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Abstract
Anthropogenic	nitrogen	(N)	loading	alters	soil	ammonia-oxidizing	archaea	(AOA)	and	
bacteria	(AOB)	abundances,	likely	leading	to	substantial	changes	in	soil	nitrification.	
However,	the	factors	and	mechanisms	determining	the	responses	of	soil	AOA:AOB	
and	 nitrification	 to	N	 loading	 are	 still	 unclear,	making	 it	 difficult	 to	 predict	 future	
changes in soil nitrification. Herein, we synthesize 68 field studies around the world to 
evaluate	the	impacts	of	N	loading	on	soil	ammonia	oxidizers	and	nitrification.	Across	a	
wide range of biotic and abiotic factors, climate is the most important driver of the re-
sponses	of	AOA:AOB	to	N	loading.	Climate	does	not	directly	affect	the	N-stimulation	
of	nitrification,	but	does	so	via	climate-related	shifts	in	AOA:AOB.	Specifically,	climate	
modulates	the	responses	of	AOA:AOB	to	N	loading	by	affecting	soil	pH,	N-availability	
and	moisture.	AOB	play	a	dominant	role	in	affecting	nitrification	in	dry	climates,	while	
the	 impacts	 from	AOA	can	exceed	AOB	 in	humid	climates.	Together,	 these	 results	
suggest	that	climate-related	shifts	in	soil	ammonia-oxidizing	community	maintain	the	
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1  |  INTRODUC TION

Humans	add	approximately	threefold	reactive	nitrogen	(N)	into	ter-
restrial ecosystems compared with natural sources, potentially in-
creasing	nitrification	in	soils	(Bowles	et	al.,	2018; Sutton et al., 2011).	
Nitrification	is	the	key	process	controlling	N	losses,	since	it	produces	
nitrate, which can be easily leached, or lost by denitrification as ni-
trous	 oxide	 and	 dinitrogen	 gas	 (Butterbach-Bahl	 et	 al.,	2013).	 For	
example,	the	global	rate	of	nitrous	oxide	emissions	from	N	additions	
is	estimated	at	about	7	Tg	N	year−1	(Tian	et	al.,	2020).	Nitrification	
is also affected by climatic conditions, such as temperature and pre-
cipitation	(Bowles	et	al.,	2018; Wang et al., 2014).	However,	the	un-
derstanding	of	the	responses	of	nitrification	to	enhanced	N	loading	
across climatic conditions is still incomplete.

Nitrification	has	long	been	considered	to	be	initiated	with	the	ox-
idation	of	ammonia	to	hydroxylamine	by	ammonia-oxidizing	archaea	
(AOA)	and	bacteria	(AOB)	(Kuypers	et	al.,	2018; Zhang et al., 2022).	
Nevertheless,	AOA	or	AOB	abundances	have	 limited	power	to	ex-
plain	the	responses	of	nitrification	to	N	loading	(Carey	et	al.,	2016).	
Emerging	studies	suggest	 that	 the	AOA:AOB	ratio	 (an	 indicator	of	
the	structure	of	ammonia	oxidizers)	can	be	used	to	capture	changes	
in	nitrification	(Aigle	et	al.,	2020; Sims et al., 2012).	However,	the	re-
sponses	of	soil	AOA:AOB	to	N	loading	and	the	potential	implications	
for	nitrification	remain	unknown.

In	 addition	 to	N	 loading	 characteristics	 (e.g.,	 rate),	 soil	 factors	
may	 drive	 the	 responses	 of	 soil	 AOA:AOB	 to	 N	 loading,	 possibly	
altering nitrification. For instance, early studies report that the 
growth of ammonia oxidizers depends on soil factors including pH, 
N-availability	and	moisture.	Prosser	and	Nicol	(2012)	show	that	AOA	
mostly	are	acidophilic	and	prefer	to	utilize	slow-released	ammonia	
from	organic	N	mineralization,	while	AOB	mainly	 are	neutro-alka-
linophilic	and	favored	by	high-levels	ammonia	from	external	N	load-
ings.	Liao	et	al.	(2022)	show	that	AOB	are	more	negatively	affected	
by	increasing	soil	moisture	than	AOA.	Previous	meta-analyses	indi-
cate	that	N	loading	decreases	soil	pH,	but	this	effect	may	vary	with	
the	 factors	 like	soil	moisture	and	the	N-source	 (Tian	&	Niu,	2015; 
Zhang et al., 2022).	Therefore,	the	effects	of	N	loading	on	AOA:AOB	
and nitrification may associate with soil factors, but global evidence 
is	lacking.

Recent studies suggest that climatic conditions substantially 
alter	microbial	responses	to	N	loading	by	affecting	soil	factors	(Borer	
& Stevens, 2022; Greaver et al., 2016).	 For	 example,	 aridity	 index	
(the	ratio	of	annual	precipitation	to	annual	potential	evapotranspira-
tion; lower aridity index indicates more dry climate, whereas higher 

aridity	 index	 indicates	 more	 humid	 climate)	 significantly	 affects	
soil	 factors	 including	pH,	N-availability	 and	moisture,	which	often	
drive	 microbial	 abundance	 and	 composition	 (Delgado-Baquerizo	
et al., 2013; Seneviratne et al., 2010; Slessarev et al., 2016).	
However, whether and how climatic conditions influence the effects 
of	N	loading	on	soil	AOA:AOB	and	nitrification,	and	whether	climatic	
impacts	on	AOA:AOB	exert	effects	on	nitrification	remain	unclear.	
These	knowledge	gaps	limit	our	ability	to	predict	N-induced	changes	
in	nitrification	across	climatic	 conditions,	 likely	 leading	 to	over-	or	
under-estimation	of	N	losses	(Bowles	et	al.,	2018;	Tian	et	al.,	2020).

To	 explore	 the	 relative	 influence	 of	 soil	 factors,	 climatic	 con-
ditions	 and	 N	 loading	 characteristics	 on	 the	 responses	 of	 soil	
AOA:AOB	and	nitrification	 to	N	 loading,	we	collected	data	on	 the	
effects	of	N	loading	on	soil	AOA:AOB	and	nitrification	from	68	field	
studies	worldwide	 (Figures S1 and S2).	A	broad	 range	of	potential	
predictors were also recorded, including climatic conditions, soil fac-
tors,	N	 loading	characteristics,	 etc.	We	 then	analyzed	 the	data	by	
using	meta-forest	analysis	 (Terrer	et	al.,	2021),	 regression	analysis,	
and	structural	equation	modeling	test	(Moreno-Jiménez	et	al.,	2019).	
This	study	was	motivated	by	the	following	two	fundamental	ques-
tions:	(1)	what	are	the	key	drivers	of	the	responses	of	AOA:AOB	and	
nitrification	to	N	loading;	and	(2)	how	do	the	responses	of	nitrifica-
tion	link	with	the	responses	of	AOA:AOB?

2  |  METHODS

2.1  |  Literature search

To	make	our	results	comparable	to	other	meta-analyses	of	N	load-
ing experiments, we focused only on potential nitrification as in ear-
lier	meta-analyses	(Carey	et	al.,	2016; Zhang et al., 2022).	By	using	
Web	of	Science	(webof scien ce. com)	and	China	National	Knowledge	
Infrastructure	 (overs	ea.	cnki.	net),	we	 searched	 the	 scientific	 litera-
ture	evaluating	the	effects	of	N	 loading	on	soil	ammonia	oxidizers	
and/or potential nitrification. Relevant articles published before 
2022	were	retrieved	using	two	sets	of	search	terms:	(i)	one	for	am-
monia	oxidizers:	(“nitrogen	addition”	OR	“nitrogen	amendment”	OR	
“nitrogen	 enrichment”	OR	 “nitrogen	 fertili*”	 OR	 “nitrogen	 deposi-
tion”	OR	 “nitrogen	 load*”)	 AND	 (“soil”	 AND	 “gene*”	 AND	 “*PCR”)	
AND	(“*amoA”	OR	“AOA”	OR	“AOB”);	(ii)	and	a	second	for	potential	
nitrification:	(“nitrogen	addition”	OR	“nitrogen	amendment”	OR	“ni-
trogen	enrichment”	OR	“nitrogen	fertili*”	OR	“nitrogen	deposition”	
OR	“nitrogen	load*”)	AND	(“soil”	AND	“nitrification”).

Natural	Science	Foundation	of	China,	
Grant/Award	Number:	32130069;	Nordic	
Committee	of	Agriculture	and	Food	
Research; Pioneer Center for Research in 
Sustainable	Agricultural	Futures	(Land-
CRAFT),	Grant/Award	Number:	P2

N-stimulation	 of	 nitrification,	 highlighting	 the	 importance	 of	 microbial	 community	
composition	in	mediating	the	responses	of	the	soil	N	cycle	to	N	loading.

K E Y W O R D S
ammonia oxidizers, climate change, microbial community structure, nitrification, nitrogen 
addition, soil properties
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The	articles	were	 then	selected	according	 to	 the	 following	cri-
teria:	(i)	soils	were	sampled	from	surface	layers	(<20 cm)	under	field	
conditions;	 (ii)	both	archaeal	and	bacterial	amoA abundances were 
quantified	 by	 qPCR,	 and/or	 potential	 nitrification	 was	 estimated	
from	the	rate	of	nitrate	or	nitrite	production	during	24 h	incubation	
under	 optimal	 conditions	 (Zhang	 et	 al.,	2022);	 (iii)	 ambient	 and	N	
loading	 treatments	were	 applied	 for	 at	 least	 1 year;	 (iv)	mean	 val-
ues,	 standard	deviations	 and	 replicate	numbers	 could	be	acquired	
directly	or	 indirectly.	Observations	disturbed	by	other	experimen-
tal	factors	(e.g.,	 irrigation,	warming,	precipitation,	CO2 enrichment, 
nitrification	 inhibitors,	 etc.)	were	excluded	 (Horz	et	al.,	2004).	 For	
multiyear experiments, data on the last measurements in the grow-
ing	season	were	preferentially	used	(Zhang	et	al.,	2022).	A	total	of	68	
eligible	studies	were	identified	(Figures S1 and S2),	of	which	56	re-
ported on ammonia oxidizers, 43 reported on potential nitrification, 
and 31 covered both.

2.2  |  Data extraction

2.2.1  |  Response	variables

Data	were	 taken	 directly	 from	 tables	 and	 text,	 or	 extracted	 from	
figures	using	Grapher	software	(golde nsoft ware. com).	We	obtained	
the	 ratios	 of	 AOA:AOB	 by	 using	 reported	 archaeal	 and	 bacterial	
amoA	abundances.	To	explore	linkages	between	potential	nitrifica-
tion	and	AOA:AOB,	we	also	gathered	potential	nitrification	data	 if	
available. Within the 68 identified studies, there were 143 paired 
observations	 of	AOA:AOB	 (Data	S1),	 98	observations	 of	 potential	
nitrification	(Data	S2),	and	67	observations	covering	both	(Data	S3).

2.2.2  |  Predictor	variables

We documented potentially relevant environmental and experimen-
tal	factors	as	predictor	variables.	(i)	Location:	latitude	(°),	elevation	
(m).	(ii)	Climate:	aridity	index,	mean	annual	temperature	(MAT,	°C).	 
(iii)	 Vegetation:	 aboveground	 biomass	 (AGB,	 g	 C m−2),	 ecosystem	
type	 (cropland,	grassland	or	 forest).	 (iv)	Soil:	pH,	the	ratio	of	C	to	
N	(C:N),	available	P	(AP,	mg	kg soil−1),	bulk	density	(BD,	g	soil	cm−3),	
clay	(%),	volumetric	moisture	(%),	and	N-mineralization	rate	(mg kg	
soil−1 day−1).	(v)	N	loading	characteristics:	rate	(g N m−2 year−1),	dura-
tion	(year),	form	(urea,	NH4NO3	or	others),	and	amount	of	N	applica-
tion	(g N m−2).	Because	aridity	index	integrates	the	effects	of	rainfall	
and warming, it is generally considered as an integrator of climatic 
conditions	(Garcia-Palacios	et	al.,	2018).	Based	on	aridity	index,	we	
grouped	study	sites	to	be	located	either	in	dry	(aridity	index	<0.65)	
or	humid	(aridity	index	≥0.65)	climates.	The	cutoff	of	0.65	was	de-
fined	by	the	United	Nations	Convention	to	Combat	Desertification	
(Dudley	 &	 Alexander,	 2017).	 Almost	 30%	 of	 environmental	 data	
were	not	reported	in	the	primary	studies	(Data	S1–S3).	We	obtained	
these from various online databases: extracting location data from 
Google	 Earth	 (earth. google. com),	 climate	 data	 from	 WorldClim	

(Fick	&	Hijmans,	2017)	 and	CGIAR-CSI	 (Zomer	 et	 al.,	2022),	 veg-
etation	data	from	ORNL	DAAC	(Spawn	et	al.,	2020),	and	soil	data	
from	SoilGrids250m	(Hengl	et	al.,	2017),	SoMo.ml	(Orth,	2021),	the	
soil	N	database	 (Elrys	et	al.,	2022),	 and	 the	soil	P	database	 (Yang	
et al., 2013).

2.3  |  Statistical analyses

2.3.1  |  Effect	sizes

We	assessed	the	effect	of	N	loading	on	each	response	variable	by	
calculating	 the	 natural	 logarithmic	 response	 ratio	 (lnR)	 of	 the	 N	
loading treatment relative to the ambient treatment, where lnR was 
weighted	by	the	 inverse	of	 its	variance	 (Chen	et	al.,	2018; Hedges 
et al., 1999).	 Response	 ratios	 of	AOA:AOB	and	potential	 nitrifica-
tion	were	marked	as	lnR(AOA:AOB) and lnR(Nitrification),	respectively.	The	
mean	 effect	 size	 (lnR)	was	 estimated	 in	 a	weighted	mixed-effects	
model	 by	 using	 the	R	 package	metafor	 (Viechtbauer,	2010).	 Some	
studies contributed more than one paired observation, thus we con-
sidered	“study”	and	“observation”	as	random	factors.	For	the	ease	of	
interpretation, the mean effect size was transformed into percent-
age change, that is, 

(

elnR − 1

)

× 100%.	The	mean	effect	of	N	loading	
is considered significant at p < .05.

2.3.2  |  qPCR	effectiveness	and	publication	bias

The	test	of	moderators	in	the	R	package	metafor	(Viechtbauer,	2010)	
was used to evaluate the impacts of primer selections and inhibi-
tion	 tests	 (Data	S1)	 on	 response	 ratios	of	amoA	 abundances.	The	
impact of methodological approaches is considered significant if 
p < .05	 (Zhang	 et	 al.,	 2022).	 In	 addition,	 we	 assessed	 publication	
bias	by	two	tests.	Spearman's	correlation	test	was	used	to	test	the	
correlation between individual effect sizes and the correspond-
ing	variances.	Publication	bias	 is	 considered	absent	 if	 Spearman's	
correlation	is	non-significant	(Nerlekar	&	Veldman,	2020).	We	also	
used	Rosenberg's	fail-safe	number	(f)	analysis.	The	dataset	is	con-
sidered unbiased if f is larger than 5n + 10,	where	n is the number 
of	observations	(Rosenberg,	2005).	We	did	not	detect	any	 impact	
of methodological approaches nor publication bias in our dataset 
(Tables S1 and S2).

2.3.3  |  Variable	importance

To	 identify	 the	 most	 important	 predictors	 of	 lnR(AOA:AOB) and 
lnR(Nitrification),	we	performed	meta-forest	analysis	(Terrer	et	al.,	2021).	
The	meta-forest	analysis	 is	an	adaptation	of	 the	random-forest	al-
gorithm	 for	 meta-analysis:	 weighted	 bootstrap	 sampling	 is	 used	
to ensure that more precise studies exert greater influence in the 
model-building	 stage.	 These	 weights	 are	 based	 on	 random-ef-
fects, so that studies with smaller sampling variance have a larger 
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probability of being selected, but this advantage is diminished as the 
number	of	between-studies	heterogeneity	 increases.	Although	se-
lecting a random subset of the features at each candidate split in the 
meta-forest	 analysis	 can	 help	 avoid	 overfitting	 and	multicollinear-
ity,	 spatial	 autocorrelation	 is	not	 accounted	 for	 in	 the	meta-forest	
analysis	 due	 to	 computational	 limitations	 (Liang	 et	 al.,	 2022; van 
Lissa, 2020).

All	potential	predictors	were	included	in	the	meta-forest	model	by	
using	the	R	package	metaforest	(van	Lissa,	2020).	This	model	was	run	
with 10,000 iterations, and was replicated 100 times by a recursive 
algorithm	provided	by	 the	R	package	metafor	 (Viechtbauer,	2010).	
Predictors	 that	 reduced	 predictive	 performance	 (i.e.,	 negative	 im-
portance)	were	dropped,	while	predictors	that	improved	predictive	
performance	(i.e.,	positive	importance)	were	maintained.	Model	pa-
rameters were further optimized by using the train() function from 
the	R	package	caret	(Kuhn,	2008).	We	calculated	tenfold	cross-vali-
dated R2	values	by	using	75%	of	the	dataset	as	training	data	and	25%	
for	validation.	The	relative	importance	of	each	predictor	was	derived	
from the optimized model.

2.3.4  |  Empirical	relationships

Meta-forest	analysis	identified	aridity	index	as	the	most	important	
predictor of lnR(AOA:AOB) and lnR(AOA:AOB) as the best predictor of 
lnR(Nitrification)	(Figure 1).	Regression	analysis	was	used	to	assess	the	
relationship between lnR(AOA:AOB)	and	aridity	index.	The	optimal	re-
gression	model	was	selected	by	Bayesian	information	criterion	(BIC;	
linear	 and	 quadratic	models	 were	 considered).	 To	 further	 explore	
potential impacts of aridity index on nitrification, we assessed the 
relationships between lnR(Nitrification) and lnR(AOA:AOB), and between 
lnR(Nitrification)	and	aridity	index.	The	interaction	between	aridity	index	
and lnR(AOA:AOB) on lnR(Nitrification) was tested by regression analysis.

2.3.5  |  Structural	equation	modeling

Aridity	 index	 has	 been	 shown	 to	 substantially	 affect	 soil	 factors	
including	 pH,	 N-availability	 and	 moisture	 (Delgado-Baquerizo	
et al., 2013; Seneviratne et al., 2010; Slessarev et al., 2016),	 and	
these soil factors typically determine the niche of ammonia oxidiz-
ers	(Liao	et	al.,	2022;	Prosser	&	Nicol,	2012).	Based	on	this	under-
standing,	we	built	a	structural	equation	modeling	(Figure S3)	to	test	
the underlying mechanisms of aridity index in affecting lnR(AOA:AOB). 
Soil	N-availability	was	indicated	by	N-mineralization	rate	and	N	load-
ing rate. We included a random effect based on the geographical 
distance, to remove confounding effects due to spatial autocorrela-
tion	 (Moreno-Jiménez	et	al.,	2019).	The	performance	of	 structural	
equation	modeling	was	evaluated	by	chi-squared	test,	which	is	con-
sidered convergent if p > .05.	Structural	equation	modeling	was	con-
ducted	with	the	R	package	piecewiseSEM	(Lefcheck,	2016).

2.3.6  |  Climate	change	projections

To	understand	how	future	climate	change	may	 impact	 lnR(AOA:AOB) 
and lnR(Nitrification), we accessed global mean aridity index from 2000 
to	 2100	 projected	 by	 the	 fifth	 Coupled	 Model	 Intercomparison	
Project	 (CMIP5)	 under	 the	 representative	 concentration	 path-
ways	 RCP4.5	 and	 RCP8.5	 (Huang	 et	 al.,	2016).	 These	 projections	
of aridity index were used to simulate global mean lnR(AOA:AOB) and 
lnR(Nitrification)	 from	2000	 to	2100	by	 scaling-up	 the	observed	 rela-
tionships	 (lnR(AOA:AOB) vs. aridity index, and lnR(Nitrification) vs. arid-
ity	 index).	 The	 predict()	 function	 from	 the	 R	 package	 car	 (Fox	 &	
Weisberg, 2019)	was	 run	 to	 simulate	 the	 predicted	 values	 (l̂nR)	 of	
lnR(AOA:AOB) and lnR(Nitrification)	from	2000	to	2100.	To	ease	interpre-
tation, the predicted values were reported as percentage change, 
that is, 

(

el̂nR − 1

)

× 100%.

F I G U R E  1 The	most	important	
predictors	for	the	effects	of	N	loading	
on	AOA:AOB	(lnR(AOA:AOB))	and	potential	
nitrification	(lnR(Nitrification)).	(a)	Relative	
importance	of	17	predictors	(N	form	was	
dropped	due	to	negative	importance)	of	
lnR(AOA:AOB)	derived	from	meta-forest	
model.	(b)	Relative	importance	of	18	
predictors	(N	form	and	latitude	were	
dropped	due	to	negative	importance)	of	
lnR(Nitrification)	derived	from	meta-forest	
model.	AGB,	aboveground	biomass;	
AOA,	ammonia-oxidizing	archaea;	AOB,	
ammonia-oxidizing	bacteria;	AP,	available	
phosphorus;	BD,	bulk	density;	C:N,	the	
ratio	of	carbon	to	nitrogen;	MAT,	mean	
annual temperature.
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3  |  RESULTS

Across	 a	 wide	 range	 of	 environmental	 and	 experimental	 factors,	
aridity index was the most important predictor of lnR(AOA:AOB) 
(Figure 1a),	where	lnR(AOA:AOB)	increased	with	aridity	index	(p < .001;	
Figure 2a).	The	mean	effect	of	N	loading	on	AOA:AOB	differed	be-
tween	dry	(aridity	index	<0.65)	and	humid	(aridity	index	≥0.65)	cli-
mates	(p < .001).	Specifically,	N	loading	reduced	AOA:AOB	by	67%	in	
dry	climates	(p < .001),	while	this	effect	was	not	significant	in	humid	
climates	(p = .165).

Structural	equation	modeling	test	showed	that	aridity	index	mod-
ulated	the	responses	of	AOA:AOB	to	N	loading	by	affecting	soil	pH,	
N-mineralization	rate,	and	soil	moisture	(Figure 3).	The	responses	of	
AOA	and	AOB	abundances	 to	N	 loading	differed	 in	 their	 relation-
ships	to	aridity	 index,	soil	pH,	N-mineralization	rate,	soil	moisture,	
and	N	 loading	 rate	 (Figure S5).	 The	 responses	of	AOA	abundance	
increased	 with	 aridity	 index	 and	 N-mineralization	 rate,	 while	 the	
responses	of	AOB	abundance	decreased	with	aridity	index	and	soil	
moisture,	and	increased	with	soil	pH	and	N	loading	rate	(p < .05).

Furthermore, lnR(AOA:AOB) was the best predictor of lnR(Nitrification) 
(Figure 1b),	 in	which	 lnR(Nitrification)	showed	a	U-shaped	relationship	
with lnR(AOA:AOB)	(p < .001;	Figure 2b).	However,	aridity	index	had	no	
direct influence on lnR(Nitrification)	(p = .469;	Figure 2c),	with	a	similar	
N-stimulation	 of	 potential	 nitrification	 in	 both	 dry	 and	 humid	 cli-
mates	(p = .804).	Specifically,	N	loading	increased	potential	nitrifica-
tion	by	63%	and	57%	in	dry	(p < .001)	and	humid	climates	(p = .003),	

respectively.	There	was	a	strong	interactive	effect	between	aridity	
index and lnR(AOA:AOB) on lnR(Nitrification)	(p < .001;	Figure S4).	The	neg-
ative relationship between lnR(Nitrification) and lnR(AOA:AOB) was clear in 
dry	climates	(p = .023),	but	no	clear	relationship	was	found	in	humid	
climates	(p = .742;	Figure 2d).

By	 scaling-up	 our	 results	 using	 climate	 change	 projections	 of	
aridity	 index,	we	estimated	that	the	global	mean	effect	of	N	 load-
ing	on	AOA:AOB	will	diminish	by	5%–8%	from	2000	to	2100	under	
RCP4.5	and	RCP8.5	(Figure 4a),	while	the	global	mean	responses	of	
potential	nitrification	will	be	largely	unaffected	(Figure 4b).

4  |  DISCUSSION

4.1  |  Climate modulates the responses of ammonia 
oxidizers to N loading

Our	results	suggest	that	climate	(indicated	by	aridity	index;	lower	arid-
ity index indicates more dry climate, whereas higher aridity index in-
dicates	more	humid	climate)	primarily	regulates	the	responses	of	soil	
AOA:AOB	to	N	loading	by	affecting	soil	pH,	N-availability	and	moisture	
(Figures 1a, 2a and 3).	First,	difference	in	soil	pH	between	climates	can	
induce	selection	pressures	on	AOA	and	AOB,	thereby	regulating	the	
responses	of	AOA:AOB	to	N	loading	(Figure 3; Figure S5).	Although	
N-induced	changes	in	soil	pH	are	not	related	to	aridity	index	(Table S4),	
background	 soil	 pH	 (i.e.,	 soil	 pH	 in	 ambient	 conditions)	 decreases	

F I G U R E  2 Climate	indirectly	
modulates	the	effects	of	N	loading	on	
potential	nitrification	(lnR(Nitrification))	by	
affecting	shifts	in	AOA:AOB	(lnR(AOA:AOB)).	
(a)	Relationship	between	lnR(AOA:AOB) 
and	aridity	index.	(b)	Relationship	
between lnR(Nitrification) and lnR(AOA:AOB). 
(c)	Relationship	between	lnR(Nitrification) 
and	aridity	index.	(d)	Interaction	between	
climate and lnR(AOA:AOB) on lnR(Nitrification). 
The	sizes	of	empty	dots	are	proportional	
to model weights. Difference between 
dry	(aridity	index	<0.65)	and	humid	
(aridity	index	≥0.65)	climates	was	
evaluated	by	Student's	t-test.	Error	bars	
show	95%	confidence	intervals,	and	the	
corresponding numbers indicate sample 
sizes. Lower aridity index indicates 
more dry climate, whereas higher aridity 
index indicates more humid climate. 
AOA,	ammonia-oxidizing	archaea;	AOB,	
ammonia-oxidizing	bacteria.

 13652486, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16989 by C

sic O
rganización C

entral O
m

 (O
ficialia M

ayor) (U
rici), W

iley O
nline L

ibrary on [28/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 of 11  |     ZHANG et al.

with	 aridity	 index	 (Figure S5).	 Alkaline	 soils	 are	 more	 common	 in	
dry climates while acid soils are widely distributed in humid climates 
(Table S3).	Alkaline	 soils	 generally	 favor	AOB	growth,	whereas	 acid	
soils	can	better	facilitate	AOA	growth	(Prosser	&	Nicol,	2012).	This	ex-
planation aligns with the positive correlation coefficient between the 
responses	of	AOB	and	soil	pH,	and	the	negative	correlation	coefficient	
between	the	responses	of	AOA	and	soil	pH	(Figure S5).

Second,	climate	to	some	extent	affects	soil	N-availability,	which	
in	turn	mediates	the	responses	of	AOA:AOB	to	N	loading	because	
of	 different	 N	 preferences	 between	 AOA	 and	 AOB	 (Figure 3; 
Figure S5).	Nitrogen	loading	can	stimulate	soil	N	mineralization,	and	
this	effect	 increases	with	aridity	 index	 (Cheng	et	al.,	2020).	Soil	N	
mineralization	rate	increases	with	aridity	index	(Figure S5),	suggest-
ing	that	organic-derived	N	is	more	abundant	in	humid	climates	than	
in	dry	climates	(Table S3).	AOA	mostly	prefer	to	utilize	slow-released	
ammonia	 from	organic	N	mineralization,	while	AOB	are	mainly	 fa-
vored	by	 high-level	 ammonia	 from	external	N	 loadings	 (Prosser	&	
Nicol,	2012).	Consistent	with	 those	preferences,	 the	 responses	of	
AOA	increase	with	N	mineralization	rate,	and	the	responses	of	AOB	
increase	with	N	loading	rate	(Figure S5).

Third,	 the	 responses	 of	AOA:AOB	 to	N	 loading	 partly	 depend	
on soil moisture, where soil moisture is often coupled with climate 
(Figure 3; Figure S5).	 Nitrogen	 loading	 has	 no	 clear	 effect	 on	 soil	
moisture,	and	this	effect	is	not	affected	by	aridity	index	(Table S4).	
However, as aridity index increases, soil moisture rises accordingly 
(Figure S5).	 AOB	 often	 decrease	 with	 rising	 soil	 moisture,	 while	
AOA	generally	increase	or	remain	unchanged	(Liao	et	al.,	2022; Yue 
et al., 2021).	 This	 interpretation	 is	 in	 line	 with	 the	 negative	 rela-
tionship	between	the	responses	of	AOB	and	soil	moisture,	and	the	
non-significant	relationship	between	the	responses	of	AOA	and	soil	
moisture	(Figure S5).

4.2  |  Shifts in ammonia oxidizers maintain the 
N-stimulation of nitrification

The	U-shaped	relationship	between	the	responses	of	potential	nitri-
fication	and	the	responses	of	AOA:AOB	under	N	loading	(Figure 2b)	
suggests that the responses of nitrification vary nonlinearly with 
the	responses	of	AOA:AOB.	This	finding	is	consistent	with	studies	

F I G U R E  3 Structural	equation	
modeling test of how aridity index affects 
the	responses	of	AOA:AOB	to	N	loading	
(lnR(AOA:AOB)).	Nitrogen-mineralization	
rate	and	N	loading	rate	can	reflect	soil	
N-availability.	The	numbers	on	arrows	
indicate standardized path coefficients 
of	structural	equation	modeling.	Lower	
aridity index indicates more dry climate, 
whereas higher aridity index indicates 
more	humid	climate.	AOA,	ammonia-
oxidizing	archaea;	AOB,	ammonia-
oxidizing bacteria.

F I G U R E  4 Potential	changes	in	global	mean	effects	of	N	loading	on	AOA:AOB	and	potential	nitrification	from	2000	to	2100	that	are	scaled-
up	from	the	observations.	Temporal	variations	in	global	mean	effects	of	N	loading	on	(a)	AOA:AOB	and	(b)	potential	nitrification	from	2000	to	
2100	under	RCP4.5	and	RCP8.5.	Colored	shading	area	indicates	95%	confidence	intervals,	and	gray	shading	area	denotes	the	ranges	of	temporal	
variations.	Lower	aridity	index	indicates	more	dry	climate,	whereas	higher	aridity	index	indicates	more	humid	climate.	Notice	difference	in	scales	
between	panels.	AOA,	ammonia-oxidizing	archaea;	AOB,	ammonia-oxidizing	bacteria;	RCP,	representative	concentration	pathway.
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    |  7 of 11ZHANG et al.

showing that microbial function can shift with community structure 
across	different	climates	(Chase	et	al.,	2021; Crowther et al., 2019; 
Fernandez et al., 1999; Hoffmann & Sgro, 2011).	On	the	other	hand,	
N	loading	stimulates	potential	nitrification	to	a	similar	extent	across	
different	climates	 (Figure 2c),	 indicating	 that	climate-related	shifts	
in	soil	ammonia-oxidizing	community	maintain	the	N-stimulation	of	
nitrification.	Specifically,	AOB	play	a	dominant	role	 in	affecting	ni-
trification	in	dry	climates,	while	the	impacts	from	AOA	can	exceed	
AOB	in	humid	climates	(Figure S6).

The	 structure–function	 relationship	 of	 soil	 ammonia-oxidizing	
community	 can	 be	 affected	 by	 environmental	 conditions	 (Zhang,	
Chen, et al., 2023).	For	example,	we	observe	that	climate	alters	the	
relationship between the responses of potential nitrification and the 
responses	of	AOA:AOB	under	N	loading	(Figure 2d).	However,	other	
factors	 (e.g.,	 trait	 distributions	 within	 a	 community,	 species-spe-
cies interactions, evolutionary dynamics, and community assembly 
processes)	 may	 also	 affect	 the	 structure–function	 relationship	 of	
ammonia	 oxidizers	 (Nemergut	 et	 al.,	2014).	 These	 factors	may	 in-
teract with environmental conditions, adding uncertainty to future 
projections	of	nitrification.	Therefore,	further	research	is	required	to	
quantify	these	interactions.

4.3  |  Implications and potential uncertainties

We	quantified	the	relationships	among	ammonia-oxidizing	community	
structure, function, and environmental conditions, thereby advancing 
the understanding of the responses of ammonia oxidizers and nitrifi-
cation	to	N	loading	in	three	ways.	(1)	AOA:AOB	is	a	better	predictor	
of	nitrification	under	N	loading	than	either	AOA	or	AOB	abundances	
(Carey	et	al.,	2016).	(2)	AOA:AOB	exerts	a	significant	influence	on	ni-
trification at the global scale, challenging the common assumption that 
microbial community structure controls function predominantly at the 
local	scale	(Schimel	&	Gulledge,	1998).	(3)	In	addition	to	earlier	identi-
fied	key	drivers	(soil	pH,	N-availability	and	moisture)	of	ammonia	oxi-
dizers	(Liao	et	al.,	2022;	Prosser	&	Nicol,	2012),	we	offer	new	insights	
in terms of climatic impacts of ammonia oxidizers.

Furthermore,	 we	 inferred	 a	 persistent	 N-stimulation	 of	 po-
tential nitrification under future climate change scenarios despite 
clear	 shifts	 in	 AOA:AOB	 (Figure 4).	 However,	 key	microbial	 traits	
(e.g.,	 AOA:AOB	 and	 nitrification)	 are	 insufficiently	 considered	 in	
current ecosystem models, potentially leading to model uncer-
tainties	 (Crowther	 et	 al.,	 2019;	 Hawkes	 &	 Keitt,	 2015;	 Nevison	
et al., 2022).	For	example,	without	considering	shifts	in	AOA:AOB,	
the	CLASSIC	model	(Asaadi	&	Arora,	2021)	simulates	a	large	increase	
in	 N-stimulation	 of	 nitrification	 under	 climate	 change.	 This	 result	
contradicts	the	finding	of	our	meta-analysis,	which	suggests	a	stable	
N-stimulation.	Hence,	incorporating	shifts	in	AOA:AOB	into	micro-
bial	trait-based	frameworks	may	help	to	simulate	future	changes	in	
soil	N	cycling	(Chen	et	al.,	2023; Crowther et al., 2019).

A	 few	 potential	 limitations	 of	 our	 analyses	 should	 be	 noted.	
First, spatiotemporal variability may be underrepresented in our 
dataset. For example, there are unbalanced samples across climatic 

zones and different sampling years among studies. Covering un-
derrepresented	 areas	 (especially	 tropical	 and	 polar	 zones)	 in	 fu-
ture	 research	 projects	 will	 likely	 advance	 the	 understanding	 of	
microbial	feedbacks	to	N	loading.	Second,	missing	data	were	 im-
puted using some global databases, potentially introducing bias 
into our results. For instance, the ensemble models producing 
SoilGrids250m	database	explain	83%	variation	in	observed	soil	pH	
(Hengl	et	al.,	2017),	and	the	unexplained	17%	variation	introduces	
some	potential	uncertainty	into	our	results.	Third,	inherent	model	
limitations may affect variable importance analysis and future pro-
jection.	One	example	is	that	machine	learning-based	meta-forest	
analysis	 is	 data-hungry	while	 our	 sample	 size	 is	 relatively	 small.	
Another	 example	 is	 that	 there	 are	 no	 observational	 data	 of	 the	
future	period	to	validate	the	CMIP5	ensemble	(Huang	et	al.,	2016).	
Further development of global databases and mechanistic mod-
els may decrease these potential uncertainties. Fourth, although 
we revealed relationships among ammonia oxidizers, nitrification 
and	 climate	 under	N	 loading,	 the	 acclimatization	 rates	 of	 differ-
ent	 guilds	 to	 climate	 change	 are	 still	 unclear.	 This	 challenge	 can	
be	 addressed	 through	 manipulative	 experiments	 (Hoffmann	 &	
Sgro, 2011).	Fifth,	 the	use	of	DNA-based	methods	and	potential	
rates may only provide limited information of ammonia oxidizers 
and	nitrification	(Zhang,	Chen,	et	al.,	2023).	The	development	and	
wider	application	of	new	techniques	is	therefore	critical,	such	as	
in-situ	methods	measuring	N-cycling	genes	and	rates.

In	summary,	our	work	indicates	that	climate-related	shifts	in	soil	
ammonia-oxidizing	community	maintain	the	N-stimulation	of	nitrifi-
cation,	emphasizing	the	key	role	of	climate	in	mediating	the	responses	
of	ammonia	oxidizers	to	N	loading.	Therefore,	considering	climate-re-
lated shifts of ammonia oxidizers in ecosystem models may improve 
predictions	of	soil	N	cycling	under	future	climatic	conditions.
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