sample into
the completely heretofore unexplored P > 10.0 day pe-
riod range for LMMS DDEBs.
Comparison to the theoretical mass-radius relation

models for stars below 1.0 M⊙ by Baraffe et al. (1998)
show preliminary evidence for better agreement with the
models at longer periods, where the rotation rate of the
stars is not expected to be spun-up by tidal locking, al-
though, in the absence of radial-velocity measurements,
the errors on the estimated mass and radius are still quite
large. For systems with P < 1.0 days, the average radius
discrepancy is 13.0%, whereas for 1.0 < P < 10.0 days
and P > 10.0 days, the average radius discrepancy is
7.5% and 2.0%, respectively. Ground-based follow-up,
in the form of radial velocity and multi-wavelength light
curves, is needed to derive the mass and radius of each
star in each system to ∼1-2%, which we have already
begun to acquire. With accurate masses and radii for
multiple long-period systems, we should be able to defini-
tively test the hypothesis that inflated radii in low-mass
binaries are principally due to enhanced rotation rates.
We also present 8 new transiting planet candidates.

Only one of them is currently listed in the Kepler False
Positive Catalog. The remaining candidates require
radial-velocity follow-up to confirm or refute their plan-
etary nature. Even if these systems do not turn out to
be planets, they then must be brown dwarf or very low-
mass, late-type M dwarfs, which would still be a very
valuable find. In fact, all false positive planet candi-
dates determined by the Kepler team will be of great
interest to stellar astrophysics. We also present 7 new
extremely shallow eclipsing systems, one well detached
binary with deep eclipses, and one apparent red giant
with an unusual eclipse-like feature. We also highlight a
very unusual eclipsing binary system containing at least

one evolved star and an additional transit-like feature in
the light curve. Finally, the systems that we determined
are not main-sequence, and we therefore did not include
in the subsequent analysis, should be further studied for
valuable science. Accurate mass, radius, and tempera-
ture determinations of those systems could yield valuable
insights into stellar and binary evolution.
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APPENDIX

A. ECLIPSE PHASE DISPERSION MINIMIZATION (EPDM)

In this appendix we further explain the EPDM technique introduced in Section 3. As mentioned in the text, EPDM
finds the period of an eclipsing binary system by seeking the value of the period that best minimizes the dispersion
in phase of the faintest N points in a light curve. To illustrate how this methods works, we show in Figure 8 the
period search analysis of the LMMS DDEB candidate Kepler 006591789, which was found to have a period of 5.088435
days via the JKTEBOP model, (see Table 2). The unfolded Q1 light curve is shown in the top-left panel of Figure 8.
EPDM selects the faintest 20 points of the light curve, which are highlighted by the larger points in that same panel.
The number of points should be adjusted based on the quality of the data set. Too few points could result in all
the points selected belonging to the same eclipse, if that one eclipse is unusually deep due to systematics or another
reason, and thus EPDM will be unable to determine a period. Too many points will cause the results of EPDM to be
less precise, as more points are included further away from the center of the eclipses. We have found that 20 points is
a good number for Kepler data, for which many systems do suffer from moderate systematics, as is evidently the case
for Kepler 006591789, as seen by the quasi-sinusoidal variation in the baseline flux.
Having selected the faintest points from the light curve, EPDM then loops over a range of period values. In this

case we choose a set of 5,000 period values that range from 0.3 to 30 days, evenly distributed in log space, so that
shorter periods are as well-sampled as longer periods. At each period, the phase of each of the 20 faintest points are
calculated via the following standard equation,

p =
T

P
− int(

T

P
) (A1)

where p is the phase of a given point, with a time value, T , for a given period, P , and int() returns the argument
rounded down to the nearest integer value. The standard deviation of these 20 phase values is then computed, and
we are left with a standard deviation for each trial period. In the bottom-left panel of Figure 8, we plot the standard
deviation in phase of the 20 points versus each trial period. The lowest values for the standard deviation indicate the
best periods, where the eclipses align in phase-space, while high values indicate bad periods. As can be seen in the
bottom-left panel, the standard deviation approaches a value of 0.0 near 10.2 days, 5.1 days, 2.05 days, and decreasing
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Figure 8. Illustration of the EPDM technique. Top-left: The unphased light curve of Kepler 006591789, with the 20 faintest points
highlighted by using larger point sizes. Bottom-left: Standard deviation of the phase values of the 20 faintest points versus period for this
system. As can be seen, the standard deviation approaches 0.0 at ∼5.1 days, and integer multiples and fractions thereof. Top-Right: The
same plot as in the bottom-left panel, but with the period range restricted to show only the period with the lowest standard deviation,
and true period of the system. Bottom-Right: The actual phase values for each of the 20 faintest points at multiple periods, spanning the
same period range, (but with a lower period resolution, for clarity), as the plot in the top-right panel. As can be seen, as the examined
period approaches the true period of the system, the phase values of the 20 faintest points strongly clump together, producing a very small
standard deviation. The best period is highlighted by a box in the lower-right panel.

fractions thereof, or period aliases. To determine the three best periods, EPDM first selects the lowest standard
deviation, which in this case yields a value of 5.09004 days. It then selects the next lowest value, whose corresponding
period value differs from the first by at least 10%, and yields a value of 10.1747 days. The third period selected via
the same method yields a value of 2.54402 days.
To further clarify the technique visually, in the top-right panel of Figure 8, we show the same plot as in the bottom-

left panel, but limited in period range to straddle the best period found, 5.09004 days. At the same period range,
in the bottom-right panel, we plot the actual values of the phase for each of the 20 points at each period. (For ease
of viewing, we use a lower trial period resolution in the bottom-right panel than the top-right panel.) As can be
seen in the lower-right panel, when the trial period is far from the true period of the system, the actual phase values
have a large dispersion, and range completely from 0.0 to 1.0. As the given period gets closer to the true period, the
phase values begin to clump, with their dispersion decreasing as the trial period approaches the true value. Indeed,
as highlighted by the box in the bottom-right panel of Figure 8, at the best period, all the phase values are tightly
grouped together at P = 5.0904 days, indicating that all the eclipses are extremely well aligned, and the period of the
system has been found.
One complication that can arise is if EPDM encounters an eccentric system with two similarly deep eclipses. In this

case, when the algorithm selects the N faintest points, it will be selecting points from both eclipses. Since the system
is eccentric, there is a phase offset not equal to 0.5 between primary and secondary eclipse, i.e. the two eclipses occur
closer to each other in time compared to the period of the system. In this case, if we were to run EPDM as just
described, in a plot like the bottom-right panel of Figure 8, at the true period of the system there would be two groups
of points, each by itself having a very small deviation, but separated from each other in phase by a large amount.
Thus, the standard deviation calculation will show a much higher value than it should, and the correct period could
not be found. Along similar lines, a problem arises when we consider how to calculate the standard deviation of, for
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example, the distribution of phase points in the bottom-right panel of Figure 8 at a period of 4.9 days, which ranges
from 0.8 - 1.0, and then jumps to 0.0 - 0.05. It is clear this is a continuous group of points, which simply experiences
an abrupt jump from phase 1.0 to 0.0. Although they represent a fairly good period, a calculation of their standard
deviation would show a high value, and thus indicate a bad period.
To reconcile both these problems, we insert an additional step into the EPDM technique. At each trial period,

EPDM searches for a reflection phase, pr, whose value is between 0.0 and 1.0, that will allow the two distinct phase
groupings to align. For each value of pr, if the phase value of a given point is larger than pr, a new value for the phase
of the point, p, is calculated as

p = p− 2.0 · (p− pr) (A2)

The value of pr which yields the lowest standard deviation for a given trial period is the correct reflection value, and
that corresponding lowest standard deviation should be assigned to that trial period. Thus, in the case of an equal
depth, eccentric system, where say the N lowest points group around two phases of 0.2 and 0.4, at a value of pr =
0.3, the two distinct groupings would merge into a single group at phase 0.2, with a very small standard deviation at
the correct period of the system. As well, in the case where a group of phase points that range from 0.9 to 1.0 and
0.0 to 0.1, pr allows the points to merge into a single group that only ranges from 0.0 to 0.1. In fact, we have already
implemented the use of pr when generating the bottom-left and top-right plots of Figure 8.
In conclusion, because EPDM only utilizes the faintest N points of a light curve, the computations are very quick,

especially compared to traditional phase dispersion minimization techniques, which utilize every point in a light curve.
This also allows for a more precise determination of the period, as one can apply more computing time towards finer
period resolution. As well, for the same reason, EPDM is not affected by systematics or varying star spots, as long as
their photometric amplitudes are not on the order of or greater than the amplitude of the eclipses. By selecting the
faintest point, or the earliest of the N faintest points, one is also given a good value for the time of primary minimum.
We have shown EPDM can be applied to both eccentric and non-eccentric binaries, and since a transiting planet’s
light curve is similar to an eclipsing binary with only one visible eclipse, the technique works equally well for transiting
exoplanets. In theory, EPDM could also be applied to other variables, such as stars with rotating spots, pulsating
variables, and contact binaries, although periods for these systems will be less precise than detached eclipsing binaries,
due to the broader minima of those systems. In theory though, one may not have to select the faintest points of a
light curve, but possibly a very narrow flux range, and achieve the same result.

B. GENETIC ALGORITHMS FOR ECLIPSING BINARIES

As mentioned in the text, in fitting our sample of eclipsing binaries, we have 12 parameters: period, time of primary
minimum, inclination, mass ratio, e·cos(ω), e·sin(ω), surface brightness ratio, sum of the fractional radii, ratio of the
radii, out of eclipse flux level, and the amplitude and phase shift of the sinusoid applied to the luminosity of the
primary in order to account for spots. We aim to vary these parameters over their entire range of possible solutions,
which if left to a grid search for 10−3 precision, would require computing on the order of ∼1036 light curves; a
computationally prohibitive task. Standard steepest descent minimization schemes such as Levenberg-Marquardt have
extreme difficulties in large, multi-parameter solution spaces, especially for eclipsing binaries as the solution space
is not at all smooth and has many local minima. Thus, we need a minimization technique that is computationally
efficient, not adversely affected by a non-smooth solution space, and able to find the global minimum. These criteria
are superbly met by the class of optimization schemes known as Genetic Algorithms (GAs).
In a standard GA, (cf. Charbonneau 1995), light curve parameter sets, called individuals, for an initial population of

solutions, are randomly generated within a predefined parameter space, and compared to the observational light curve.
Their corresponding χ2 value is used as a measure of fitness for natural selection, with parameters from fit individuals
bred with each other, (subjected to crossover like chromosomes), to create a second generation of new solutions,
and parameters from unfit individuals eliminated. After being subject to random mutations, to maintain parameter
diversity and ensure discovery of the global minimum, this second generation is compared to the observational data,
and bred into a third generation of solutions. The process continues for a specified number of generations, until a
satisfactorily low χ2 is found. Charbonneau (1995) demonstrated the application of GAs to problems in Astronomy
and Astrophysics, specifically fitting galactic rotation curves, finding pulsation periods in δ Scuti stars, and fitting
magnetodynamical wind models with multiple critical points, showing how the GA quickly finds the global minimum,
regardless of the topography of the solution space. It is this type of GA that has been already been incorporated into
the ELC eclipsing binary modeling code, and used with much success (Orosz & Hauschildt 2000; Orosz et al. 2002).
Cantó et al. (2009) recently proposed a new form of GA called an Asexual Genetic Algorithm (AGA). In the AGA,

instead of breeding new individuals via crossover, individuals are randomly created within a small predefined parameter
space, or breeding box, centered on the fittest members of the previous generation. The size of this breeding box can
be shrunk over successive generations to quickly converge to the best-fit solution. As shown by Cantó et al. (2009),
the AGA is computationally simpler and more precise since it does not require encoding parameters for crossover, and
converges much faster than traditional GAs, without sacrificing any ability to migrate to the global solution, so long
as the breeding box size does not decrease too quickly. Cantó et al. (2009) first showed that it far outperformed the
standard GA in both computational efficiency and final precision by solving one of the exact same problems presented
by Charbonneau (1995). Cantó et al. (2009) additionally demonstrated the application of the AGA to fitting the
radial-velocities of extrasolar planets and the spectral energy distributions of young stellar objects.
As eclipsing binary solutions have an even larger parameter space with many local minima than most problems, we
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make a few modifications to the AGA described by Cantó et al. (2009) to ensure discovery of the global minimum.
First, while we do exactly copy the fittest 10% of individuals of one generation to the next generation, to ensure
forward progress is always made while maintaining parameter diversity, instead of picking the fittest N members of a
generation, each of which breeds M offspring, to create a new generation, we randomly select individuals for breeding
by weighting them by a factor of (1/χ2)2. This ensures that the fittest individuals breed the most offspring, but still
allows for a few less fit individuals to breed, maintaining parameter diversity and exploration of the entire parameter
space. Second, instead of randomly creating new members within a breeding box of fit individuals, we randomly select
a number for each parameter from a Gaussian probability distribution centered on each parameter of a fit individual.
Thus, new individuals are not strictly confined to a breeding box, but merely are very likely to be created near a fit
individual, and maintain a very small probability that they will be created at many standard deviations away. This
mimics mutation in traditional GAs and ensures that the algorithm will not become trapped in a local minimum.
Third, as suggested by Cantó et al. (2009), the standard deviation of this normal distribution is chosen for each

parameter to be the standard deviation of that parameter in the entire population, times the function 0.1(1/χ
2

0
), where

χ2
0 is the χ2 value of the fittest member of the population. This allows parameters with the greatest impact on the fit,

or the smallest range of possible parameters, such as the out of eclipse flux level, to converge rapidly, while allowing
parameters that are less certain to converge more slowly and thoroughly explore their parameter space. Furthermore,
via this method, the standard deviation is shrunk over successive generations, so that the algorithm converges, but
only very slowly initially, rapidly increasing as χ2

0 approaches 1.0, i.e. the global minimum has been found. Finally,
we take the fittest 10% of the final generation and perform a standard Levenberg-Marquardt minimization for each
member, choosing the member with the resulting lowest χ2 value as our final solution.
We nominally found, for the eclipsing binaries in our sample, that a population of 100 individuals, bred for 200

generations, does an excellent job of solving the light curves. This only requires the generation of 20,000 light curves,
which with the JKTEBOP code only required ∼3 minutes per light curve to solve on a single 2.0 GHz CPU. Of course,
some systems may require a smaller or greater number of individuals and/or generations, but it should not be more
than a factor of ∼2. One may substantially reduce the number of individuals or generations required, and thus the
run time, if one can limit the range of parameter space. For example, if one knows, or wants to assume, the orbit is
circular or nearly circular, one could constrain |e·cos(ω)| < 0.1 and |e·sin(ω)| < 0.1. Furthermore, the AGA code is
extremely parallelizable, and thus with a multi-core computing cluster one could easily use this technique to model
thousands of eclipsing binary lightcurves, as is to be expected from Pan-STARRS and other large photometric surveys,
in a very reasonable time frame.
To visually demonstrate how the AGA works, we have generated a light curve with the following parameters: rsum

= 0.25, k = 1.1, i = 89.0◦, q = 1.2, e·cos(ω) = 0.1, e·sin(ω) = -0.1, J = 1.1, P = 2.20 days, T0 = 312.3 days, and
out of eclipse magnitude = 13.5. We then re-bin this data to match the number of data points in the Kepler Q1 data
sets, and add typical Gaussian noise for a bright Kepler star of 0.1 mmag per data point. We then re-solve this light
curve with the AGA, varying all the aforementioned parameters, and show in Figure 9 the value of each parameter
for every individual in each generation, as well as the values for the derived reduced χ2 and luminosity ratio. One
can see how even while searching over the entire global solution space, the AGA rapidly converges to the solution that
was used to generate the light curve, with the χ2 decreasing by a factor of ∼10 every ∼20 generations. Even though
the best solution of the 200th generation has χ2 ∼ 1.5, if allowed to continue for more generations, this run would
eventually converge to χ2 = 1.0, and performing a simple Levenberg-Marquardt minimization from the best solution
quickly produces a χ2 = 1.0 fit.
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Figure 9. Illustration of how the AGA converges over subsequent generations by solving an artificially generated light curve, re-binned to
the number of data points and error typical for a Kepler light curve. The parameters of the system are rsum = 0.25, k = 1.1, i = 89.0◦, q
= 1.2, e·cos(ω) = 0.1, e·sin(ω) = -0.1, J = 1.1, P = 2.20 days, T0 = 312.3 days, and out of eclipse magnitude = 13.5. The derived reduced
χ2 and luminosity ratio are also plotted. The AGA converges rapidly, decreasing the lowest χ2 value found by an order of magnitude every
∼20 generations. It can be seen that the parameters that are most significant to the light curve converge the fastest.
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Table 2
Model System Parameters via JKTEBOP for the 231 DDEBs with Teff <

5500 K

Kepler ID Teff mkep ∆mkep Period T0 i e1 ω1 rsum J k Lr L1 Sine L3

(K) (Days) (BJD-2450000) (◦) (◦) Amplitude

002162994 5410 14.162 0.535 4.101544 5002.545861 89.87 0.01 270 0.199 0.991 0.702 0.4888 0.008 0.00
002437452 5398 16.981 0.256 14.47184 5003.759350 87.46 0.08 90 0.084 0.641 2.47 3.905 0.011 0.00
002580872 5293 14.880 0.374 15.92672 4978.550988 87.95 0.26 102 0.084 1.14 1.25 1.774 0.014 0.00
002719873 5086 15.160 0.235 17.27953 4968.273250 87.76 0.31 90 0.059 0.633 2.64 4.425 0.007 0.00
002852560 5381 15.308 0.460 11.96119 4964.912794 88.06 0.44 41 0.079 1.04 0.986 1.008 0.000 0.00
002860788 5319 14.043 0.137 5.259798 4965.066945 82.29 0.00 268 0.212 0.876 0.561 0.2755 0.009 0.00
003003991 5366 13.926 0.115 7.244790 4964.859062 86.88 0.28 270 0.083 0.0438 11.2 5.447 0.000 0.40
003102024 5117 12.809 0.351 13.78248 4958.697309 89.50 0.54 302 0.054 0.605 1.37 1.138 0.000 0.43
003113266 5077 15.577 0.011 0.9958567 5002.193202 72.96 0.01 266 0.325 1.24 9.95 123.3 0.026 0.00
003241344 5422 14.756 0.401 3.912656 4966.427889 90.00 0.02 256 0.121 0.0854 0.509 0.02209 0.012 0.00
003241619 5165 12.524 0.802 1.703368 4965.468231 85.35 0.03 88 0.267 0.303 1.04 0.3286 0.016 0.00
003344419 5348 14.997 0.005 0.6517609 4977.843744 50.18 0.01 269 0.694 1.08 23.4 592.4 0.068 0.00
003458919 5063 13.815 0.121 0.8920383 5002.281060 73.06 0.14 270 0.418 0.362 3.95 5.653 0.056 0.00
003543270 5288 15.220 0.130 4.177213 5003.789822 82.27 0.05 269 0.207 0.254 0.394 0.03937 0.024 0.00
003556742 4921 14.221 0.004 0.8229667 5003.017211 37.02 0.00 247 0.848 2.41 15.5 576.3 0.108 0.00
003656322 5075 13.061 0.150 3.660009 4989.330479 67.54 0.02 125 0.457 0.930 1.66 2.576 0.125 0.00
003730067 4099 14.610 0.594 0.2940818 4964.591764 75.71 0.03 88 0.590 0.420 1.25 0.6522 0.035 0.00
003830820 3902 15.368 0.044 15.58263 4999.277480 87.92 0.47 79 0.057 2.39 2.10 10.57 0.000 0.60
003834364 5449 14.661 0.089 2.908455 4965.315292 82.21 0.10 271 0.182 0.0407 0.874 0.03106 0.006 0.00
003848919 5226 13.901 0.636 1.047253 4964.766251 85.07 0.00 84 0.418 0.903 1.04 0.9684 0.017 0.00
003957477 5395 12.477 0.073 0.9789470 4964.726279 66.89 0.03 91 0.525 1.42 2.97 12.52 0.055 0.00
004049124 5349 14.654 0.175 4.804341 4969.004205 84.04 0.41 89 0.160 1.32 2.24 6.592 0.002 0.00
004077442 4523 13.512 0.153 0.6928736 5002.273033 69.03 0.01 277 0.499 1.94 1.34 3.499 0.183 0.00
004078693 5288 13.485 0.005 2.756407 5001.858784 85.40 0.32 270 0.119 0.0308 0.519 0.008294 0.001 0.79
004247791 4063 11.260 0.152 4.100862 5001.145258 77.90 0.00 87 0.326 0.928 1.48 2.035 0.001 0.00
004281895 5309 12.256 0.078 9.543591 5002.358654 87.52 0.30 4 0.065 1.18 3.41 13.80 0.000 0.00
004346875 5339 15.584 0.284 4.694341 5004.332965 87.08 0.02 267 0.135 0.0866 0.429 0.01592 0.014 0.00
004352168 5115 14.343 0.663 10.64334 4967.942159 89.58 0.18 213 0.072 0.268 1.29 0.4451 0.012 0.35
004484356 5080 14.235 0.177 1.144126 5002.774583 78.62 0.02 271 0.320 0.899 0.652 0.3817 0.025 0.00
004540632 4818 14.991 1.045 31.00996 4983.860841 89.93 0.66 98 0.030 0.315 0.826 0.2150 0.000 0.00
004579313 5363 14.811 0.008 2.112635 5002.947518 68.73 0.00 309 0.390 0.553 13.3 98.34 0.029 0.00
004633434 4902 15.362 0.233 22.27067 4967.759577 89.52 0.09 107 0.031 0.0806 1.58 0.2024 0.000 0.77
004672010 4655 14.602 0.049 0.9628780 5002.694396 41.63 0.02 271 0.904 1.97 7.26 103.9 0.038 0.00
004678171 4240 15.993 0.951 15.28859 4965.805465 89.68 0.01 111 0.045 0.474 0.996 0.4702 0.002 0.00
004737267 5156 15.145 0.471 9.523936 5001.185337 89.05 0.01 220 0.154 0.521 1.98 2.032 0.072 0.00
004757331 5092 15.725 0.087 2.362127 5001.736119 81.59 0.11 90 0.210 1.77 2.01 7.157 0.043 0.00
004758368 4594 10.805 0.044 3.750218 5003.200871 67.51 0.02 260 0.489 1.01 3.73 14.11 0.002 0.00
004773155 5447 13.592 0.733 25.70599 4989.643369 89.86 0.43 309 0.042 0.767 1.14 0.9988 0.000 0.03
004908495 4731 13.871 0.359 3.120583 4965.367280 86.08 0.01 265 0.153 0.732 1.01 0.7479 0.076 0.00
004940201 5284 14.984 0.050 8.816203 5002.550394 90.00 0.03 87 0.067 0.455 1.24 0.7023 0.000 0.93
004948863 5490 15.414 0.090 8.643652 4972.829522 87.28 0.26 89 0.070 1.33 3.05 12.37 0.001 0.00
005015913 5487 12.989 0.002 2.359939 4954.580900 72.85 0.00 277 0.312 1.06 22.9 553.2 0.004 0.00
005018787 5215 15.428 0.023 0.6071971 5002.664852 83.52 0.12 89 0.338 0.410 1.98 1.601 0.000 0.96
005036538 4199 13.349 0.758 2.122015 5001.594725 88.69 0.00 285 0.181 0.773 1.02 0.8082 0.033 0.00
005041975 5149 13.981 0.160 2.958502 5003.379626 58.09 0.00 285 0.680 0.427 2.93 3.661 0.054 0.00
005080652 5344 15.080 0.524 4.144388 5001.321781 86.69 0.01 91 0.165 0.556 0.839 0.3915 0.018 0.00
005193386 4797 13.998 0.397 21.37192 4980.205957 88.85 0.01 121 0.134 0.268 3.43 3.148 0.098 0.00
005218014 4752 12.923 0.010 10.84612 4971.331816 88.91 0.24 157 0.068 0.944 1.16 1.266 0.002 0.98
005266937 5483 14.352 0.987 5.916942 5001.400391 88.40 0.05 268 0.429 0.113 0.721 0.05881 0.020 0.00
005286786 4946 15.456 0.006 9.949612 4976.748845 88.88 0.05 230 0.049 0.817 2.81 6.433 0.002 0.98
005294739 5068 13.930 0.994 3.736174 5001.678732 76.49 0.02 278 0.555 0.138 1.85 0.4705 0.068 0.00
005300878 4631 14.767 0.823 1.279424 5002.597321 89.49 0.01 93 0.294 0.817 1.02 0.8576 0.047 0.00
005347784 5392 13.094 0.155 9.584026 5000.621695 85.60 0.01 148 0.121 1.05 1.34 1.885 0.007 0.00
005467126 4683 12.367 0.014 2.845694 5001.431451 77.08 0.15 85 0.575 0.243 1.69 0.6920 0.000 0.98
005597970 5179 12.778 0.218 6.717435 4970.209216 86.01 0.28 270 0.106 0.0127 2.74 0.09511 0.002 0.00
005598639 4847 10.201 0.135 1.297549 5003.022903 83.12 0.00 280 0.441 0.995 0.990 0.9752 0.003 0.69
005696909 5451 14.984 0.006 0.6430210 4964.688376 63.09 0.00 261 0.490 0.965 15.0 218.3 0.035 0.00
005731312 4658 13.811 0.388 7.946392 4968.092030 88.99 0.43 15 0.058 0.113 0.592 0.03952 0.000 0.20
005781192 5372 12.989 0.301 9.459957 4999.722660 88.15 0.07 295 0.077 0.518 0.645 0.2154 0.006 0.00
005802285 4791 15.349 0.017 2.417017 5003.656318 77.87 0.00 89 0.232 0.740 3.74 10.36 0.002 0.00
005802470 5418 13.764 0.337 3.791871 5001.260474 85.11 0.03 90 0.149 0.344 0.985 0.3337 0.013 0.00
005871918 4021 15.701 0.319 12.64175 4972.761250 90.00 0.16 180 0.058 0.246 1.29 0.4091 0.056 0.64
006029130 5160 14.832 0.421 12.59140 5005.516830 88.72 0.02 49 0.063 0.851 1.02 0.8859 0.002 0.00
006042116 4771 11.300 0.089 5.407156 5002.038929 80.98 0.11 54 0.211 1.60 1.32 2.789 0.004 0.00
006044064 5095 15.001 1.653 5.063280 5002.149463 83.72 0.03 75 0.389 0.145 1.78 0.4606 0.078 0.00
006060580 5308 13.460 0.019 2.313334 5003.212901 75.37 0.00 27 0.289 0.304 0.298 0.02701 0.001 0.00
006131659 4870 12.534 0.475 17.52783 4960.041441 89.37 0.02 270 0.044 0.316 0.593 0.1111 0.000 0.00
006187893 5103 11.702 0.077 0.7891775 5006.959004 64.02 0.01 274 0.634 0.135 0.349 0.01646 0.008 0.00
006191574 4208 14.353 0.233 0.000000 -50000.000000 0.00 0.00 0 0.000 0.00 0.00 0.000 0.000 0.00
006197038 4937 13.531 0.798 9.752156 5000.794386 80.21 0.19 90 0.277 0.261 2.62 1.790 0.308 0.00
006205460 5242 12.746 0.796 3.722771 5001.134908 85.88 0.01 36 0.419 0.159 2.79 1.238 0.069 0.00
006307537 4253 11.753 0.193 29.74440 4960.659149 87.35 0.04 277 0.108 0.246 4.69 5.396 0.003 0.00
006312534 4897 15.583 0.024 3.015501 5002.128021 81.73 0.36 90 0.213 16.0 2.01 64.38 0.158 0.00
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Kepler ID Teff mkep ∆mkep Period T0 i e1 ω1 rsum J k Lr L1 Sine L3

(K) (Days) (BJD-2450000) (◦) (◦) Amplitude

006359798 5452 12.932 0.071 14.15394 4959.543146 89.54 0.41 183 0.048 0.377 1.35 0.6877 0.000 0.90
006367628 5185 13.035 0.548 3.780139 5002.708087 76.36 0.02 267 0.550 0.213 0.840 0.1500 0.016 0.00
006449552 5357 14.904 0.946 20.14888 4968.810574 89.40 0.27 247 0.045 0.188 1.08 0.2176 0.001 0.00
006464285 5061 13.826 0.444 0.8436324 5003.755443 73.04 0.01 286 0.469 0.188 2.74 1.411 0.019 0.00
006466939 4920 14.454 0.733 2.285920 5003.760706 88.72 0.00 95 0.199 0.762 1.14 0.9858 0.021 0.00
006548447 5031 12.880 0.165 10.76541 5009.086049 89.90 0.11 184 0.158 0.617 3.29 6.693 0.004 0.00
006591789 5410 15.353 0.614 5.088435 5002.974423 88.48 0.01 171 0.128 0.318 0.664 0.1399 0.005 0.00
006620003 3955 15.686 0.037 3.428469 4997.172065 82.97 0.01 269 0.146 0.775 1.04 0.8436 0.000 0.00
006629332 5452 13.997 0.073 4.310363 5007.525591 84.14 0.05 90 0.122 2.95 1.46 6.279 0.130 0.00
006694186 5247 12.376 0.189 5.554204 5001.487264 80.66 0.29 271 0.223 0.00832 31.3 8.173 0.000 0.00
006697716 4898 14.424 0.279 1.443221 5008.877209 82.57 0.00 30 0.261 0.505 0.634 0.2030 0.018 0.00
006706287 5182 13.620 0.607 2.535431 5004.418517 87.19 0.00 260 0.196 0.697 0.905 0.5714 0.025 0.00
006778050 5091 14.514 0.420 0.9458108 4964.620719 81.63 0.01 276 0.389 0.822 0.855 0.6013 0.025 0.00
006841577 5478 14.875 0.270 15.53753 4973.272586 89.35 0.19 128 0.059 0.0828 1.72 0.2455 0.000 0.74
006863840 5024 15.138 0.668 3.852650 4964.746207 88.78 0.00 81 0.142 0.830 1.05 0.9234 0.060 0.00
006939670 5436 14.858 0.152 4.238755 4968.201178 79.83 0.05 91 0.235 0.889 2.80 6.980 0.145 0.00
007049486 5498 13.144 0.088 26.71855 4971.051326 88.56 0.29 21 0.052 0.684 0.498 0.1696 0.004 0.64
007097571 5266 11.267 0.153 2.213962 5005.416674 80.18 0.03 91 0.385 0.217 0.314 0.02135 0.001 0.00
007119757 5072 15.608 0.249 0.7429393 4980.909123 71.04 0.02 86 0.541 1.10 1.58 2.750 0.058 0.00
007125636 4358 15.507 0.266 6.490765 4978.048116 87.67 0.02 214 0.081 0.835 0.929 0.7198 0.005 0.00
007128918 5386 15.758 0.142 7.118892 4984.394210 88.47 0.01 54 0.085 0.573 0.885 0.4486 0.004 0.70
007129465 5182 15.316 0.427 5.491840 4966.171031 87.83 0.00 271 0.107 0.856 0.941 0.7591 0.004 0.00
007200102 5207 15.213 0.538 14.66695 4972.573070 88.65 0.42 124 0.054 0.564 0.751 0.3181 0.000 0.04
007220322 4887 11.884 0.009 0.7521433 5002.397213 53.82 0.01 85 0.657 1.55 11.1 190.1 0.130 0.00
007257373 5311 13.424 0.745 10.46686 4955.658505 89.72 0.00 89 0.113 1.02 0.922 0.8700 0.001 0.00
007284688 4191 11.234 0.088 0.6461003 5002.783432 64.97 0.00 124 0.552 1.22 2.29 6.374 0.055 0.00
007624297 5135 14.928 0.222 18.01846 4981.666593 88.97 0.05 76 0.042 0.0661 1.73 0.1989 0.000 0.74
007670617 4876 15.517 0.450 24.70190 4969.146845 89.85 0.28 308 0.033 0.201 0.711 0.1018 0.000 0.35
007671594 3717 15.815 0.165 1.410329 4965.398972 84.54 0.00 302 0.138 0.612 1.19 0.8632 0.039 0.00
007691527 5354 15.431 0.463 4.800056 5002.382912 87.47 0.10 130 0.115 1.07 1.21 1.573 0.073 0.00
007749318 5211 14.528 0.341 2.371784 5003.689256 80.47 0.18 270 0.246 0.0569 3.32 0.6277 0.078 0.00
007769072 4858 13.886 0.003 0.6088726 5002.799849 57.25 0.00 72 0.583 1.18 21.8 559.9 0.016 0.00
007798259 4619 15.726 0.411 1.734306 5005.720952 84.29 0.03 270 0.200 0.310 1.22 0.4600 0.070 0.00
007830321 5347 15.476 0.008 2.027248 5003.200747 73.45 0.00 242 0.301 0.672 6.41 27.63 0.010 0.00
007842610 5375 15.289 0.021 1.943760 5001.841852 76.41 0.00 270 0.271 1.32 4.25 23.80 0.027 0.00
007846730 5476 12.956 0.381 11.02825 4969.966521 88.40 0.02 151 0.101 0.599 1.88 2.126 0.000 0.12
007885570 5398 11.679 0.223 1.729021 5001.851398 74.44 0.05 85 0.454 0.747 3.41 8.661 0.237 0.00
007947631 4823 15.179 0.022 2.516590 4987.092316 79.51 0.01 89 0.209 1.13 3.03 10.33 0.008 0.00
007955301 4821 12.672 0.007 15.30817 4960.464666 86.04 0.01 174 0.078 1.42 8.19 95.41 0.001 0.00
007987749 5349 14.461 0.095 17.03109 4978.541107 88.17 0.14 187 0.046 0.398 0.495 0.09742 0.000 0.00
008075618 5288 15.674 0.119 17.56154 4970.923092 88.76 0.02 90 0.031 1.11 0.961 1.027 0.000 0.00
008075755 4075 13.407 0.009 0.4962355 4964.752415 66.36 0.01 94 0.471 0.516 0.0939 0.004556 0.000 0.00
008076905 4214 15.613 0.011 0.4180906 5003.192377 51.07 0.01 279 0.715 1.67 11.8 231.1 0.083 0.00
008094140 4200 15.159 0.606 0.7064196 4973.624150 86.37 0.01 265 0.326 0.274 0.628 0.1079 0.038 0.00
008095110 5370 13.171 0.036 4.206510 4974.280246 76.85 0.02 91 0.300 1.56 4.03 25.26 0.035 0.00
008097825 5329 13.283 0.261 2.937050 4966.633044 78.40 0.00 286 0.343 0.645 1.50 1.449 0.028 0.00
008143170 4957 12.850 0.058 28.78627 4970.110463 85.83 0.20 255 0.103 0.269 6.55 11.55 0.001 0.00
008145789 4829 15.314 0.027 1.670636 5000.039740 75.30 0.01 272 0.311 0.917 5.66 29.34 0.016 0.00
008181016 5179 14.677 0.008 0.7090293 4965.187959 75.06 0.20 270 0.434 0.197 1.37 0.3690 0.000 0.98
008210721 5412 14.274 0.080 22.67256 4971.153407 87.76 0.29 64 0.057 0.234 3.46 2.809 0.000 0.75
008231877 4956 14.932 0.024 2.615519 4975.237630 83.45 0.15 90 0.162 1.87 0.511 0.4880 0.000 0.79
008279765 5464 15.235 0.051 2.757746 4965.474866 83.85 0.01 282 0.169 0.0539 0.208 0.002322 0.003 0.00
008288719 5090 13.276 0.043 1.510074 4972.744897 75.00 0.01 95 0.312 1.04 2.58 6.916 0.007 0.00
008296467 5316 15.177 0.987 10.30327 4970.167785 89.99 0.26 320 0.069 0.623 1.06 0.7061 0.006 0.00
008358008 5020 14.674 0.012 10.06506 4968.250048 89.42 0.06 79 0.054 0.533 1.51 1.216 0.000 0.98
008364119 5443 12.408 0.462 7.735857 4970.986699 88.29 0.03 44 0.093 0.897 0.849 0.6471 0.003 0.00
008379547 4861 13.373 0.174 6.041994 4959.163251 81.83 0.35 270 0.222 0.0668 7.25 3.510 0.083 0.00
008397675 5462 13.501 0.002 0.5532564 5001.856348 83.35 0.16 91 0.230 0.933 2.95 8.128 0.092 0.99
008411947 5086 15.300 0.860 1.797734 5003.785574 88.27 0.02 96 0.265 0.607 1.12 0.7612 0.050 0.00
008444552 5388 13.643 0.083 1.178041 4964.597354 77.49 0.11 90 0.323 2.28 1.96 8.734 0.021 0.00
008453324 4733 11.516 0.010 2.524694 5001.646619 72.45 0.00 82 0.341 1.42 5.66 45.59 0.016 0.00
008543278 4950 14.608 0.073 7.549631 4998.208506 88.40 0.12 276 0.052 0.187 0.451 0.03811 0.000 0.57
008559863 5154 12.723 0.055 22.46892 4953.814854 88.21 0.04 217 0.054 0.720 0.437 0.1377 0.002 0.56
008574270 5061 15.166 0.031 15.11963 4972.699012 87.27 0.29 321 0.059 0.0360 0.955 0.03285 0.000 0.00
008580438 5307 14.502 0.152 6.495852 5000.947823 90.00 0.01 80 0.108 0.0314 0.315 0.003107 0.004 0.00
008581232 4314 15.381 0.037 4.012679 5003.764787 87.32 0.33 133 0.086 0.279 0.138 0.005326 0.000 0.00
008616873 5486 15.237 0.015 0.5760785 5002.245893 81.58 0.14 86 0.437 0.140 2.17 0.6544 0.089 0.98
008655458 5210 14.585 0.008 1.594193 5002.299400 88.86 0.03 78 0.397 0.183 0.472 0.04073 0.000 0.98
008718273 4577 10.565 0.006 6.958070 4997.699036 89.55 0.03 269 0.050 0.740 0.0474 0.001664 0.000 0.00
008719897 4905 12.392 0.262 3.151596 4955.232895 80.22 0.02 90 0.315 1.02 1.13 1.291 0.015 0.00
008841616 4550 12.833 0.133 1.679564 4966.238497 61.97 0.02 71 0.650 0.0436 0.639 0.01781 0.022 0.00
008846978 5191 13.371 0.225 1.379281 4970.036969 64.68 0.06 312 0.556 0.0263 3.72 0.3635 0.196 0.58
008848104 5447 12.372 0.041 0.8248496 4972.049484 61.47 0.01 100 0.538 0.307 6.94 14.79 0.029 0.00
008906676 5249 12.121 0.167 8.209521 4967.062429 88.28 0.03 89 0.075 0.118 1.71 0.3441 0.000 0.78
008971432 5057 15.487 0.063 0.6243809 5001.634891 65.63 0.03 89 0.533 0.0555 0.299 0.004965 0.001 0.00



19

Table 2 — Continued

Kepler ID Teff mkep ∆mkep Period T0 i e1 ω1 rsum J k Lr L1 Sine L3
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009001468 4949 15.200 0.339 17.32833 4975.727756 89.41 0.52 239 0.043 0.216 1.54 0.5119 0.000 0.57
009029486 5368 13.630 0.342 6.277180 4965.329729 89.54 0.00 279 0.094 0.903 0.981 0.8686 0.007 0.45
009098810 5126 13.448 0.443 8.258238 4972.758295 88.41 0.16 87 0.079 0.957 0.832 0.6620 0.006 0.00
009210828 4893 13.221 0.205 1.656351 4977.002807 80.24 0.02 90 0.269 0.756 1.16 1.016 0.004 0.00
009266285 4184 14.072 0.072 5.613843 4965.571978 82.83 0.27 91 0.182 3.49 1.65 9.496 0.014 0.00
009284741 5085 14.807 0.516 20.72910 4974.226975 89.42 0.37 42 0.041 1.15 1.05 1.265 0.006 0.00
009291629 4629 13.957 0.168 20.69085 4966.893246 84.62 0.13 271 0.214 0.346 4.57 7.243 0.151 0.00
009328852 4338 15.330 0.550 0.6458239 5008.159243 84.39 0.04 82 0.410 0.0705 0.519 0.01901 0.047 0.00
009334490 5105 15.695 0.017 18.84520 4982.944981 89.46 0.02 129 0.038 0.797 0.547 0.2389 0.000 0.96
009346655 4183 14.299 0.144 0.8716196 4965.119502 81.56 0.50 90 0.262 6.12 1.50 13.73 0.380 0.00
009412462 5350 14.846 0.518 10.18653 4965.527836 87.39 0.03 230 0.143 0.747 1.19 1.065 0.016 0.00
009418994 5053 13.396 0.021 32.00590 4969.494447 89.65 0.23 54 0.024 0.136 0.668 0.06079 0.000 0.96
009474485 4469 14.884 0.668 1.025164 4965.292428 87.18 0.00 5 0.329 0.864 1.02 0.9024 0.033 0.00
009574614 5276 15.933 0.011 1.964342 5002.018849 78.41 0.01 238 0.220 1.01 4.37 19.23 0.001 0.00
009597095 5331 15.945 0.073 2.745608 5003.145923 81.81 0.02 269 0.203 0.121 0.377 0.01723 0.001 0.00
009632895 5425 13.552 0.097 27.32202 4965.424356 87.89 0.03 257 0.046 0.0428 11.9 6.042 0.000 0.46
009639265 5004 15.575 0.370 0.5063492 4964.814722 75.19 0.02 275 0.520 0.888 0.765 0.5194 0.068 0.00
009658832 4545 13.638 0.029 0.4568510 5002.649683 56.54 0.01 80 0.683 0.335 0.163 0.008909 0.002 0.00
009665503 5141 15.217 0.656 11.56806 4970.339984 89.46 0.28 330 0.063 0.383 0.694 0.1844 0.000 0.00
009714358 4825 14.998 0.283 6.479757 4999.785837 86.63 0.26 272 0.089 0.0295 3.94 0.4572 0.000 0.13
009761199 4060 15.692 0.014 1.383998 4964.727100 74.47 0.00 128 0.289 1.14 3.00 10.29 0.009 0.00
009762519 5435 13.711 0.152 7.515083 4971.079973 86.05 0.18 282 0.095 0.0521 2.31 0.2778 0.007 0.00
009837578 5359 15.726 0.698 20.73369 4965.845828 89.44 0.16 87 0.048 0.681 1.26 1.083 0.000 0.00
009851126 4164 13.183 0.097 8.480306 4968.853813 89.89 0.21 18 0.129 0.137 0.257 0.009052 0.000 0.03
009912977 5158 13.726 0.442 1.887885 5002.578442 79.82 0.01 91 0.473 1.01 1.17 1.380 0.002 0.00
009913798 4659 14.945 0.218 2.143443 5002.935126 83.44 0.01 271 0.269 0.173 0.409 0.02886 0.001 0.00
009934208 4258 15.507 0.166 9.058852 4970.337139 85.96 0.14 51 0.091 0.193 5.49 5.819 0.002 0.00
009944201 4737 15.069 0.032 0.7215318 5002.227862 86.33 0.07 90 0.307 0.215 1.71 0.6296 0.091 0.96
009944421 5304 15.137 0.349 7.095304 4968.370748 86.24 0.26 69 0.100 0.637 1.18 0.8853 0.024 0.00
010014830 4324 14.827 0.897 3.030715 5003.492462 85.95 0.00 185 0.549 0.279 1.80 0.9018 0.058 0.00
010026457 5222 15.390 0.089 9.934463 5005.612121 89.71 0.13 320 0.109 0.990 0.970 0.9321 0.000 0.84
010090246 5442 13.567 0.171 2.285607 5003.110556 56.54 0.03 89 0.695 0.560 2.32 3.022 0.038 0.00
010095484 5486 14.382 0.008 0.6777383 5002.579926 29.31 0.01 97 0.906 0.536 16.2 140.0 0.060 0.00
010129482 4558 15.994 0.268 0.8462873 5002.429877 80.44 0.00 76 0.326 0.190 0.615 0.07199 0.011 0.00
010189523 5002 15.856 0.117 1.013960 5002.929802 74.89 0.05 89 0.325 1.29 0.530 0.3627 0.039 0.00
010215422 5427 14.608 0.444 24.39590 4987.127475 89.06 0.29 9 0.045 0.207 1.43 0.4202 0.000 0.44
010264202 5207 15.777 0.144 1.035161 5002.815429 75.46 0.01 272 0.373 0.672 0.955 0.6130 0.004 0.00
010292465 5258 14.956 0.152 1.353325 5002.832143 73.64 0.00 0 0.348 0.0940 4.64 2.023 0.068 0.34
010330495 5132 14.724 0.075 18.06030 4971.608312 85.34 0.14 254 0.117 0.150 10.5 16.46 0.003 0.00
010346522 5286 14.404 1.204 3.988565 5001.472319 85.90 0.01 63 0.585 0.188 0.814 0.1246 0.008 0.00
010491544 4835 13.436 0.031 22.77214 4973.487861 86.42 0.54 56 0.089 15.6 1.34 27.91 0.017 0.00
010592163 5482 15.095 0.098 14.76289 4966.772333 88.98 0.32 329 0.057 0.486 0.628 0.1916 0.000 0.73
010613718 5080 12.735 0.010 1.175802 4966.821353 74.39 0.01 269 0.307 0.966 8.52 70.13 0.006 0.00
010711646 4339 15.787 0.204 0.7376206 4997.149560 78.07 0.08 270 0.343 0.134 1.16 0.1808 0.046 0.42
010753734 5446 13.564 0.725 19.40624 4982.807297 89.74 0.52 18 0.051 0.823 0.849 0.5942 0.005 0.00
010794242 5459 14.170 0.269 7.143779 4970.803174 89.19 0.08 247 0.102 0.0887 0.425 0.01604 0.010 0.00
010794405 5479 14.713 0.005 0.9522659 4979.620590 40.08 0.00 237 0.821 3.37 12.9 557.6 0.192 0.00
010809677 4995 13.942 0.008 7.042849 4970.731749 80.78 0.00 271 0.172 0.968 3.55 12.20 0.000 0.00
010936427 5082 14.419 0.756 14.35935 4971.843223 88.64 0.02 84 0.116 0.401 1.72 1.192 0.042 0.00
010979716 3932 15.774 0.125 10.68394 4967.091349 88.05 0.15 278 0.054 0.307 0.718 0.1586 0.006 0.00
010991989 5021 10.282 0.012 0.9744771 4965.368901 85.97 0.09 268 0.358 0.568 0.597 0.2028 0.000 0.97
010992733 5274 15.124 0.728 18.52628 4977.193722 89.99 0.38 26 0.055 0.704 0.777 0.4255 0.006 0.00
011124509 5417 14.735 0.018 8.893240 4968.729831 85.98 0.01 269 0.080 0.393 1.34 0.7016 0.001 0.74
011134079 5201 14.864 0.232 1.260506 4965.061893 73.28 0.01 265 0.368 0.134 4.48 2.688 0.043 0.00
011147460 4855 13.912 0.009 4.107429 4965.943730 73.69 0.00 71 0.316 0.548 0.139 0.01052 0.000 0.00
011232745 5204 15.973 0.056 9.633799 4970.918869 89.91 0.03 90 0.037 0.574 1.67 1.609 0.058 0.91
011233911 5193 14.742 0.285 4.959761 4969.120822 85.16 0.01 90 0.171 0.789 2.19 3.776 0.103 0.00
011235323 5071 13.486 0.496 19.67035 4965.522562 89.28 0.06 270 0.137 0.458 0.598 0.1636 0.006 0.00
011287726 5167 14.176 0.159 4.736985 4970.064587 78.94 0.07 271 0.258 0.175 1.53 0.4081 0.005 0.00
011350389 5124 15.724 0.037 1.512708 4969.562269 83.00 0.05 270 0.172 0.213 8.74 16.24 0.019 0.59
011391181 5218 15.257 0.276 8.617414 4972.068740 87.23 0.20 30 0.081 0.923 1.15 1.228 0.024 0.00
011391667 5394 12.923 0.011 1.083646 4954.131479 74.63 0.00 292 0.320 0.497 0.116 0.006724 0.000 0.00
011455795 4477 15.414 0.072 1.057351 4964.791193 81.87 0.00 0 0.221 0.0229 7.44 1.271 0.108 0.90
011546211 3682 15.155 0.083 2.194447 4966.712688 85.75 0.67 90 0.133 88.2 0.454 18.17 0.756 0.00
011671660 4867 13.350 0.089 8.702917 4956.587112 72.47 0.03 271 0.368 0.718 5.29 20.08 0.233 0.00
011768970 5038 12.658 0.012 15.54223 4959.412961 87.15 0.87 82 0.089 28.7 1.42 57.58 0.000 0.42
011858541 5375 14.215 0.045 5.674410 4968.755298 81.16 0.06 355 0.180 0.421 4.60 8.922 0.006 0.00
011968514 4940 11.449 0.005 2.073289 5002.408007 73.94 0.01 259 0.304 1.32 16.0 338.4 0.037 0.00
011975363 5482 15.409 0.578 3.518364 4967.411791 88.02 0.01 89 0.180 0.916 1.08 1.061 0.018 0.00
012004679 5432 13.231 0.833 5.042429 4955.770424 89.85 0.01 77 0.115 0.803 0.997 0.7988 0.008 0.00
012004834 3576 14.718 0.333 0.2623169 4964.398367 72.47 0.06 269 0.517 1.04 1.56 2.532 0.018 0.00
012105785 5349 13.032 0.021 31.95107 4975.706638 87.34 0.18 114 0.056 2.81 0.507 0.7219 0.000 0.66
012351927 4641 15.520 0.086 10.11594 4972.982326 85.41 0.01 119 0.087 0.0699 7.19 3.613 0.000 0.00
012356914 5368 15.529 0.621 27.30710 4976.502419 89.94 0.44 74 0.035 0.157 0.636 0.06344 0.001 0.00
012365000 5080 13.573 0.028 1.262660 4986.658328 77.85 0.11 269 0.283 0.148 0.912 0.1230 0.025 0.70
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Table 2 — Continued

Kepler ID Teff mkep ∆mkep Period T0 i e1 ω1 rsum J k Lr L1 Sine L3

(K) (Days) (BJD-2450000) (◦) (◦) Amplitude

012367017 5004 14.730 0.008 1.222133 4970.925867 59.96 0.00 290 0.540 0.806 18.6 277.5 0.026 0.00
012367310 4965 13.835 0.044 8.627137 4972.995164 81.33 0.02 314 0.167 0.147 5.54 4.518 0.017 0.00
012400729 4949 15.227 0.149 0.9317268 4965.479857 72.86 0.13 196 0.366 0.000549 8.92 0.04368 0.219 0.88
012418816 4583 12.402 0.581 1.521896 4965.395396 87.12 0.01 88 0.248 1.00 1.04 1.082 0.038 0.00
012470530 4725 15.300 0.658 8.207057 4968.824442 88.44 0.38 347 0.072 0.302 0.979 0.2889 0.000 0.03
012557713 4594 14.853 0.068 7.214603 4965.498124 87.06 0.43 92 0.077 12.6 0.412 2.134 0.000 0.17
012599700 3887 15.784 0.120 1.017821 4968.317001 87.78 0.03 268 0.136 0.433 1.24 0.6686 0.363 0.87
012645761 4844 13.368 0.018 5.419663 4958.954807 81.82 0.34 90 0.212 23.8 1.91 86.59 0.185 0.00

1
Although the values for e and ω are presented in this table for ease of reading, the values of e·cos(ω) and e·sin(ω) were actually solved for in

the analysis.
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Table 3
Temperature, Mass, and Radius Estimates for the 95 New LMMS DDEB

Candidates with Amplitudes ≥ 0.1 Magnitudes and Both Masses < 1.0 M⊙

Kepler ID Period (Days) Teff (K) T1(K) T2(K) M1(M⊙) M2(M⊙) R1(R⊙) R2(R⊙)

002162994 4.102 5410 5593 5038 0.96 0.86 1.39 1.24
002437452 14.47 5398 5591 4647 0.96 0.79 1.40 1.13
002719873 17.28 5086 5246 4382 0.90 0.73 1.08 0.86
002852560 11.96 5381 5385 5378 0.93 0.92 1.06 1.06
003003991 7.245 5366 5554 4598 0.96 0.78 0.83 0.67
003102024 13.78 5117 5160 5069 0.89 0.87 0.79 0.78
003241344 3.913 5422 5461 3688 0.94 0.52 0.94 0.49
003241619 1.703 5165 5344 4622 0.92 0.79 1.04 0.88
003458919 0.8920 5063 5206 4254 0.89 0.70 1.08 0.83
003730067 0.2941 4099 4158 4010 0.68 0.64 0.62 0.58
003848919 1.047 5226 5238 5214 0.90 0.90 1.10 1.10
004049124 4.804 5349 5501 4347 0.95 0.73 1.30 0.97
004077442 0.6929 4523 4643 4094 0.79 0.66 1.03 0.84
004346875 4.694 5339 5367 3599 0.92 0.46 1.21 0.56
004352168 10.64 5115 5281 4744 0.91 0.81 0.93 0.82
004484356 1.144 5080 5250 4636 0.90 0.79 0.94 0.81
004540632 31.01 4818 4953 4190 0.85 0.69 0.80 0.63
004633434 22.27 4902 5041 4219 0.86 0.69 0.67 0.52
004678171 15.29 4240 4331 4048 0.72 0.65 0.68 0.60
004773155 25.71 5447 5448 5447 0.94 0.94 0.96 0.96
004908495 3.121 4731 4791 4655 0.82 0.79 0.82 0.79
005036538 2.122 4199 4236 4155 0.70 0.68 0.71 0.69
005080652 4.144 5344 5536 4858 0.95 0.83 1.17 1.01
005300878 1.279 4631 4667 4590 0.80 0.78 0.87 0.85
005597970 6.717 5179 5284 4060 0.91 0.65 1.08 0.74
005731312 7.946 4658 4701 3583 0.80 0.45 0.68 0.36
005781192 9.460 5372 5546 4482 0.95 0.76 0.97 0.75
005802470 3.792 5418 5620 4859 0.97 0.83 1.00 0.86
005871918 12.64 4021 4052 3983 0.65 0.63 0.79 0.76
006029130 12.59 5160 5201 5114 0.89 0.88 0.88 0.86
006131659 17.53 4870 4970 3972 0.85 0.63 0.84 0.59
006449552 20.15 5357 5537 4532 0.95 0.77 0.93 0.74
006464285 0.8436 5061 5159 4923 0.89 0.84 1.09 1.03
006466939 2.286 4920 4925 4916 0.84 0.84 0.87 0.86
006591789 5.088 5410 5560 4342 0.96 0.73 1.09 0.81
006697716 1.443 4898 5036 4215 0.86 0.69 0.91 0.71
006706287 2.535 5182 5327 4931 0.91 0.85 0.96 0.89
006778050 0.9458 5091 5223 4872 0.90 0.83 0.98 0.91
006841577 15.54 5478 5676 4676 0.98 0.80 1.03 0.83
006863840 3.853 5024 5050 4997 0.87 0.86 0.88 0.87
007119757 0.7429 5072 5242 4607 0.90 0.78 1.20 1.03
007125636 6.491 4358 4417 4277 0.74 0.71 0.69 0.66
007128918 7.119 5386 5574 4968 0.96 0.85 0.86 0.76
007129465 5.492 5182 5269 5069 0.90 0.87 0.87 0.83
007200102 14.67 5207 5390 4643 0.93 0.79 0.88 0.74
007624297 18.02 5135 5291 4352 0.91 0.73 0.81 0.63
007670617 24.70 4876 4971 3945 0.85 0.62 0.80 0.56
007671594 1.410 3717 3773 3597 0.56 0.46 0.40 0.32
007691527 4.800 5354 5492 5138 0.94 0.88 0.87 0.81
007749318 2.372 5211 5347 4991 0.92 0.86 1.16 1.07
007798259 1.734 4619 4735 4386 0.81 0.74 0.74 0.67
007846730 11.03 5476 5667 5079 0.98 0.87 1.37 1.22
008075618 17.56 5288 5301 5275 0.91 0.91 0.55 0.54
008094140 0.7064 4200 4266 3598 0.71 0.46 0.70 0.44
008296467 10.30 5316 5427 5159 0.93 0.89 0.86 0.82
008364119 7.736 5443 5581 5232 0.96 0.90 0.97 0.91
008411947 1.798 5086 5168 4980 0.89 0.85 1.01 0.97
008580438 6.496 5307 5314 3348 0.91 0.23 1.31 0.35
008906676 8.210 5249 5436 4709 0.93 0.80 0.84 0.71
009001468 17.33 4949 5089 4676 0.87 0.80 0.76 0.69
009029486 6.277 5368 5421 5309 0.93 0.91 0.83 0.81
009098810 8.258 5126 5240 4956 0.90 0.85 0.84 0.79
009210828 1.656 4893 4898 4888 0.84 0.84 0.94 0.94
009284741 20.73 5085 5156 4998 0.88 0.86 0.80 0.78
009328852 0.6458 4338 4357 3375 0.73 0.25 0.94 0.34
009346655 0.8716 4183 4232 3512 0.70 0.39 0.67 0.37
009474485 1.025 4469 4492 4444 0.76 0.75 0.81 0.80
009639265 0.5063 5004 5147 4730 0.88 0.81 0.87 0.79
009665503 11.57 5141 5293 4321 0.91 0.72 0.90 0.69
009714358 6.480 4825 4964 4522 0.85 0.77 0.81 0.72
009762519 7.515 5435 5528 4050 0.95 0.65 0.95 0.62
009837578 20.73 5359 5390 5327 0.93 0.91 0.95 0.94
009934208 9.059 4258 4347 3743 0.73 0.55 1.04 0.76
009944421 7.095 5304 5348 5255 0.92 0.90 0.96 0.94
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Table 3 — Continued

Kepler ID Period (Days) Teff (K) T1(K) T2(K) M1(M⊙) M2(M⊙) R1(R⊙) R2(R⊙)

010129482 0.8463 4558 4622 3669 0.79 0.51 0.83 0.51
010189523 1.014 5002 5143 4239 0.88 0.70 0.91 0.70
010215422 24.40 5427 5625 4944 0.97 0.85 1.04 0.91
010264202 1.035 5207 5347 4971 0.92 0.85 1.01 0.93
010292465 1.353 5258 5417 4965 0.93 0.85 1.15 1.05
010711646 0.7376 4339 4440 3877 0.75 0.59 0.74 0.57
010753734 19.41 5446 5603 5183 0.97 0.89 0.99 0.91
010794242 7.144 5459 5490 3633 0.94 0.49 1.20 0.58
010979716 10.68 3932 3996 3530 0.63 0.41 0.68 0.43
010992733 18.53 5274 5457 4848 0.94 0.83 1.04 0.91
011134079 1.261 5201 5381 4732 0.92 0.81 1.17 1.01
011233911 4.960 5193 5370 4531 0.92 0.77 1.38 1.12
011391181 8.617 5218 5288 5133 0.91 0.88 0.88 0.85
011975363 3.518 5482 5507 5457 0.95 0.94 1.09 1.08
012004679 5.042 5432 5514 5330 0.95 0.92 0.89 0.86
012004834 0.2623 3576 3620 3468 0.48 0.34 0.48 0.35
012356914 27.31 5368 5455 4003 0.94 0.63 0.93 0.60
012400729 0.9317 4949 5005 3715 0.86 0.54 1.03 0.61
012418816 1.522 4583 4603 4563 0.78 0.77 0.81 0.80
012470530 8.207 4725 4863 4245 0.83 0.70 0.78 0.64
012599700 1.018 3887 3936 3816 0.61 0.57 0.32 0.30
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