

EGU24-21138, updated on 02 May 2024 https://doi.org/10.5194/egusphere-egu24-21138 EGU General Assembly 2024 © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

Digital Twining of Geophysical Extremes

Ramon Carbonell¹, Arnau Folch¹, Antonio Costa², Beata Orlecka-Sikora³, Piero Lanucara⁴, Finn Løvholt⁵, Jorge Macías⁶, Sascha Brune⁷, Alice-Agnes Gabriel⁸, Sara Barsotti⁹, Joern Behrens¹⁰, Jorge Gomez¹¹, Jean Schmittbuhl¹², Carmela Freda¹³, Joanna Kocot¹⁴, Domenico Giardini¹⁵, Michael Afanasiev¹⁶, Helen Glaves¹⁷, and Rosa Badía¹⁸ ¹Geosciences Barcelona, GEO3BCN-CSIC, Barcelona, Spain ²Istituto Nazionale di Geofisica e Vulcanologia, Palermo, Italy ³Institute of Geophysics Polish Academy of Sciences, Warsaw, Poland ⁴CINECA, Rome, Italy ⁵Norwegian Geotechnical Institute, Oslo, Norway ⁶University of Malaga, Malaga, Spain ⁷GeoForschungsZentrum GFZ Potsdam, Germany ⁸Ludwig-Maximilians-Universität, Munich, Germany ⁹Icelandic Meteorological Office, Reykjavik, Iceland

¹⁰University of Hamburg, Hamburg, Germany

¹¹Laboratorio Fisica Experimental de Partículas, Lisboa, Portugal

¹²University of Strasbourg/CNRS, Strasbourg Cedex, France

¹³European Plate Observing System, EPOS, Rome, Italy

¹⁴Akademia Gorniczo-Hunticza CYFRONET, Warsaw, Poland

¹⁵ETH Zurich, Zurich, Switzerland

¹⁶Mondaic AG, Zurich, Switzerland

¹⁷British Geological Survey, Nottingham, United Kingdom

¹⁸Barcelona Supercomputing Center, Barcelona, Spain

The geophysical research community has developed a relatively large amount of numerical codes and scientific methodologies which are able to numerically simulate through physics the extreme behavior of the Earth systems (for example: volcanoes, tsunamis earthquakes, etc). Furthermore, nowadays, large volumes of data have been acquired and, even near real-time data streams are accessible. Therefore, Earth scientist currently have on their hands the possibility of monitoring these events through sophisticated approaches using the current leading edge computational capabilities provided by pre-exascale computing infrastructures. The implementation and deployments of 12 Digital Twin Components (DTCs), addressing different aspects of geophysical extreme events is being carried out by DT-GEO, a project funded under the Horizon Europe programme (2022-2025). Each DTC is intended as self-contained entity embedding flagship simulation codes, Artificial Intelligence layers, large volumes of (real-time) data streams from and into data-lakes, data assimilation methodologies, and overarching workflows which will are executed independently or coupled DTCs in a centralized HPC and/or virtual cloud computing research infrastructure.