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Abstract: The Aloe vera (L.) Burman f. pulp extract (AE), obtained from the inner parts of Aloe
vera leaves, is rich in polysaccharides, including glucomannans, acemannans, pectic compounds,
cellulose, and hemicelluloses; acemannan and glucomannan are considered the two main components
responsible for most of the plant’s therapeutical properties. Besides having anti-inflammatory activity,
these polysaccharides accelerate wound healing and promote skin regeneration, thus they can be
utilized in healing products. The objective of this study was to develop Aloe vera mucilaginous-
based hydrogels for topical use in psoriasis treatment. The hydrogels were prepared with 80% w/w
of A. vera mucilaginous gel, evaluating two distinct polymers as the gelling agent: 1% carbopol
940 (FC1 and FC2) or 2% hydroxyethylcellulose (FH3 and FH4). FC1, FC2, FH3 and FH4 were
evaluated for their organoleptic characteristics, rheological properties, pH and glucomannan content.
Polysaccharide fractions (PFs) were extracted from the AE and used as a group of chemical markers
and characterized by infrared (IR) spectroscopy and 1H nuclear magnetic resonance (1H NMR). The
quantification of these markers in the raw material (AE) and in the hydrogels was carried out using
spectrophotometric techniques in the UV-VIS region. The hydrogels-based hydroxyethylcellulose
(FH3 and FH4) had glucomannan contents of 6.76 and 4.01 mg/g, respectively. Formulations with
carbopol, FC1 and FC2, had glucomannan contents of 8.69 and 9.17 mg/g, respectively, an ideal pH
for application on psoriasis, in addition to good spreadability and pseudoplastic and thixotropic
behavior. Considering these results, hydrogel FC1 was evaluated for its keratolytic activity in a
murine model of hyperkeratinization. For that, 0.5 mL of test formulations FC1 and FPC (0.05%
clobetasol propionate cream) were topically applied to the proximal region of adult rats daily for
13 days. After euthanasia, approximately 2.5 cm of the proximal portion of each animal’s tail was
cut and placed in 10% buffered formalin. Then, each tail fragment was processed and stained with
hematoxylin and eosin (HE), and the results obtained from the histological sections indicated a 61%
reduction in stratum corneum for animals treated with the A. vera hydrogel (FC1G) and 66% for
animals treated with clobetasol propionate (PCG), compared to the group of animals that did not
receive treatment (WTG). This study led to the conclusion that compared to the classic treatment
(clobetasol propionate), the 80% A. vera hydrogel showed no significant difference, being effective in
controlling hyperkeratinization.
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1. Introduction

Aloe vera (L.) Burman f. (Aloe barbadensis Miller) is a medicinal plant belonging to
the Liliaceae family, currently known as Asphodelaceae, by the Angiosperm Phylogeny
Group III System (APG III 2009) [1]. Among over 300 species of Aloe, A. vera is the most
widely used in medicines, cosmetics, and food products. Most of its therapeutic properties
(antiviral, antibacterial, healing, antioxidant, anti-inflammatory, anticancer, antidiabetic,
antiallergic, immunostimulant and UV protection) are attributed to the presence of polysac-
charides [2–10]. Acemannan alone was used in wound care pharmaceuticals and alveolar
osteitis patients as Acemannan Hydrogel™ [7,11] and Acemannan immunostimulant™ was
applied in fibrosarcoma treatment in cats and dogs [7,12], in addition to other products
such as Immuno-10 [13,14], Alcortin® [13] and Mole-Cure® [15].

The mucilaginous gel of A. vera consists mostly of water (>98%) and its remaining solid
content is rich in polysaccharides (60%) such as pectin, cellulose, hemicellulose, mannose
derivatives, acemannan and glucomannan, with the last two being considered the main
components responsible for the majority of biological and functional activities of Aloe [6,16].
Research has shown positive effects on wound healing of products derived from A. vera.
Those are attributed to nutrient maintenance, humidity, oxygenation, inflammation control,
immunoactivity, epithelialization and fibroblast proliferation [17–21].

Psoriasis is classified as a non-contagious, chronic inflammatory systemic disease with
a cutaneous, nail, and joint manifestations. In addition, it has variable clinical features
and a relapsing course. Recently, Leng and co-authors (2018) showed the pharmaco-
logical activity of A. vera mucilage in psoriasis [22,23]. In addition, in a recent review
article, Yadav et al. (2021) [24] described the topical therapeutic approach of polymeric
formulations in the treatment of psoriasis, highlighting the use of Carbopol® 940, chitosan,
hydroxypropylmethylcellulose, Poly-(lactic-co-glycolic acid) (PLGA) and polyethylene
glycol in hydrogels, emulsions, nanogels, and scaffolds.

Psoriasis is an autoimmune chronic inflammatory disease that affects about 2% of
the world’s population. This disease, besides causing physical suffering, also affects the
psychosocial aspects of the patient. Epidermal changes are primarily characterized as
being due to keratinocyte hyperproliferation, which leads to abnormal differentiation
and impaired barrier function. In addition, the histopathological findings of the lesions
of patients with psoriasis can be characterized by hyperkeratosis (thickening of the stra-
tum corneum-SC) and parakeratosis (abnormal SC maturation), and epithelial acanthosis,
associated with the infiltration of inflammatory cells in the dermis and epidermis, and
elongation of the dermal papillae with dilated capillaries. However, since the 1980s, T lym-
phocytes, macrophages, T-Helper-17, T-Helper-22, regulatory T cells, dendritic cells, and
new cytokines, including interleukins (IL) IL-22, IL-23, IL-17 e IL-20 have been identified in
dermal inflammatory infiltrates, allowing the pathogenesis of psoriasis to be defined as an
autoimmune disease [25–29].

The treatment of mild psoriasis consists of drugs applied topically, but moderate to
severe clinical conditions are treated systemically. The systemic treatments can include
phototherapy, methotrexate, acitretin, cyclosporine and biological medicines such as adali-
mumab, etanercept, risanquizumab, ustequinumab and secuquinumab [22].

Topical keratolytics, emollients, corticosteroids (clobetasol and dexamethasone) and
calcineurin inhibitors are among the recommended drugs. Alternatively, drugs or fractions
extracted from plants, such as A. vera, have shown satisfactory results in the treatment of
psoriasis [30–33]. Topical treatments may also be applied as adjuvants to systemic therapy
and maintaining treatment after a dose reduction or discontinuation [34].

In the last two decades, alternative medicine has become extremely popular, and the
topical use of herbal drugs has become one of the most used complementary therapies
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in treating skin lesions or diseases such as psoriasis [35]. In this context, an A. vera-based
herbal product shows promise due to its safety and tolerability [23,30]. Dhanabal et al.
(2012) [36] evaluated an ethanolic extract of A. vera mucilage for antipsoriatic activity using
a mouse tail psoriasis model described by Vogel (2008) [37]. They reported activity of
81.95% of A. vera extract compared to 87.94% for tarazotene (a topical retinoid indicated for
the treatment of plaque psoriasis).

In 1996, Syed and co-authors [33] showed clinical studies performed with patients
diagnosed with mild to moderate psoriasis using hydrophilic cream with 0.5% A. vera. The
treatment was analyzed for eight months and showed significant improvement compared
to the placebo group. Another work published by Choonhkarn et al., 2009 [30] also showed
satisfactory results for treating psoriasis using a cream with 70% of A. vera mucilaginous
gel in sick volunteers. Additionally, one group was treated with a cream containing 0.1%
triamcinolone acetonide. Both treatments observed excellent PASI (Psoriasis Area and
Severity Index) rates.

Recently, Leng et al. 2018 [23] evaluated markers of the inflammatory response of
psoriasis using HaCaT cells to better understand the molecular bases involved in the action
of the polysaccharide extracted from A. vera. The results showed that by stimulating
the cells with TNF-α and exposing them to the polysaccharide, a significant reduction in
keratinocyte proliferation and NF-κB signaling was observed. Therefore, the effectiveness
of the administration of A. vera polysaccharides for treating patients with psoriasis seems to
depend on its anti-inflammatory activity. Consequently, it has been considered a promising
drug candidate for the treatment of psoriasis due to its potential clinical applications.

It is known that topical corticosteroids are the clinician’s first choice for treating
psoriasis disease: clobetasol propionate and dexamethasone in a topical application of
corticosteroids 1–3 times a day per less than 30 days. However, while clobetasol has very
high potency and can be used in most psoriasis lesions, it cannot be used in certain regions
due to the risk of skin atrophy and telangiectasia, such as on the face, flexural and genital
areas, where there is still tachyphylaxis [22].

The present work aimed to develop and characterize an A. vera hydrogel due to the
importance of polysaccharides for its biological activity in psoriasis treatment. For this
purpose, the hydrogels were prepared from the AE and evaluated for their organoleptic
characteristics, rheological properties, pH, glucomannan content and antipsoriatic activity
by the evaluation of the hyperkeratinization process in a murine model and in comparison
with a pharmaceutic market product (clobetasol 0.05%).

2. Materials and Methods
2.1. Materials

The leaves of A. vera (L.) Burman f. were collected from the Institute for Research in
Drugs and Medicines-IPEFARM/UFPB (lat: -7.11499977111816 long: -34.8630981445312).
The voucher specimen of the plant was deposited at the Herbarium Professor Lauro
Pires Xavier/UFPB (registration JPB0063909), located in João Pessoa, Paraíba, Brazil. The
raw materials used in this study were as follows: Ethyl alcohol 92.8◦ GL (Toscano, João
Pessoal/Brazil), imidazolidinyl urea (Akema, Coriano/Italy), disodium EDTA (Dow, Pitts-
burg/PA/USA), anhydrous citric acid (Cofco Biochemical, Nong Bua/Thailand), methyl-
paraben (Ueno fine, Bang Rak/Thailand), aminomethyl propanol (Angus Chemical, Ster-
lington/LA/USA), propylene glycol (Anidrol, Diadema/Brazil), carbopol (Vetec, Duque de
Caxias/Brazil), hydroxyethylcellulose (Dow, Pittsburg/PA/USA) and sodium metabisul-
fite (Sigma-Aldrich, St. Louis/MI/USA). All other chemicals were of analytical grade and
were used without any further chemical modification.

2.2. Methods
2.2.1. Preparation of AE

A. vera leaves about 5–6 years old were used in the preparation of mucilaginous gel.
All collected material was washed, cut at the basal end, and left upright for 30 min to
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remove excess exudate. After a second washing process, the green epidermis was removed
from the plant material to obtain the A. vera pulp in fillets. The fillets were homogenized in
a mixer (Mallory, Robot 250, Maranguape, Brazil) for 1 min and exhaustively filtered under
vacuum using a polyester membrane to remove fibrous material. The extraction process
was performed to obtain crude AE, which was used as the raw material and to extract the
polysaccharide fraction, used as a phytochemical marker.

2.2.2. Polysaccharide Fraction Extraction and Characterization

The PF was prepared by adding 1000 mL of ethyl alcohol to 200 mL of the AE (5:1, v/v)
obtained as previously described. The mixture was kept at 4 ◦C for 24 h for flocculation
of the high molecular weight alcohol-insoluble polysaccharide fraction (PF), which was
separated using sieves and left in Petri dishes for evaporation of residual alcohol. Subse-
quently, PF was resuspended in 400 mL of distilled water, frozen at −20 ◦C and dried for
54 h in a lyophilizer (Labconco Brand Freeze Dryer, model FREEZONE 4.5, Kansas City,
MI, USA). The lyophilized PF was characterized by Fourier transform infrared (FT-IR) and
proton nuclear magnetic resonance (1H-NMR) spectroscopy and was used to obtain the
calibration curve in the UV/VIS glucomannan quantification method.

The FT-IR spectrum of the isolated standard glucomannan was obtained by preparing
KBr cells containing the samples and was carried out in a Rayleigh FT-IR Spectrometer, on
a wavelength range from 4000 to 400 cm−1. The 1H NMR spectra of PF was performed
at 400 MHz using a JEOL Eclipse 400 NMR Spectrophotometer (JEOL–Pleasanton, CA,
USA), at 25 ◦C and MNOVA (Mestrelab Research, San Diego, CA, USA) software. For this
purpose, 5 mg of sample were solubilized in 1.0 mL of deuterium oxide 99.9%.

2.2.3. Hydrogel Based on A. vera Extract

All hydrogel samples were prepared under mechanical agitation (IKA, RW20, Staufen,
Germany) by adding the gelling polymer to the AE. The composition of each prepared
hydrogel is described in Table 1.

Table 1. Qualitative and quantitative composition of formulation of A. vera hydrogels.

Ingredients (g) FC1 FC2 FH3 FH4 Function

A. vera (L.) extract 80.0 80.0 80.0 80.0 API *
Carbopol 940 1.0 1.0 - - Gelling

Hydroxyethylcellulose - - 2.0 2.0 Gelling
Citric acid 0.5 - - 0.5 Acidulant

Aminomethylpropanol qs. qs. - - Alkalizing
Methylparaben 0.2 0.2 0.2 0.2 Preservative

Imidazolidinyl urea 0.3 0.3 0.3 0.3 Preservative
Propylene glycol 5.0 5.0 5.0 5.0 Humectant
Disodium edetate 0.1 0.1 0.1 0.1 Chelator

Sodium
metabisulphite 0.05 0.05 0.05 0.05 Antioxidant

Distilled water q.s.p. 100.0 100.0 100.0 100.0 Vehicle
* API Active pharmaceutical ingredient.

Formulations FC1 and FC2 were prepared by dispersing the carbopol 940 as the an-
ionic gelling agent in 40.0 g of the AE and kept at rest for 2 h. Then, another 40 g of the AE
were slowly added under continuous stirring. Samples FH3 and FH4 were prepared by
preheating 80 g of the mucilaginous gel at 60 ◦C and slowly adding hydroxyethylcellulose,
non-ionic gelling agent, under mechanical stirring. All samples were added of imidazo-
lidinyl urea and methylparaben, previously solubilized in propylene glycol under heating
at 60 ◦C and then cooled down. Disodium edetate and sodium metabisulfite aqueous
solution were also added to all samples. For FC1 and FC2 samples, it was necessary to add
aminomethylpropanol for the final pH adjustment (6.0–7.0), stirring for 10 min. FH3 and
FH4 samples were kept under continuous stirring for 1 h.
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Organoleptic characteristics were evaluated by odor perception and macroscopic
visual parameters such as color, appearance, absence of precipitates or aggregates, turbidity,
and color change [38]. Hydrogel formation was also evaluated by the tube inversion method
through the property of not flowing nor being deformed due to its own weight [39,40]. The
pH of the formulations was determined in samples previously dispersed in distilled water
(10% w/v), with a potentiometer (Digimed, model DM-20, São Paulo, Brazil). The result is
the average of three determinations [41].

2.2.4. Characterization
Spreadability

Exactly 1 mL of each sample was applied to the center of a millimeter plate, on which
a glass plate of known weight was added. After one minute, the diameters covered by the
sample were read in the vertical and horizontal positions and then the average diameter
was calculated. This procedure was repeated by adding, one by one, six more plates of
increasing weight and recording the diameters of the corresponding sample 1 min after
each plate was added. Results were expressed as the spreadability of the sample as a
function of the added cumulative weight according to Equation (1) [42,43].

Ei = d2.
π

4
(1)

where:
Ei = sample spreadability for a given weight (mm2);
d = average diameter (mm).
The results were represented by the mean ± standard deviation (SD), n = 3.

Rheological Properties

Rheological measurements were determined at 25 ◦C by rheometer type HAAKE
(MARS II Rheometer®, Thermo Scientific™, Waltham, MA, USA), coupled to a thermal
controller (HAAKE DC50, Thermo Scientific™, Waltham, MA, USA) using PP20 Ti sensor
(plate/plate, diameter 20 mm) for hydrogels and for comparative purposes measurements
of mucilaginous gel were made using sensor C60/2 (cone/plate, diameter 60 mm). The
parameters were established using the Rheowin 4 Job Manager software (Thermo Scientific,
Waltham, MA, USA) from 0.1 to 1000 1 s−1 [44]. Hydrogel formulations were evaluated
for apparent viscosity versus shear rate curves, and rheological behavior was evaluated
using the hysteresis curve. Therefore, during the analysis, a sample of the mucilaginous gel
and each hydrogel was initially submitted to increasing shear rates and, subsequently, to
decreasing rates. The samples FC1, FC2 and AE were evaluated for viscoelastic behavior,
and the response variables were the elastic and viscous modulus. Analysis was performed
on the linear viscoelastic regime at 25 ◦C. The tension used was 1 Pa and the frequency
ranged from 0.1 to 10 Hz. The mechanical spectra were characterized by values of G′

and G′′ (Pa) as a function of frequency (f). G′ is the storage modulus, related to the solid
response of the material and G′′ is the loss modulus, related to the fluid response of the
material. The results are represented by the mean ± standard deviation (SD), n = 3.

Determination of Glucomannan from AE and Hydrogels

A UV/VIS spectrophotometric technique (Thermo Scientific, Evolution 300T, Waltham,
MA, USA) described by Eberendu [45,46] was used to quantify the glucomannans present
in the AE used as raw material, as well as for the analysis of the obtained hydrogels.

Glucomannan calibration curve: For this purpose, a 5000 µg/mL aqueous solution
of lyophilized glucomannan (PF) was prepared under magnetic stirring for 3 h. Succes-
sive dilutions were made using distilled water to prepare solutions at 1000, 1250, 2000,
2500, 3000, 3750, 4000 and 4500 µg/mL. Subsequently, 400 µL aliquots of each of these
concentrations were transferred (in triplicate) to 1mL Eppendorf tubes. Each tube received
500 µL of potassium hydroxide solution (0.28 M KOH) and 100 µL of congo red reagent
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(2 × 10−4 M). At the end, final concentrations between 400 and 2000 µg/mL were obtained
in the complexation reaction. The mixtures were kept at room temperature for 20 min and
glucomannan contents quantified by spectrophotometry at 540 nm.

Determination of glucomannan content: For the quantification of glucomannan content
in AE and in the hydrogels exactly 1 g of AE and each hydrogel was transferred to 10 mL
volumetric flasks, and their volumes completed with distilled water. These solutions
were kept under magnetic stirring for 1 h for complete solubilization. Subsequently,
400 µL aliquots of AE and of each hydrogel solution were transferred in triplicate to
1 mL Eppendorf tubes. Then, 500 µL of KOH solution and 100 µL of congo red reagent
were added to each tube. The mixtures were kept at room temperature for 20 min then
absorbance reading at 540 nm was performed. The glucomannan contents were determined
using the calibration curve equation described. The results were represented by the mean
± standard deviation (SD), n = 3.

2.2.5. In Vivo Antipsoriatic Activity

In vivo assays were carried out in the vivarium of the IPeFarM/UFPB in Federal
University of Paraíba (UFPB), after prior approval (CEUA nº 9373270420) by the Ethics
Committee on Animal Experimentation of the same university. All experiments followed
the norms of the National Council for the Control of Animal Experimentation (CONCEA).
The histopathological evaluations were carried out at the General Pathology Laboratory of
the Department of Physiology and Pathology at UFPB.

The antipsoriatic activity was assessed by mouse tail test for psoriasis following Vogel
(2008) [37] with some modifications. The comparative analysis of hyperkeratinization
process was made using A. vera hydrogel and clobetasol 0.05% (pharmaceutic market
product). For this, 18 adult Wistar rats with an average weight of 330 g were used, kept in
individual cages with food and water ad libitum, and under standard lighting conditions
(light/dark cycle 12/12 h) and temperature (22 ± 2 ◦C). The animals were randomized into
three groups: 1. no treatment group (negative control, WTG, n = 6); 2. group treated with
0.05% clobetasol propionate (positive control, PCG, n = 6), and 3. group with 80% of A. vera
hydrogel (FC1G, n = 6). Both FC1G and PCG groups were submitted to the application of
drugs once a day for 13 consecutive days.

The amount of 0.5 mL of the formulation was topically applied to the proximal part of
the tail, and contact was maintained for 24 h. Twenty-four hours after the last treatment,
the animals were euthanized, the proximal parts of their tails were cut, and their fragments
were stored in containers containing 10% buffered formalin. In addition to the inflammatory
evaluation, Hematoxylin-eosin (HE) staining was used for the evaluation of keratinocytes
and their extracts. For this, the samples of the fragments included in paraffin were cut in a
microtome at a thickness of 3µm, mounted on histological slides, dewaxed in xylene for
30 min, and hydrated in alcohol in decreasing concentrations for 25 min. They were then
washed in running water for 25 min and then washed in distilled water for five minutes.
The samples were then treated with Harris’ hematoxylin for 1 min, washed in distilled
water for 5 min, stained with eosin for 3 min, and washed in running water for another
30 s. Finally, the slides were dehydrated in increasing concentrations of alcohol, cleared in
xylene, and mounted with Entellan®.

2.3. Statistical Analysis

For statistical analysis of pH and spreadability results, Student’s t-test was performed,
p < 0.05, and for glucomannan content determination tests, the ANOVA/Tukey test was
performed, p < 0.05, both using GraphPad Prism program 6.01 (GraphPad software, San
Diego, CA, USA). Kolmogorov–Smirnov test, analysis of variance (ANOVA) for multiple
comparisons and post Tukey test, using a 5% significance level, were used to evaluate
biological data with the GraphPadPrism 5® program (GraphPad Software Inc. La Lola, San
Diego, CA, USA).
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3. Results and Discussions

3.1. Identification of Glucomannan by FTIR and 1H-NMR

The FTIR spectrum of the polysaccharide fraction (PF) showed the presence of -OH
groups (3420 cm−1), -CH asymmetrical stretch (2923 cm−1), C=O stretches of acetyl groups
(1760–1740 cm−1), COO- asymmetric stretching (1598 cm−1), CH3 and COO- symmetric
stretching (1428 cm−1), C-O-C stretching vibrations of acetyl groups (1248 cm−1) and ether
C-O-C in sugar (1091–1030 cm−1) (Figure 1a), suggestive of storage polysaccharides such
as acemannan and other glucomannans. These results support the findings of bioactive
acetylated polysaccharides by other authors and represent the A. vera mucilage and its
derivatives’ fingerprint [1,4,10,39,40,47,48].
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The hydroxyl and ether (C-O-C) group signals in sugar units showed high intensity
between 3420 cm−1 and 1050 cm−1, respectively. A band emerged in 1066 cm−1 due to
the presence of mannose components, galactose and glucan units [39,49]. The comparison
between the bands found in the spectrum also enabled the correlation of those found by
other authors for acemannan, which supports the evidence of an efficient extraction process.
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The spectra of PF confirmed that the fractions contained acetylated glucomannan, since
they exhibited two characteristic bands of acetyl groups in 1746 cm−1 and 1248 cm−1.

The 1H-NMR spectrum of the PF (Figure 1b) showed signals at 2.2, 2.23 and 2.24 ppm
corresponding to acetyl groups. These signals matched those characteristic of the A. vera
species found by other authors [13,50,51]. Diehl and Teichmuller (1998) [50] proved that
the 1H-NMR is an essential tool for the evaluation of the identity and quality of plant
mucilage from A. vera. Acemannan is a β-(1→4) partially acetylated mannan in positions
2, 3 or 6 and exhibits a characteristic signal at 2.00–2.26 ppm, which corresponds to the
hydrogen present on the acetyl groups, which is considered a fingerprint for the A. vera
species. Additionally, malic acid signals were observed at 4.45 ppm, which corroborates
with other results found for the same polysaccharide fractions by Bozzi et al. (2007) [16] and
Minjares-Fuentes et al. (2017) [51]. By examining the 1H-NMR spectra of the PF extracted
from the AE, it is possible to suggest that it contains acemannan.

3.2. Aloe vera Hydrogel Characterization

The preparation of the formulations was satisfactory using a simple method, capable
of scaling-up. Using prior industry knowledge of A. vera products, citric acid was also used
in this work to adjust the pH of mucilaginous gel to values below 4.6 to prevent possible
enzymatic or microbiological degradation [52]. FC1 and FH4 samples were obtained
with AE added with citric acid. The gelation of FC1 and FC2 hydrogels samples was
observed after the addition of aminomethyl propanol, since these formulations were
prepared with the anionic polymer Carbopol, whose viscosity is pH dependent, with no
difficulty to disperse it in the mucilaginous gel. The obtained hydrogel proved to be soft to
the touch and less viscous than hydroxyethylcellulose hydrogels. During the preparation
of the formulations with hydroxyethylcellulose (FH3 and FH4), it was observed that upon
heating to 60 ◦C the polymer was more easily dispersed in the mucilaginous gel, followed
by gradual gelation.

AE has a light-yellow color, which was not significantly altered after incorporation of
the excipients. All developed hydrogels were viscous and yellow, without deformation or
flow when the tube was inverted. In addition, the formulations were also homogeneous,
without precipitates or lumps, and with a characteristic odor (Table 2).

Table 2. Physical and sensorial parameters of A. vera hydrogels.

Parameters FC1 FC2 FH3 FH4

Odor typical Typical typical typical
Color Yellow light Yellow light Yellow light Yellow

Aspect Homogeneous Homogeneous Homogeneous Homogeneous
Opacity Opaque Opaque Opaque Opaque
Fluidity Absent Absent Absent Absent

pH 6.70 ± 0.03 7.18 ± 0.19 6.31 ± 0.14 4.67 ± 0.11

A. vera hydrogels presented pH values between 4.67 and 7.18. Formulations FH3 and
FH4 showed significant differences (p < 0.05), justified by the addition of citric acid to the
AE in the FH4 formulation. FC1 and FC2 formulations also differed significantly in pH
values (p < 0.05). Carbopol hydrogel thickening was obtained after neutralization of the
polymer with inorganic bases or low molecular weight amines.

The pH of the hydrogel FC2 was higher than FC1, yet it is recommended for use in
certain skin conditions characterized by increased acidity, such as psoriasis, where the
application of higher pH products is preferable [53].

Khan et al. (2013) [17] developed formulations containing A. vera gel with carbopol
934, sodium carboxymethylcellulose and hydroxypropyl methylcellulose gelling agents
and found pH values for the gels at 6.6 ± 0.5, close to neutral pH. The authors reported
skin safety formulations. Powar et al. (2016) [54] incorporated meloxicam in A. vera
hydrogels prepared by dispersing in different concentrations of gelling agents such as
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hydroxypropyl methylcellulose, carboxymethyl cellulose and carpobol 934. However,
pHs of all developed formulations were between 6.2 and 7.3, compatible with skin pH.
Therefore, the formulations FC1, FC2 and FH3, due to their pH closer to neutrality, are the
most suitable for application in skin conditions, considering the pathophysiological aspect
of psoriasis, which is intended to be treated with this hydrogel.

Carbopol-based hydrogels showed superior spreadability than formulations made
from hydroxyethylcellulose. FC1 and FC2 carbopol hydrogels presented initial spread-
ability with a weight of 380 g of 3036.9 and 3134.5 mm2, respectively, with maximum
spreadability values of around ~5200 mm2 after adding 2705 g, while FH3 and FH4 hy-
drogels showed maximum values of spreadability of 3421.7 and 3614.0 mm2, respectively.
Thus, it was found that spreading carbopol formulations at the application site will require
less effort than hydroxyethylcellulose formulations. These hydrogels (FH3 and FH4) re-
quire more effort, but in contrast, have a smaller application area than those achieved with
the formulations with carbopol (Figure 2).
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Figure 2. Spreadability of A. vera hydrogels containing carbopol 940 (FC1; FC2) and hydroxyethylcel-
lulose (FH3; FH4) as a function of added weight.

The therapeutic effectiveness of topical gels depends on their spreadability. A uniform
application of the gel to the skin is essential and a requirement of quality for topical
products, besides favored patient compliance with treatment [55].

The rheological behavior of the formulations was evaluated to observe the influence
of the polymers used. Figure 3 shows the results of apparent viscosity as a function of
shear rate for an aliquot of AE, as well as for hydrogel formulations containing A. vera
extract. The data revealed a pseudoplastic rheological behavior; that is, there was a gradual
decrease in apparent viscosity as the shear rate was increased.
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Figure 4. Rheological behavior of (a) AE and (b) A. vera hydrogels. 

Figure 3. (a) Apparent viscosity as function of shear rate for AE and A. vera hydrogels FC1, FC2, FH3
and FH4), at 25 ◦C. (b) information about numerical values of apparent viscosity of tested hydrogels
at 1, 10, 100 and 1000 s−1 and yield stress.

In general, hydrophilic gels have pseudoplastic rheological behavior, becoming fluid
during the application of shear stress, facilitating the spreading, but recovering the initial
viscosity when ceasing the application of force, allowing proper administration of the
product. Similar data for mucilaginous gel were found by Medina-Torres and colleagues
(2016) [56] when analyzing fresh A. vera mucilaginous gel, solutions of A. vera freeze-dried
mucilaginous gel and xanthan gum.

The rheograms of all evaluated samples showed no linear relationship between the
values of shear stress and shear rate, denoting their non-Newtonian character (Figure 4).
Moreover, the data obtained were thixotropic for the FC1, FC2 and FH4 formulations
(Figure 4b) due to the visible shift in the curves in the increasing-decreasing cycles (de-
scending curves shifted to lower positions). This phenomenon indicates the alignment of
polymeric chains when subjected to external pressure and, consequently, easier spreading
in the region where they will be applied, attracting special interest in topical gel technology
(Table 3).
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Table 3. Spreadability, rheological behavior and glucomannan content of A. vera hydrogels.

Parameters FC1 FC2 FH3 FH4

Maximum spreadability (mm2) 5155.5 ± 279.3 5243.1 ± 394.2 3421.7 ± 103.7 3614.0 ± 30.7

Rheological behavior Thixotropic Thixotropic Rheopectic Thixotropic

Glucomannan content of AE
(mg/g) * and (w/w) 13.87 ± 0.53(1.4%)

Glucomannan content of
hydrogels (mg/g) ** and (w/w)

8.69 ± 0.24
(0.87%)

9.17 ± 0.20
(0.92%)

6.76 ± 1.06
(0.67%)

4.01 ± 0.51
(0.40%)

* mg glucomannan/g Aloe extract ** mg glucomannan/g hydrogel.

Figure 4b presents the FH3 formulation as a rheopectic system. This is observed
by the behavior of the sample with an increase in viscosity during shear and the return
of their original viscosity at the end of the analysis. Rheopectic systems can remain in
an infinite cycle between shear time-dependent viscosity increase and rest time-related
viscosity decrease [57].

According to the data, FC1 and FC2 formulations showed better results regarding pH,
spreadability and rheological behavior. It should be noted that FH3 showed rheopectic
behavior and FH4 showed inadequate pH for topical treatment. Therefore, additional
analysis of the viscoelastic behavior of the hydrogels FC1 and FC2, as well as in the AE,
were made for comparative purposes (Figure 5).
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The data obtained for storage modulus (G′) and loss modulus (G′′) for FC1 and
FC2 samples showed that these are gel behavior formulations, G′ > G′′ (Figure 5). It is
noteworthy that the values obtained for G′ are much higher than those obtained for G′′,
regardless of the frequency range studied. In contrast, the fraction extracted from the plant,
AE, showed the lower magnitude of elastic modulus, and a higher frequency dependence,
since there is a crossing point at 4 Hz and an inversion of elastic modulus.

In a recent study, Medina-Torres and co-authors (2016) [56] presented viscoelastic
properties of different concentrations of mucilaginous gel extracted from A. vera. The
authors reported that with the increase in the mucilaginous gel concentration, G′′ becomes
more prominent than G′, favoring increased elasticity. The explanation is the formation of
a macromolecular network.

Ni et al. (2004) [7] suggested that glucomannan is responsible for the viscoelastic
property of A. vera products, according to the observed rheological behavior for the polysac-
charide fraction, a partially acetylated glucomannan which is rich in mannose.

Quantification of glucomannan content was obtained using the method described by
Eberendu (2005) [46], y = 0.00025x − 0.008, with a correlation coefficient (R2) of 0.9955,
suitable for pharmaceutical products analysis. The glucomannan content of AE used in the
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hydrogel formulations (FC1, FC2, FH1 and FH2) was 13.87 ± 0.53 mg glucomannan per g
AE, i.e., 1.4% (Table 3).

Regarding the formulations, the glucomannan content was found between 0.4 and
0.92% (w/w). Preparations formulated with carbopol (FC1 = 8.69 ± 0.24) and FC2 = 9.17
± 414 0.24) showed no significant difference in glucomannan values (p > 0.05), but those
formulated with hydroxypropylcellulose, FH3 and FH4 obtained values around 6.76 ± 1.06
and 4.01 ± 0.51 mg glucomannan per g hydrogel, respectively, with significant differences
between them (p < 0.05). This greater reduction in the glucomannan content of hydrogels
FH3 and FH4 can be explained by the use of heating at 60 ◦C during the preparation of
the formulations, which may have structurally modified the polysaccharides. The results
corroborate Femenia et al. (2003) [58], who reports that A. vera polysaccharides are affected
physically and chemically when subjected to temperatures between 30 and 80 ◦C.

3.3. In Vivo Antipsoriatic Activity

The histological sections of the skin of the rat’s tail (Figure 6), showing Dermis and
Epidermis (EP), highlight the stratum corneum of the epidermis (SC). In the animals of the
negative control group without treatment (WTG), it was observed that the SC remained
with a fibrillar and lacy aspect with a thickness of 234.7 µm2. On the contrary, the animals
from the other experimental conditions, treated with A. vera hydrogel (FC1G) and clobetasol
propionate (PCG), had a reduction of 145.3 µm2 and 156.1 µm2, respectively, in thickness of
SC when compared to the negative control group.
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Figure 6. Histological skin section stained in hematoxylin and eosin (HE). Control group without
treatment (WTG), group treated with A. vera hydrogel (FC1G), and group treated with Clobetazol
(PCG). SC: Stratum Corneum. EP: Epidermis.

In the rat tail test, FC1G and PCG decreased the stratum corneum compared to the
negative control (WTG) (Figure 7), as they showed a significant decrease in the stratum
corneum thickness. There were more than 60% reductions in the stratum corneum for both
FC1G and PCG, the main parameter evaluated in the effectiveness of the hydrogel, and
there was no significant differences between them.
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4. Conclusions 
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4. Conclusions

In this study, AE-based hydrogels were obtained and evaluated for pH values, spread-
ability, rheological behavior and glucomannan content. Glucomannan, obtained by the
precipitation in ethyl alcohol from the A. vera extract, was identified by 1H-NMR and FT-IR
experiments and used as a phytochemical marker for quantification in the AE (raw mate-
rial) and in the obtained hydrogels. All hydrogels (FC1, FC2, FH3 and FH4) showed good
spreadability, but only hydrogels FC1, FC2 and FH3 showed adequate pH for skin applica-
tion. The hydrogels showed pseudoplastic and thixotropic behavior, except hydrogel FH3,
which showed rheopectic behavior. The evaluation of viscoelastic behavior of hydrogels
FC1 e FC2 confirmed the obtained formulations with adequate characteristics for topical
application and higher glucomanann contents. These results show that the gelling agent
carbopol, as well as the hydrogel obtention processes, improved the rheological properties
of the Aloe extract, confirming the promising use of A. vera hydrogel for psoriasis treatment.
Histological sections from the in vivo assays showed a reduction in approximately 61%
and 66% in the stratum corneum (SC) thickness after treatment with the A. vera hydrogel
and clobetasol propionate, respectively, when compared to the control group (without
treatment). The results show the great potential of A. vera hydrogel with keratolytic ac-
tion that can be used in psoriasis treatment. Although the data obtained are promising,
further studies are needed to ensure the efficacy and safety of A. vera mucilaginous-based
hydrogel products.
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