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Summary 

Iron deficiency induces several mechanisms in response to iron shortage in plants. Metabolic 

changes occur to sustain the increased iron uptake capacity of Fe-deficient plants. We evaluated the 

metabolic changes of three Prunus rootstocks submitted to iron chlorosis and their different 

response for tolerance using measurements of metabolites and enzymatic activities. The more 

tolerant rootstocks Adesoto (Prunus insititia) and GF 677 (Prunus amygdalus × Prunus persica), 

and the more sensitive Barrier (P. persica × Prunus davidiana) were grown hydroponically in iron 

sufficient and deficient conditions during two weeks. Sugar, organic and amino acid concentrations 

of root tips were determined after two weeks of iron shortage by proton nuclear magnetic resonance 

spectroscopy of extracts. Complementary analyses of organic acids were performed by liquid 

chromatography coupled to mass spectrometry. The major soluble sugars found were glucose and 

sucrose. The major organic acids were malic and citric acids, and the major amino acid was 

asparagine. Iron deficiency increased root sucrose, total organic and amino acid concentrations and 

phosphoenolpyruvate carboxylase activity. After two weeks of iron deficiency, the malic, citric and 

succinic acid concentrations increased in the three rootstocks, although no significant differences 

were found among genotypes with different tolerance to iron chlorosis. The tolerant rootstock 

Adesoto showed higher total organic and amino acid concentrations. In contrast, the susceptible 

rootstock Barrier showed lower total amino acid concentration and phosphoenolpyruvate 

carboxylase activity values. These results suggest that the induction of this enzyme activity under 

iron deficiency, as previously shown in herbaceous plants, indicates the tolerance level of 

rootstocks to iron chlorosis. The analysis of other metabolic parameters, such as organic and amino 

acid concentrations, gives complementary information for selection of genotypes tolerant to iron 

chlorosis. 

 

Keywords: iron, metabolites, phosphoenolpyruvate carboxylase, Prunus, rootstock 

Abbreviations: ERETIC, Electronic Reference To access In vivo Concentrations; FC-R, ferric 

chelate reductase; MS, mass spectrometry; NMR, nuclear magnetic resonance; PCA, 

principal component analysis; PEPC, phosphoenolpyruvate carboxylase 



 

Introduction 

 

Iron chlorosis is one of the major nutritional imbalances in fruit tree orchards grown in the 

Mediterranean area (Rombolà and Tagliavini, 2006) which occurs due to the limited iron 

bioavailability in aerobic and alkaline pH environments (Römheld and Nikolic, 2007). The genetic 

approach to prevent iron chlorosis is based on the use of tolerant rootstocks (Rombolà and 

Tagliavini, 2006). However, the most used tolerant rootstocks are usually susceptible to other 

stresses and can induce adverse effects in tree growth and yield (Tagliavini and Rombolà, 2001; 

Donnini et al., 2009). Therefore, selection of new tolerant rootstocks is necessary. In order to 

accelerate the breeding programs, they should benefit from new early evaluation methods to 

determine iron chlorosis tolerance (Jiménez et al., 2008; Donnini et al., 2009). 

The almond × peach hybrid GF 677 is probably the most widely used rootstock for peach and 

nectarine in the Mediterranean area. It has high vigour and tolerance to drought and iron chlorosis 

(Cinelli and Loreti, 2004). Unlike other rootstocks sensitive to iron deficiency, the GF 677 

rootstock is able to perform mechanisms of response against the lower iron soluble concentration in 

soil, characteristic of Strategy I plants, such as induction of the ferric chelate reductase activity (FC-

R) (Gogorcena et al., 2004; Jiménez et al., 2008) and proton extrusion (Molassiotis et al., 2006). 

The plum rootstock Adesoto is also considered as iron chlorosis tolerant (Moreno et al., 1995) and 

was also found to have an enhanced FC-R activity (Gogorcena et al., 2004; Jiménez et al., 2008). 

On the contrary, the peach-based rootstock Barrier was classified as less tolerant to iron chlorosis 

than GF 677 and Adesoto, and was not found to have an induction of FC-R activity (Gogorcena et 

al., 2004; Jiménez et al., 2008). 

Iron deficiency induces root metabolic changes besides FC-R activity induction and rhizosphere 

acidification to sustain the increased iron uptake capacity of Fe-deficient plants. Carbohydrate, 

amino acid and especially organic acid concentrations often increase with iron deficiency in 

herbaceous plants (Abadía et al., 2002; Zocchi, 2006; M'Sehli et al., 2008). Carbohydrate 

concentration and rate of carbohydrate catabolism has been reported to increase under iron 

deficiency to sustain energetic requirements of the stressed plant (Zocchi, 2006; Jelali et al., 2010). 

Amino acid concentration has been reported to increase in order to sustain the major protein 

synthesis occurring under iron deficiency (Zocchi, 2006). Organic acids that make the sparingly 

soluble soil iron available to plants when they are excreted, could facilitate iron translocation and 

may be associated to proton extrusion and Fe3+ reduction activity (Abadía et al., 2002). Fixation of 

CO2 leading to organic acid biosynthesis is catalyzed by the enzyme phosphoenolpyruvate 

carboxylase (PEPC; EC4.1.1.31). PEPC activity stimulation was observed in iron deficient roots of 

several species (Rombolà et al., 2002; Ollat et al., 2003; Jiménez et al., 2007; Andaluz et al., 2009; 



 

López-Millán et al., 2009). Indeed, organic acid accumulation in roots of grapevine has been shown 

to be greater in Fe-efficient than in Fe-inefficient genotypes (Brancadoro et al., 1995; Ollat et al., 

2003; Jiménez et al., 2007). Thus, changes in root concentration of these metabolites could indicate 

their tolerance level to iron deficiency. 

Plant metabolites of tissue extracts are commonly identified and quantified by mass 

spectrometry (MS) or nuclear magnetic resonance spectroscopy (NMR) (Krishnan et al., 2005). One 

of the limitations of NMR is its low sensitivity. MS is several orders of magnitude more sensitive 

than NMR and allows the detection of low-abundance metabolites (Shulaev et al., 2008; Biais et al., 

2009). However, the main disadvantage of MS is that it requires relatively longer analysis times, 

caused by the use of separation technologies such as gas chromatography (GC) and high 

performance liquid chromatography (HPLC) (Krishnan et al., 2005). Quantitative analysis is 

simpler in NMR than in MS where the generation of more complex spectrum, frequent calibration 

and variable retention times can complicate this task (Krishnan et al., 2005; Shulaev et al., 2008). 

Proton NMR (1H NMR) provides a powerful technique for the identification and quantitative 

analysis of plant metabolites in complex mixtures (Moing et al., 2004; Pereira et al., 2006; Biais et 

al., 2009). The combined analysis of carbohydrate, amino and organic acids has been recently done 

in studies of plants under environmental stress, such as salinity in barley (Widodo et al., 2009) and 

iron-nitrogen nutrition in grapevine (Jiménez et al., 2007). The organic acid composition has been 

typically analyzed in iron deficiency response studies (Abadía et al., 2002; Ollat et al., 2003; López-

Millán et al., 2009). However, the use of 1H NMR provides simultaneous information about 

changes in root sugar and also amino acid composition, a metabolic response poorly described 

previously in plants under iron deficiency. 

The aim of the present work was to establish differences due to tolerance level, by studying the 

root metabolite composition of three Prunus rootstocks with different genetic background and level 

of tolerance to iron chlorosis, as well as searching for early biochemical markers of tolerance to iron 

deficiency. 

 

 

Material and methods 

 

Plant material and culture 

Micropropagated plants of the tolerant rootstocks Adesoto [Prunus insititia (L.)] and GF 677 

[Prunus amygdalus Batsch × Prunus persica (L.) Batsch] and the sensitive rootstock Barrier [P. 

persica (L.) Batsch × Prunus davidiana (Carr.) Franch.] (Gogorcena et al., 2004; Jiménez et al., 

2008) were obtained from Agromillora Iberia S.A. (Subirats, Barcelona, Spain). Six plants per 



 

genotype were grown for two weeks in 300 cm3 pots containing a peat substrate. Then, they were 

transplanted to 10 L plastic containers (34 plants per container) filled with half-strength Hoagland 

nutrient solution (Jiménez et al., 2008). Plants were grown in a continuously aerated nutrient 

solution in a growth chamber under controlled environmental conditions, with a 16 h photoperiod 

(220-250 mol photons m-2 s-1) at 23ºC and 8 h of darkness at 20ºC, and 70-75% relative humidity. 

The pH of the nutrient solution was adjusted to 6 every two days, using 1 N HCl, and solution was 

changed every week. 

Plants were grown in nutrient solution until roots were about 10-15 cm long and most of them 

were new. Then half of the plants were transferred to iron-free solutions [-Fe]. The rest of the plants 

were maintained in the solution containing 90 M Fe(III)-EDTA [+Fe] as control plants (Jiménez et 

al., 2008). 

Root tip samples (about 15 mm long) of three [+Fe] and [-Fe] plants were taken after 14 days, 

rinsed in distilled water, weighed and deep-frozen in liquid nitrogen for metabolic profiling 

analysis. Additional samples were kept to measure PEPC activity. Three biological replicates were 

sampled for each analysis. Root and shoot fresh weights of plants were measured. The chlorophyll 

content of leaves was determined using a SPAD 502 chlorophyll meter (Minolta Co., Osaka, Japan). 

 

Metabolite sample extractions 

Samples (about 0.1 g FW root) for metabolite analyses were freeze crushed and polar 

compounds were extracted into aqueous ethanol at 80°C, in three steps, each lasting 20 min (step 1: 

0.75 ml 80% ethanol; steps 2 and 3: 0.75 ml 50% ethanol). The mixture of each step was 

centrifuged for 10 min at 4800 g and slurries were pooled (Jiménez et al., 2007). Ethanol was 

evaporated under vacuum in a speed vac system (Thermo Fisher Scientific Inc., Waltham, MA, 

USA) and samples were split into two aliquots: one for 1H NMR analysis of polar metabolites and 

the other for liquid chromatography-electrospray ionization/MS (LC-ESI-MS) analysis of organic 

acids. 

 
1H NMR spectroscopy to determine root metabolic profiles 

Dry extracts were solubilised in 1 mL 200 mM oxalate buffer to maintain the pH of the extracts 

at 4.0. Samples were purified on 200 mg of Chelex 100 resin (Biorad, Hercules, CA, USA) in 

oxalate buffer at pH 4.0, to improve spectrum resolution and eliminate paramagnetic ions. The resin 

was rinsed three times with 1 mL Milli-Q water. The pH of each sample was checked with a micro 

pH electrode after this step. The extracts were lyophilised, solubilised in 500 µL D2O and 

lyophilised again to eliminate residual water. The dried extracts were stored in a dry atmosphere 

until 1H NMR analysis. Dried purified root extracts were solubilised in 500 µL D2O, to which the 



 

sodium salt of (trimethylsilyl)propionic-2,3,3,3-d4 acid (TSP) in D2O was added to a final 

concentration of 0.01%, for chemical shift calibration. The mixture was transferred to a NMR tube 

and 1H NMR spectra were recorded as previously described (Moing et al., 2004) at 500.162 MHz 

and 300 K on a Bruker Avance spectrometer (Wissenbourg, France), using a 5-mm inverse probe. 

We acquired 64 scans of 32 K data points with a spectral width of 6000 Hz, a 90° pulse angle and 

an acquisition time of 2.73 s. The recycle delay was 15 s. Data processing and assignments of 

metabolites were performed as described in Deborde et al. (2009). The metabolites assignment was 

obtained using comparison with chemical shift values reported in literature (Fan, 1996; Moing et al., 

2004), Plant Metabolomic knowledge base MeRy-B (http://www.cbib.u-

bordeaux2.fr/MERYB/home/home.php) and spiking of root extracts with test compounds. The 

Electronic Reference To access In vivo Concentrations (ERETIC) method was used to determine 

absolute concentrations of metabolites as described in Jiménez et al. (2007). One unknown 

compound, named using the mid value of the chemical shift and the multiplicity of the 

corresponding resonance group (unknownD7.95 for a doublet at 7.95 ppm), was quantified in 

arbitrary units. 

 

LC-ESI-MS to determine root organic acid profiles 

Dried root samples were solubilised in Milli-Q water and filtered through 0.22 μm 

polyvinylidene fluoride filters. The eluent was taken to a final volume of 2 mL with 0.1% (v/v) 

formic acid and immediately analyzed. Analyses were carried out with a micrOTOF II ESI-TOFMS 

apparatus (Bruker Daltonics GmbH, Bremen, Germany) coupled to a Waters Alliance 2795 HPLC 

system (Waters, Milford, MA, USA). To optimize the MS signal, direct injection of 10 μM solution 

of standards prepared in 0.1% (v/v) formic acid were performed using a syringe pump (Cole-Parmer 

Instrument, Vernon Hills, IL, USA) operated at 180 μL min-1. All analyses were done in negative 

mode. Drying and nebulizer gas (N2) were kept at 1.6 psi and 8.0 L min-1. The mass axis was 

calibrated using Li-formate adducts. Spectra were acquired in the mass/charge ratio (m/z) range of 

80-300. LC-ESI-MS analyses were carried out by injection of 20 μL aliquots of standard solutions 

and sample extracts in a Supelcogel H 250 × 4.6 mm anion exchange column packed with a matrix 

of sulfonated polystyrene/divinylbenzene. Autosampler and column temperatures were 6ºC and 

30ºC, respectively. Samples were eluted at a flow rate of 200 μL min. The mobile phase was 0.1% 

(v/v) formic acid and an isocratic gradient for 20 min was used to separate the compounds. 

Validation was carried out by obtaining calibration curves corrected with internal standards (100 

μM isotopically labeled malic acid was used for the quantification of oxalic, cis-aconitic, citric, 

malic and quinic acids; 100 μM isotopically labeled succinic acid was used for the quantification of 

succinic acid), limits of detection (LODs, signal/noise ratio of 3), limits of quantification (LOQs, 



 

signal/noise ratio of 10), and intra- and interday repeatability, using standard techniques. The 

system was controlled with the software packages microTOF control 1.2 and HyStar 3.0 (Bruker 

Daltonics). Data were processed with Data Analysis 3.4 software (Bruker Daltonics). 

 

PEPC activity determination 

Extracts for measuring PEPC activity were made by grinding the frozen root material (about 0.1 

g FW root) in liquid nitrogen in a mortar with 1 mL of extraction buffer, containing 100 mM 

HEPES (pH 8.0), 30 mM sorbitol, 1% (w/v) PVP and 1% (w/v) BSA (all chemicals from Sigma, St 

Louis, MO, USA). The slurry was centrifuged for 15 min at 10,000 g and 4ºC, and the supernatant 

was used to determine enzyme activity. 

PEPC activity was determined by coupling to malate dehydrogenase-catalysed NADH 

oxidation (Vance et al., 1983; Andaluz et al., 2002) with 0.75 L of extract in 1 mL of 2 mM PEP, 

0.16 mM NADH, 5mM MgCl2·4H2O, 1 mM NaHCO3, and 50 mM HEPES, pH 8.0. The NADH 

consumption was determined by monitoring at 25ºC the decrease in absorbance at 340 nm with a 

spectrophotometer (UV-2101PC, Shimadzu, Kyoto, Japan). 

 

Statistical analysis 

Data were evaluated by two-way variance (ANOVA) analysis with the programme SPSS 17.0.0 

(SPSS, Inc., Chicago, USA). When treatment interaction terms were significant (P ≤ 0.05), means 

were separated using Duncan’s multiple range test at P < 0.05. Principal component analysis (PCA) 

of 22 metabolites quantified by 1H-NMR and MS in 18 samples was carried out using SPSS 17.0.0. 

The component matrix (correlated matrix) was evaluated and orthogonal factors were rotated using 

variance maximizing (Varimax). Regression analysis was carried out by Pearson’s correlation. 

  

 

Results 

 

Morphologic parameters and SPAD 

After two weeks of iron deprivation, root growth was unaffected by iron deficiency and no 

differences among genotypes were found (Fig. 1A). Shoot growth was significantly higher in GF 

677 [-Fe] plants (Fig. 1B). The elimination of iron from the growth medium significantly reduced 

the leaf chlorophyll content in all genotypes (Fig. 1C). 

 

Root metabolite concentration determined by 1H-NMR 

Fig.1 



 

The metabolic profiles of root tip extracts from the three genotypes were analyzed after 14 days 

of iron depletion. Nineteen compounds were identified in the NMR spectra (Fig. 2). Chlorogenic 

acid was only detected in Adesoto samples (Fig. 2, around 6.4, 7.0 and 7.2 ppm). Among the 

identified compounds, 15 were quantified: two sugars, one cyanogenic compound (prunasin), seven 

amino acids (glutamic acid and glutamine were quantified as their sum), four organic acids and one 

quaternary amine (choline) (Table 1). One other compound was quantified in arbitrary units, 

although it was not identified (Table 1). 

Iron deficiency had no effect on glucose concentration after 14 days of depletion (Table 1). 

However, sucrose concentration was higher in deficient plants than sufficient ones, and prunasin 

concentration was lower. A significant genotype effect was found for prunasin. The peach-based 

rootstock Barrier showed the highest accumulation of this cyanogenic compound under control 

conditions. 

In general, iron deficiency increased amino acid concentrations (Table 1). After two weeks, iron 

deficiency had significant effect in several amino acids: glutamic acid + glutamine, threonine, 

valine and especially alanine which concentration increased 2.3, 3.3 and 2.5 fold on Adesoto (see 

comparison frame in Fig 2 at 1.4-1.5 ppm), Barrier and GF 677, respectively. Genotype had also 

significant effect in all amino acid concentrations except alanine and GABA (Table 1). The total 

sum of amino acids was significantly higher in deficient plants than in control ones, and it was 

always lower on Barrier rootstock (Fig. 3A). 

Iron deficiency significantly increased the concentration in organic acids detected other than 

lactic acid (Table 1). Malic acid concentration increased 1.9 and 1.3 fold on Adesoto (see 

comparison frame in Fig 2 at 4.4 ppm) and GF 677, respectively, whereas citric acid concentration 

increased 2.6 and 1.5 fold in both genotypes (see comparison frame in Fig 2 at 2.7-2.9 ppm for 

Adesoto). In Barrier, malic acid concentration increased 2.7 fold and citric acid concentration 

increased 16.3 fold. However on day 14, sufficient plants of Barrier rootstock showed very low root 

concentrations of citric acid (0.15 ± 0.01 mg g-1 FW) in comparison with control determinations of 

previous days (1.76 ± 0.38 mg g-1 FW after 7 days of the beginning of the experiment). Succinic 

acid concentration increased 2.7, 1.4 and 1.4 fold on Adesoto (see comparison frame in Fig 2 at 2.6 

ppm), Barrier and GF 677, respectively. For all studied rootstocks, the total organic acid 

concentration was significantly higher in deficient than in control plants (Fig. 3B). 

Choline and one unidentified compound were also quantified (Table 1; Fig 2 around 3.2 and 8.0 

ppm). The concentration of choline was significantly affected by genotype whereas no treatment 

effect was observed for this compound. The unknownD7.95 compound concentration was not 

significantly affected by treatment or genotype. 

 

Table 1 
Fig 3 

Table 1 
Fig 2 



 

Root organic acid profiles determined by MS 

Root organic acid concentrations were also determined by LC-ESI-MS analysis (Table 2). 

Concentration values of malic and citric acids were not significantly different to the values obtained 

with 1H NMR (data not shown). On the other hand, LC-ESI-MS concentration values of succinic 

acid were significantly underestimated (P < 0.01). However, values obtained with both techniques 

were significantly correlated (malic acid, r = 0.92, P ≤ 0.001; citric acid, r = 0.87, P ≤ 0.001; 

succinic acid, r = 0.95, P ≤ 0.001), the total sums of these three organic acids were not different 

between techniques (data not shown), and a similar effect of iron treatment was observed in the data 

obtained with MS in comparison with 1H NMR. Three other organic acids (oxalic, cis-aconitic and 

quinic acids) were also identified and quantified (Table 2). Iron deficiency and genotype had 

significant effects in the concentration of cis-aconitic and quinic acids. The concentration of cis-

aconitic acid increased significantly with iron deficiency except in GF 677. 

 

Principal component analysis for metabolites 

A PCA was performed on 1H NMR and MS data of the three genotypes after two weeks of iron 

deficiency or under control condition in order to get an overview of the metabolite changes (Fig. 4). 

A five component model accounted for more than 80% of total variance, with the first three 

components explaining 67.7% of total variance. PC1 and PC2 accounted for 37.3% and 18.4% of 

total variance, respectively. 

Subsamples were clustered with the exception of GF 677 [-Fe] and Barrier [+Fe], which 

displayed greater variability (Fig. 4A). PC1 discriminated [-Fe] and [+Fe] samples with the 

exception of two sample replications of GF 677 [-Fe] and one sample of GF 677 [+Fe] (Fig. 4A). 

An examination of PC1 loadings (Fig. 4B) suggested that this separation was mainly due to alanine, 

and the organic acids, malic, citric, succinic, oxalic and cis-aconitic acids, on the positive side. PC2 

discriminated Adesoto from the other two rootstocks. An examination of PC2 loadings (Fig. 4B) 

suggested that this separation was mainly due to the main amino acids (asparagine, glutamic acid + 

glutamine, isoleucine, threonine and valine) and choline on the positive side and glucose on the 

negative side. These observations found in the multivariate analysis confirmed the two-way 

ANOVA analysis (Tables 1-2). Organic acids determined by both 1H-NMR and MS techniques 

(malic, citric and succinic acids) were also clustered. 

 

Phosphoenolpyruvate carboxylase activity 

PEPC activity was measured in the three genotypes after 14 days of iron depletion and under 

control condition (Fig. 5). Iron deficiency resulted in a significant stimulation of this activity in 

Adesoto (1.9-fold) and GF 677 (4.9-fold). However, almost no induction on PEPC activity was 

Table 2 
Fig.4 

Fig.5 
 



 

found in the case of Barrier. A highly significant interaction between iron treatment and genotype 

was found. PEPC activity was correlated with sucrose (r = 0.64, P ≤ 0.01), alanine (r = 0.61, P ≤ 

0.01), asparagine (r = 0.63, P ≤ 0.001) and the total amino acid concentration (r = 0.64, P ≤ 0.01). 

 

 

Discussion 

 

The analysis of metabolites contributes significantly to the study of stress biology in plants by 

identifying compounds that are part of their acclimation or tolerance response (Shulaev et al., 

2008). In the present study, we used 1H NMR to analyze the metabolite changes in Prunus roots 

induced by iron deficiency. The NMR technique allowed the simultaneous study of a number of 

metabolites including primary and secondary polar and semipolar metabolites in a complex mixture, 

such as root extracts, with minimal sample preparation (Moing et al., 2004). Sugars, amino acids, 

organic acids and other compounds were quantified with rapid data processing using the 1H NMR 

technology. Organic acid quantification was complemented using MS analysis, a more time-

consuming but sensitive technique than 1H NMR (Shulaev et al., 2008). Lower abundant organic 

acids such as oxalic, cis-aconitic and quinic acids were only detected and quantified with MS. The 

combination 1H NMR and MS increased the coverage of metabolites quantified with small 

discrepancies due to the different calibration methods used in these two techniques. Moreover, both 

analytical techniques showed a similar trend for the organic acids determined with both in roots of 

plants submitted to iron nutrition treatments. 

 

Iron deficiency induces the root accumulation of sugars, organic and amino acids 

Soluble sugar accumulation has been reported in roots of fruit trees subjected to abiotic stress: 

sucrose under low temperatures (Yoshioka et al., 1988) and sorbitol under drought stress in Malus 

(Meng et al., 2008), and sorbitol under iron stress in quince (Marino et al., 2000). High 

concentrations of fructose and sorbitol and small amounts of raffinose were also found in roots of 

peach and peach-almond hybrid iron deficient rootstocks using HPLC (Graham, 2002; Jiménez, 

2006). Iron deficiency induced sucrose accumulation in roots of the three Prunus rootstocks 

studied. Reduction in plant growth of deficient plants would produce apparently higher metabolite 

concentrations. However, in this study there were not significant changes in root growth between 

treatments, as previously reported (Jiménez et al., 2009). Therefore, sucrose accumulation (and any 

other metabolite accumulation) seems to be independent of a possible concentration effect in 

deficient plants. During prolonged iron deficiency, the increase in root sugar concentration for 

glucose, fructose and sucrose concentration of GF 677 was already reported (Jiménez, 2006). Since 



 

the root glycolytic (Zocchi, 2006; Jelali et al., 2010) and fermentation (Thimm et al., 2001) routes 

are enhanced under iron deficiency, the sugar accumulation may come from starch degradation 

and/or re-orientation of photo-assimilate partitioning (Loescher et al., 1990), probably via sorbitol 

or sucrose. 

The accumulation of amino acids and derivates has been related to plant responses and 

adaptation to metal stresses. The metal binding capacity and antioxidant defence are major 

functions of these compounds in plants submitted to metal excess (Sharma and Dietz, 2006). We 

found that iron deficiency increased amino acid concentrations (alanine, valine, threonine and 

glutamic acid + glutamine) in roots of Prunus rootstocks. However, alanine and glutamic acid + 

glutamine concentration were not affected by iron deficiency in roots of grapevine rootstocks 

(Jiménez et al., 2007). Pontiggia et al. (2003) have reported the enhanced RNA and protein 

synthesis with better developed machinery and accumulation of free amino acids in cucumber roots 

submitted to iron deficiency. An increased root exudation of total amino acids with iron deficiency 

has been also reported in soybean (Zocchi et al., 2007). We found that alanine was especially 

accumulated in deficient roots. This amino acid was showed as metal ion ligand found in barley 

exudates although it did not exhibit a clear response to iron deficiency (Fan et al., 2001). 

The accumulation of root organic acids, particularly malic and citric acids, has been also 

reported in some woody plant species submitted to iron deficiency, such as grapevine rootstocks 

(Brancadoro et al., 1995; Ollat et al., 2003; Jiménez et al., 2007), kiwifruit (Rombolà et al., 2002) 

and in a certain extent in quince rootstocks (Marino et al., 2000). The main organic acids found in 

Prunus rootstocks subjected to iron deficiency in the present experiment were malic and citric 

acids, although their increases were much lower than those found in herbaceous plants. In sugar 

beet, the increase of malic and citric acids reached 16 and 26 fold, respectively, after 10 days of iron 

deficiency (López-Millán et al., 2000). Conversely, the concentration of malic and citric acids 

increased only 1.1-2.6-fold in Prunus roots, being slightly lower than those found in grapevine 

(Jiménez et al., 2007). On the other hand, succinic acid was also accumulated after two weeks under 

iron deficiency, as previously reported in grapevine (Jiménez et al., 2007). Concentration of 

succinic and quinic acids were also increased with iron deficiency in other tissues in peach, such as 

fruits (Álvarez-Fernández et al., 2003). 

 

Iron deficiency stimulates the root PEPC activity in the tolerant genotypes  

PEPC enzyme plays a central role in the response of plants to iron deficiency (Zocchi, 2006). 

The more tolerant rootstocks to iron deficiency, Adesoto and GF 677, showed a significant 

stimulation of PEPC activity under iron deficiency, as previously reported in other woody species: 

grapevine (Ollat et al., 2003; Jiménez et al., 2007), kiwi (Rombolà et al., 2002) and pear/quince 



 

(Donnini et al., 2009). On the other hand, the more sensitive rootstock Barrier showed the lowest 

PEPC activity values, both under sufficient and deficient conditions. 

 

Integrated metabolic response to iron deficiency and differences among Prunus genotypes 

The observed changes, mainly increase in sugar, organic acid and amino acid concentrations of 

Prunus roots, may contribute to iron deficiency stress response. Sugar concentration increase may 

face the high energy demand required for iron deficiency response and the supply of carbon to the 

organic and amino acids. Increase in PEPC activity would sustain the carbon replenishment in the 

tricarboxylic acid cycle, the enhanced synthesis of malic, citric and amino acids, via 2-oxoglutarate 

(glutamic acid, glutamine) and oxalacetate (asparagine, isoleucine, threonine). Indeed, activation of 

PEPC leading to an increase in the rate of glycolysis (Zocchi, 2006) and production of 2-

oxoglutarate would produce reducing equivalents for the FC-R (Jiménez et al., 2007). On the other 

hand, the role suggested for the organic acids comprise its use as chelates of iron in soil or xylem, a 

source to obtain reductive power and a source of anaplerotic carbon in leaves (Abadía et al., 2002), 

although the excretion of organic acids in Prunus rootstocks remain unknown. Indeed, since iron 

deficiency can induce the accumulation of other metals such as Mn, Zn and Cu (Jiménez et al., 

2009), organic and amino acids could be involved in metal binding (Sharma and Dietz, 2006) to 

avoid oxidative damage due to other catalytic ions. 

The three Prunus rootstocks showed different metabolic response to iron deficiency. However, 

despite differences in organic acid concentrations were found between Fe-efficient and Fe-

inefficient genotypes of grapevine (Brancadoro et al., 1995; Jiménez et al., 2007) and kiwi 

(Rombolà et al., 2002), no significant differences were found among the studied Prunus genotypes 

in response to iron deficiency. The moderate symptoms of iron chlorosis detected in the tolerant 

rootstock GF 677 (higher SPAD values in leaf than the other genotypes) may explain the absence of 

citric acid accumulation after two weeks of iron deficiency. The high citric acid concentration found 

in the sensitive rootstock Barrier submitted to iron deficiency could be caused by a low synthesis of 

amino acids, especially asparagine, and, therefore, a lower consumption of organic acids from the 

tricarboxylic acid cycle. The unexpected high citric acid concentration of Barrier could explain the 

moderate chlorophyll concentration found in grafted plants grown on calcareous soil (Jiménez, 

2006), even though it has low FC-R activation (Gogorcena et al., 2004) iron transport to leaves can 

be facilitated. In contrast, differences among rootstocks were found for PEPC activity. The more 

tolerant rootstocks, Adesoto and GF 677, showed higher induction and values of PEPC activity after 

iron deficiency. The lack of iron also induced higher amino acid concentration in the two more 

tolerant rootstocks. Regardless of treatment, the amino acid and choline concentration was higher in 



 

the P. insititia rootstock Adesoto than the P. persica based rootstocks Barrier and GF 677. This 

could be caused by species specific differences. 

In summary, the plum rootstock Adesoto and the peach based rootstocks Barrier and GF 677 

showed several responses characteristics of Strategy I efficient plants under iron deficiency, such as 

enhanced root PEPC activity and malic, citric and succinic acid accumulation. Indeed, iron 

deficiency induced soluble sugar and amino acid accumulation related with the response of woody 

plants to iron shortage. Unlike other woody plants, citric acid concentration was not an indicator of 

tolerance to iron chlorosis in Prunus plants, however, PEPC activity and accumulation of amino 

acids could be partly related with tolerance in Prunus rootstocks to iron chlorosis. 
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Table 1. Concentration of the main compounds (mg g-1 FW) determined by 1H NMR, in root tip extracts of Prunus rootstocks (Adesoto, Barrier and 

GF 677) after 14 days of growth in nutrient solution containing 90 M Fe(III)-EDTA [+Fe] or 0 M Fe(III)-EDTA [-Fe]. Data are means ± SE of three 

replicates.  

Rootstock Adesoto Barrier GF 677 Significancea 
Fe treatment [+Fe] [-Fe] [+Fe] [-Fe] [+Fe] [-Fe] Fe G Fe×G
Sugars            
Glucose 1.96 ± 0.33 1.43 ± 0.23 2.79 ± 0.56 3.03 ± 0.08 2.53 ± 0.65 2.10 ± 0.31 NS * NS 
Sucrose 0.26 ± 0.04 0.53 ± 0.21 0.06 ± 0.04 0.18 ± 0.03 0.00 ± 0.00b 0.68 ± 0.24 ** NS NS 
Cyanogenic compound            
Prunasin 0.50 ± 0.14  a 0.15 ± 0.04  a 1.45 ± 0.17  b 0.49 ± 0.05  a 0.58 ± 0.19  a 0.51 ± 0.22  a ** ** * 
Amino acids            
Alanine 0.093 ± 0.027 0.216 ± 0.040 0.046 ± 0.020 0.151 ± 0.034 0.070 ± 0.012 0.172 ± 0.040 *** NS NS 
Asparagine 2.19 ± 1.08 3.15 ± 0.32 0.23 ± 0.02 0.80 ± 0.12 1.58 ± 0.63 2.39 ± 0.61 NS ** NS 
GABA 0.079 ± 0.012 0.104 ± 0.055 0.030 ± 0.028 0.083 ± 0.019 0.051 ± 0.005 0.052 ± 0.009 NS NS NS 
Glutamic acid + Glutamine 0.27 ± 0.05 0.48 ± 0.05 0.16 ± 0.01 0.19 ± 0.02 0.20 ± 0.05 0.22 ± 0.01 * *** NS 
Isoleucine 0.023 ± 0.005 0.031 ± 0.002 0.005 ± 0.004 0.012 ± 0.001 0.016 ± 0.004 0.011 ± 0.007 NS ** NS 
Threonine 0.027 ± 0.006 0.036 ± 0.001 0.012 ± 0.004 0.023 ± 0.003 0.016 ± 0.005 0.018 ± 0.002 * ** NS 
Valine 0.012 ± 0.004 0.021 ± 0.001 0.003 ± 0.002 0.008 ± 0.002 0.007 ± 0.002 0.008 ± 0.001 * *** NS 
Organic acids            
Citric acid 0.98 ± 0.18  b 2.55 ± 0.44  d 0.15 ± 0.01  a 2.44 ± 0.56  cd 0.95 ± 0.18  b 1.41 ± 0.42  bc *** *** ***
Malic acid 0.75 ± 0.16 1.42 ± 0.02 0.44 ± 0.15 1.18 ± 0.27 0.96 ± 0.20 1.23 ± 0.30 ** NS NS 
Succinic acid 0.070 ± 0.006 0.186 ± 0.021 0.085 ± 0.021 0.117 ± 0.012 0.082 ± 0.017 0.116 ± 0.021 *** NS NS 
Lactic acid 0.031 ± 0.002 0.042 ± 0.003 0.060 ± 0.025 0.052 ± 0.007 0.021 ± 0.004 0.038 ± 0.009 NS NS NS 
Amide            
Choline 1.32 ± 0.15 1.05 ± 0.04 0.77 ± 0.09 0.63 ± 0.05 0.57 ± 0.13 0.59 ± 0.06 NS *** NS 
Unknown compound            
UnknownD7.95 0.29 ± 0.05 0.34 ± 0.04 0.43 ± 0.05 0.45 ± 0.06 0.43 ± 0.07 0.23 ± 0.04 NS NS NS 

 
aTwo-way ANOVA analysis was performed for linear model, on raw data. Significance: *** P ≤ 0.001; ** P ≤ 0.01; * P ≤ 0.05; NS not significant. Comparison means by Duncan’s 
test (P < 0.05) were shown for the significant interaction between treatment (Fe) and genotype (G). Data followed by the same letter within the same row are not significantly 
different. Glutamate + Glutamine expressed as glutamine equivalent. 
bNot detetected 



 

Table 2. Concentration of the main organic acids (mg g-1 FW, cis-aconitic acid needs to be multiplied by 10-3) determined by HPLC-ESI/MSTOF, in 

root tip extracts of Prunus rootstocks (Adesoto, Barrier and GF 677) after 14 days of growth in nutrient solution containing 90 M Fe(III)-EDTA [+Fe] 

or 0 M Fe(III)-EDTA [-Fe]. Data are means ± SE of three replicates. 

Rootstock Adesoto Barrier GF 677 Significancea 
Fe treatment [+Fe] [-Fe] [+Fe] [-Fe] [+Fe] [-Fe] Fe G Fe×G
Organic acids            
Citric acid 1.06 ± 0.33  b 2.73 ± 0.57  c 0.08 ± 0.02b a 3.05 ± 0.87  c 1.08 ± 0.21  b 1.65 ± 0.45  bc *** *** ***
Malic acid 0.88 ± 0.22 2.09 ± 0.44 0.48 ± 0.18 2.00 ± 0.69 1.35 ± 0.35 1.71 ± 0.40 ** NS NS 
Succinic acid 0.028 ± 0.006  a 0.128 ± 0.019  c 0.033 ± 0.010  a 0.082 ± 0.023  b 0.045 ± 0.008  a 0.062 ± 0.014 ab *** NS * 
Oxalic acid 0.068 ± 0.011 0.096 ± 0.009 0.021 ± 0.005b 0.079 ± 0.028 0.059 ± 0.017 0.037 ± 0.011b NS NS NS 
Cis-aconitic acid (×10-3) 2.46 ± 0.76  ab 15.03 ± 3.47  c 0.64 ± 0.29  a 5.15 ± 1.89  b 3.58 ± 0.47  b 2.51 ± 0.11  ab ** *** ** 
Quinic acid 0.067 ± 0.003 0.077 ± 0.014 0.024 ± 0.002 0.082 ± 0.030 0.076 ± 0.024 0.154 ± 0.054 * * NS 

aTwo-way ANOVA analysis was performed for linear model, on raw data. Significance: *** P ≤ 0.001; ** P ≤ 0.01; * P ≤ 0.05; NS not significant. Comparison means by Duncan’s 
test (P < 0.05) were shown for the significant interaction between treatment (Fe) and genotype (G). Data followed by the same letter within the same row are not significantly 
different.  
bBelow limit of quantification (LOQ). 
 
 
 



Legend of figures 

 

Fig. 1. Root (A) and shoot (B) fresh weight and SPAD values of the third fully developed leaf from 

apex (C) for three Prunus rootstocks (Adesoto, Barrier and GF 677) after 14 days of growth in 

nutrient solution containing 90 M Fe(III)-EDTA [+Fe] or 0 M Fe(III)-EDTA [-Fe] . Vertical bars 

indicate SE of three replicates. Two-way ANOVA analysis to evaluate the Fe, genotype (G) and 

interaction (Fe × G) effects was performed. Significance: *** P ≤ 0.001; ** P ≤ 0.01; * P ≤ 0.05; 

NS not significant. Comparison means by Duncan’s test (P < 0.05) were shown for the significant 

interaction between treatment and genotype. 

 

Fig. 2. Representative 1D 1H 500 MHz-NMR spectra of polar extracts of root tips from Adesoto 

genotype after 14 days of growth in nutrient solution containing 90 M Fe(III)-EDTA [+Fe]. The 

frames show a comparison between [+Fe] and [-Fe] (0 M Fe(III)-EDTA) treatments for some 

spectra portions. 

 

Fig. 3. Sum of amino (A) and organic acids (B) (mg g-1 FW) determined by 1H NMR, in root tip 

extracts of Prunus rootstocks (Adesoto, Barrier and GF 677) after 14 days of growth in nutrient 

solution containing 90 M Fe(III)-EDTA [+Fe] or 0 M Fe(III)-EDTA [-Fe] . Vertical bars indicate 

SE of three replicates. Two-way ANOVA analysis to evaluate the Fe, genotype (G) and interaction 

(Fe × G) effects was performed. Significance: *** P ≤ 0.001; ** P ≤ 0.01; NS not significant. 

 

Fig. 4. PCA analysis of 16 metabolites quantified using 1H NMR and 6 organic acids quantified 

using mass spectrometry (MS) in root tip extracts of Adesoto (Ad), Barrier (Ba) and GF 677 (GF) 

plants grown during 14 days in nutrient solution containing 90 M Fe(III)-EDTA [+Fe] or 0 M 

Fe(III)-EDTA [-Fe]. PC1/PC2 scores plot (A) explaining 57.8% of the total variance. Symbols: ▲ 

Ad[+Fe], ● Ba[+Fe], ■ GF[+Fe], ∆ Ad[-Fe], ○ Ba[-Fe], □ GF[-Fe]. PC1/PC2 loadings plot (B) 

generated from PCA analysis. Symbols: ○ sugars, ♦ prunasin, ● amino acids, □ organic acids 

determined by NMR, ■ organic acids determined by MS, ∆ choline and ▲ unknown compound. 

Glu+Gln: sum of glutamic acid and glutamine. The dashed ellipses represent PC1 discrimination on 

the positive side ([-Fe] samples mainly separated due to alanine and organic acids). The solid 

ellipses represent PC2 discrimination on the positive side (Adesoto samples mainly separated due to 

choline and amino acids). 

 

Fig. 5. Activity of phosphoenolpyruvate carboxylase (PEPC) (nmol mg-1 FW min-1), in root tip 

extracts of Prunus rootstocks (Adesoto, Barrier and GF 677) after 14 days of growth in nutrient 



 

solution containing 90 M Fe(III)-EDTA [+Fe] or 0 M Fe(III)-EDTA [-Fe]. Data are means of 

three replicates. Vertical bars indicate SE of three replicates. Two-way ANOVA analysis to 

evaluate the Fe, genotype (G) and interaction (Fe × G) effects was performed. Significance: *** P ≤ 

0.001. Comparison means by Duncan’s test (P < 0.05) were shown for the significant interaction 

between treatment and genotype. 
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