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ABSTRACT  

 Methionine adenosyltransferases (MATs) are a family of highly conserved oligomers that 

catalyze the only known reaction for the synthesis of S-adenosylmethionine (AdoMet), the main 

cellular methyl donor. Their catalytic subunits exhibit a characteristic structure, organized in 

three domains formed by nonconsecutive stretches of the sequence. The active sites locate at the 

interface between subunits in the dimer with amino acids of each monomer contributing to 

catalysis. Changes in activity, oligomerization level and expression have been detected in several 

hepatic diseases; the knockout mouse for MAT1A spontaneously developing hepatocellular 

carcinoma (HCC). However, none of the patients with persistent hypermethioninemia caused by 

mutations in this gene exhibits hepatic problems, instead a few cases showing demyelination 

have been described. This chapter discusses aspects related to the structural features of these 

enzymes and the impact that the mutations found in the human MAT1A gene may have in the 

final protein structure. The influence of the redox environment in MAT folding and association is 

also analyzed, in light of the effects that drugs and metals that alter the GSH/GSSG ratio produce 

in the activity and association level. The recent report of the nuclear localization of the MAT I/III 

isoenzymes, along with their presence in tissues other than liver opened the option to MAT 

moonlighting. The possibility exists that disease development is related not only to a decrease in 

AdoMet production, but also to the role of these particular isoenzymes in different subcellular 

compartments. Therefore, the influence of MAT1A mutations, especially those leading to protein 

truncations, on folding and subcellular localization is discussed, paying special attention to the 

Hazelwood’s hetero-oligomerization hypothesis to explain the demyelination process in patients 

with persistent hypermethioninemia.  
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1. Introduction 

 The first mention of an “active methionine” capable of transmethylating in the absence of 

ATP was made in 1951 by Giulio L. Cantoni in a paper where the biosynthesis of N1-

methylnicotinamide from methionine and nicotinamide was studied [1]. The nature of this 

compound was ignored at that moment, although it was described as a product resulting from the 

reaction between ATP and methionine. In 1953, a new paper by this author described the reaction 

catalyzed by the “methionine-activating enzyme” and the chemical nature of the “active 

methionine”, S-adenosylmethionine (AdoMet)[2]. This compound was defined as an addition 

product of methionine and the adenosine moiety of ATP, having the configuration of a sulfonium 

compound in which an energy-rich bond links the methyl and the onium groups. This sulfonium 

ion is also involved in carbon-sulfur bonds with two additional groups, the 3-amino-3-

carboxypropyl and 5´-deoxyadenosyl groups that can be donated as well. In the three cases 

donation of either of these groups requires the nucleophilic attack of the corresponding carbon-

sulfur bond [3, 4]. Additionally, AdoMet can provide other groups for the synthesis of biological 

compounds (Figure 1), a fact that favors its implication in a large variety of reactions. Such a 

versatility let authors calculate that the number of reactions in which this donor participates is as 

large as that involving the use of ATP [5]. 

 Methylation reactions are of special importance due to the large number of such processes 

that take place in any cell, and that result in the main consumption of AdoMet (∼90-95%). These 

processes serve either for the synthesis of new compounds (methylation of small molecules, 

phospholipids, etc.) or for the regulation of cell function (methylation of DNA, RNA or proteins), 

and in all cases S-adenosylhomocysteine (AdoHcy) is produced [6]. AdoHcy is a potent inhibitor 

of most transmethylation reactions, but serves also as the intermediate for the synthesis of 

homocysteine (Hcy) and an important bacterial signaling molecule, Autoinducer-2 [7]. The 

aminocarboxypropyl group of AdoMet can be donated for the synthesis of the hypermodified 

tRNA nucleoside 3-(3-amino-3-carboxypropyl) uridine [8], but previous decarboxylation at this 

group is required for aminopropyl donation for the synthesis of polyamines (spermidine and 

spermine in mammals), plant hormones (ethylene), or signal molecules of Gram negative bacteria 

(N-acyl-L-homoserine lactones) [9]. Recently, a new class of proteins collectively named as 

SAM radical proteins was uncovered [10]. This family of enzymes uses the 5´-deoxyadenosyl 
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radical of AdoMet for the synthesis of vitamins (biotin), antioxidants (lipoic acid) and 

photosynthetic pigments. Other uncommon reactions involving AdoMet include the donation of 

amino groups for the synthesis of 7,8 pelargonic acid (a precursor of biotin) [11], ribosyl groups 

for queuosine synthesis [12], and carboxylic groups to lipophilic acceptors [13]. AdoMet has also 

been shown to undergo biohalogenation reactions leading to 5´-deoxy-5´-fluoroadenosine or its 

chloro-, bromo- or iodo- analogues [9].  

 AdoMet has additional roles as regulator of its own production and elimination through its 

effects on several enzymes of the methionine and the folate cycles, as well as in the trans-

sulfuration pathway. In mammals, the essential amino acid methionine is mainly metabolized in 

the liver (∼48% of the ingested amino acid in humans), where it can be used either for protein 

synthesis or by the methionine cycle (Figure 2). The first and rate-limiting step in this last 

pathway is AdoMet synthesis catalyzed by the methionine adenosyltransferase (MAT) 

isoenzymes, some of which are inhibited by the product. In human adult liver up to 8 g of 

AdoMet are produced by MATs daily [14], most of which is used as methyl donor for the 

transmethylation reactions leading to AdoHcy generation. This compound is metabolized by 

AdoHcy hydrolase leading to Hcy and adenosine, the only reversible step of the cycle that favors 

AdoHcy accumulation. Thus, elimination of the products of this reaction, Hcy and adenosine, 

controls the levels of this transmethylation inhibitor. Four are the enzymes involved in this 

removal: i) adenosine deaminase that transforms adenosine into inosine; ii) cystathionine β-

synthase (CBS) that uses Hcy and serine in a condensation reaction to render cystathione, a step 

that is activated by AdoMet; iii) methionine synthase that remethylates Hcy using as methyl 

donor 5-methyltetrahydrofolate (MTHF); and iv) betaine homocysteine mehyltransferase that 

remethylates Hcy utilizing as methyl donor the betaine provided by choline oxidation, in a step 

inhibited by AdoMet [15]. These reactions allow connection of methionine metabolism with 

other pathways such as trans-sulfuration through the CBS reaction and the folate cycle that 

includes methionine synthase. The trans-sulfuration pathway renders cysteine that is used among 

others for protein and glutathione synthesis, the GSH/GSSG ratio modulating MAT activity [16]. 

Folate recycling is also controlled by AdoMet, which inhibits methylenetetrahydrofolate 

reductase (MTHFR), and hence MTHF production. This last compound is also an inhibitor of 

glycine-N-methyltransferase, the transmethylating enzyme responsible of the largest 
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consumption of AdoMet in a key step for controlling the levels of this metabolite [17]. In 

addition to these data, AdoMet has been also involved in the regulation of several processes, 

among them apoptosis and growth [18]. The role exerted in apoptosis (protector or inducer) 

depends on the cell type under study (hepatocytes or hepatoma cells) and can be mimicked by 

one of AdoMet derivatives, methylthioadenosine (MTA). All this condensed information allows 

the reader to get a glimpse of the importance of AdoMet for all kind of cells, and hence of the 

only known route for its synthesis catalyzed by the MAT family of enzymes to which this article 

is committed.  

 

2. Methionine adenosyltransferases 

 MAT enzymes use methionine and ATP to render AdoMet and triphosphate that is 

excised into pyrophosphate and inorganic phosphate in the second part of the reaction. This 

catalysis follows a SN2 displacement mechanism, in which 95% of the Pi derives from the γ-

phosphoryl group of ATP [19]. MATs need divalent cations (Mg2+) for catalysis, and many of 

them are also activated by monovalent cations (K+). AdoMet is needed for cell survival, and 

hence MATs have been found in almost every single organism (from Mycoplasma genitalium to 

mammals) except for a few parasites that obtain the compound from their hosts [20]. Sequences 

for the catalytic subunits are very well conserved between Bacteria and Eukarya, whereas 

Archaea express highly divergent forms in which catalytic amino acids are preserved [21]. All 

the enzymes of the family characterized to date are homo-oligomers, except for mammalian 

MAT II hetero-oligomers that consist of catalytic (α2) and regulatory subunits (β) [22]. This β-

subunit, however, is also able to interact with mammalian α1 and E. coli catalytic subunits, as 

demonstrated upon its overexpression in cell culture lines and bacterial systems. Most of the 

oligomers found are tetramers, with two notable exceptions, the archaeal MATs and one 

mammalian isoenzyme known as MAT III that form dimeric associations [23].  

 Several MAT isoenzymes are expressed in diverse organisms (from Eukarya to Bacteria), 

the larger number of variants being found in plants [20]. Probably the most interesting, and best 

characterized, case is that found in mammals, where three isoenzymes exist, their main feature 

being the differences in Km values for methionine exhibited by each isoform: MAT I (homo-

tetramer) ∼100 µM, MAT II (hetero-oligomer) ∼30 µM and MAT III (homodimer) ∼1 mM [5, 
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24]. These mammalian MATs are also regulated in a dissimilar way by the reaction product, thus 

whereas MAT I and II are inhibited by AdoMet, MAT III is activated [5, 25, 26]. Since their 

discovery it was thought that MAT I and III expression was restricted to normal liver, but recent 

papers showed first their expression in pancreas [27] and later in many other tissues [28]. On the 

other hand, MAT II was known to be ubiquitous, as well as the hepatic fetal form and the 

isoenzyme expressed in hepatoma [5]. Analysis of the β-subunit expression revealed that this 

subunit appears in most tissues and that its splicing variants show a differential expression pattern 

[29]. 

  

3. Human MAT genes and their mutations.  

 The human genome contains three MAT genes, MAT1A, MAT2A and MAT2B that encode 

for the two catalytic subunits, α1 and α2, and the regulatory β-subunit, respectively. The MAT1A 

gene (∼20 kbp) localizes to the 10q22 human chromosome [30], the MAT2A gene (∼6 kbp) to the 

2p.1.1 chromosome [31] and the MAT2B gene (∼6.8 kbp) was identified in the long arm of 

chromosome 5 at the interphase between 5q34 and 5q35.1 bands [32]. Both MAT1A and MAT2A 

genes consist of eight introns and nine exons that codify for proteins of 395 amino acids [33, 34]. 

On the other hand, the MAT2B gene consists of six introns and seven exons that encode for a 

protein of 335 residues [32]. 

 Mutations in the MAT1A gene have been characterized in patients showing isolated 

persistent hypermethioninemia with methionine levels reaching 1.3 mM in some cases (35-fold 

over control levels) (Table 1)[35]. Most of these patients did not show important pathological 

symptoms, although a few cases of demyelination have been described [30, 36]. The mutations 

identified to date follow mostly a recessive autosomal inheritance trait, although Mendelian 

dominant inheritance for the G to A transition leading to the R264Hh1 mutation has been 

described [37-39](Table 1). Some of the mutations reported led to early stop codons rendering 

subunits of 91, 184, 349, 350 and 386 residues [30, 35, 36, 40, 41]. The possibility of longer 

proteins has also been reported as a result of one mutation at the stop codon [42], and a change in 

the last nucleotide of exon III that alters the splice-donor site [35]. Some of these mutated 

                                                
1 The superscript indicates the species: rat (r), human (h), E. coli (c), Methanococcus (Mj) 
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MATα1 forms have been expressed in COS-1 and/or E. coli cells to study their activity and 

association state as has been reviewed elsewhere [34, 35, 39].  

 Neonatal screenings for early detection of metabolic alterations are carried out throughout 

the world. One of these procedures carried out in Galicia, a region in the northwest of Spain, 

revealed a high incidence of persistent hypermethioninemia among the galician population 

(1/23470 newborns), the most common mutation identified being MAT1A R264Hh [43]. 

However, to date no mutations in the human MAT2A and MAT2B genes have been reported, 

although the existence of splicing variants for MAT2B in hepatocellular carcinoma (HCC) and 

HepG2 cells has been shown [29]. Four variants have been described to date, the main splicing 

forms being V1 and V2 that differ in their transcriptional initiation site. These sites locate at 

positions -203 and -2372 from the ATG codon, respectively. Thus, V2 uses a different exon I and 

the resulting proteins diverge in the 20 initial amino acids of their N-terminals. In addition, V2a 

misses the first 51 bp of exon VII, whereas V2b lacks the information of exons III-VI. Available 

functional data have been obtained only with the V1 variant, and hence information concerning 

association of the new forms with the catalytic α2 subunits, their effects on methionine affinity, 

or their putative actions on α1 subunits is lacking.   

 

4. MAT structure and impact of the human mutations. 

 Recently a review concerning the MAT structural data available has been published [23], 

and readers are referred to that publication for detailed structural information. Therefore, this 

section will focus on the location and potential structural effects of the human mutations 

described to date. The crystal structures that have been reported show common features 

concerning the α-subunit domain organization, the dimer association and the catalytic sites. The 

sequence of the α-subunits is arranged in three domains formed by non-consecutive stretches of 

the amino acid chain (Figure 3). Deletions originated by human MAT1A mutations include 

truncations leading of the loss of part of the C-terminal domain elements (386X and 350X) to 

proteins that lack information even for one complete domain of the three that are present in the 

wild type subunit (92X and 185X) (Figure 4). In addition, other truncated forms not only loss 

∼40% of the C-terminal domain, but also change the sequence of most of the remaining part of 

this domain, as well as of ∼14% of the central domain (351X) (Figure 5). The longer α-subunits 
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resulting from the stop codon mutation, should in contrast contain the information to build the 

three wild type domains, but will have a C-terminal domain ∼20% longer (X396Y-464X) (Figure 

3). On the other hand, those derived from the mutation in the splice donor site should include a 

large change in the protein sequence, and hence their structure being drastically altered. 

 Two subunits associate to form the dimer through a large flat hydrophobic surface to 

which amino acids of the three domains contribute [44, 45](Figure 6). Thus, severe truncations 

(92X and 185X) will lack most of this interaction surface, whereas more moderate effects could 

be expected for those mutations rendering shorter C-terminal domains (350X and 386X). The 

exception should be the 827insG (351X) that may impose additional difficulties for association 

derived not only from the lack of part of the C-terminal domain, but also from the change in the 

sequence starting on residue 276 (Figure 5). The effect that a longer C-terminal (X396Y-464X) 

could have on the subunit association may range from no interference with the normal interaction 

pattern to steric hindrance of part of the interacting residues. Single amino acid substitutions 

detected in patients could also affect the interaction pattern indirectly, by changing the spatial 

orientation of the chains or directly by disrupting them. This last case could be that of L42Ph and 

L305Ph mutations that occur at α-helixes H1 and H6, respectively. In addition to the large 

number of hydrophobic interactions linking monomers, there are a few polar bonds contributing 

to dimer stability [44]. Among the residues involved in this type of interactions is R264h, the 

equivalent R265r appearing bonded to E58r and T263r in the crystal structure of rat MAT I [44]. 

Several patients have the R264Hh or R261Ch mutations, which will clearly block interaction with 

E58r that involves the side chain amino group of the arginine residue. Disruption of this bond 

seems will have important consequences for dimerization as judged from studies with the 

mutated recombinant proteins. Characterization of the recombinant R264Hh mutant showed that 

the protein is a monomer exhibiting tripolyphosphatase activity [46], although analogous mutants 

prepared by others and in MATc indicated its oligomeric association [39, 47].  

 The two active sites per dimer locate between both subunits that contribute the residues 

for substrate binding and catalysis [44, 48]. Such an organization thus needs the production of a 

precise arrangement that allows placing of the catalytic residues in the correct positions for 

catalysis to proceed. Essential residues have been identified by chemical modification and in 

crystal complexes including substrates (ATP and methionine) or their analogues (AMPPNP, L-
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cisAMB, AEP)[23]. In most of the cases their role was later verified in recombinant proteins after 

site directed mutagenesis. Among them, F251r against which methionine analogues are found and 

that locates at the initial position of a short loop in the active site [44]. No single mutations at key 

residues for AdoMet synthesis have been identified to date, although some substitutions may 

indirectly affect catalysis because of their sequence or spatial proximity to the catalytic residues, 

thus explaining the reductions in activity reported. In contrast, the human mutations involving 

R264h directly perturb the phosphatase activity, as this residue has been show to orient the PPPi 

chain for hydrolysis [47]. 

 Interaction between dimers in the tetramer occurs through the central domains of the 

subunits. A few polar interactions are responsible of tetramerization, the number of which is 

lower in mammalian MATs than in the E. coli protein [44, 45]. Moreover, the interaction pattern 

seems quite different, the bacterial tetramer exhibiting a central interaction core, surrounded by a 

ring of interactions that in mammalian MAT Ir is lacking [49]. The existence of these additional 

bonds could be responsible for the higher stability exhibited by bacterial tetramers.  

 Other studies have shown cysteines as key residues for both MAT activity and dimer-

dimer association in both rat and E. coli enzymes [50, 51]. The α1-proteins contain 10 such 

residues per monomer, from which C121r locates in a loop that has been proposed to regulate the 

access of substrates to the active site [44, 52]. Chemical modification of two cysteine 

residues/monomer in MAT I/IIIr let to dissociation into inactive dimers [51, 53], a fact that has 

been further explored using single cysteine to serine mutants [54]. The results obtained indicated 

that the five residues located in the central domain (C35r-C105r) are key in dimer-dimer 

association, a result later supported by crystallographic data that showed the interface between 

dimers provided by this single domain. The sulfhydryl groups of residues C35r and C61r are 

facing each other and at disulfide bond distance, an important fact for oligomerization as it will 

be explained in the following sections [44, 49]. No human mutations at cysteine residues have 

been reported, although a couple of the substitutions identified to date include new cysteines at 

positions 264h or 199h [30, 35, 42], and the sequence change due to 827insG (351Xh) adds 6 

cysteine residues more to the remaining C-terminal domain (Figure 5). The impact that inclusion 

of a larger number of this type of amino acid could have on protein folding may be responsible 

for the low activity exhibited by the recombinant mutants. The relevance of cysteines in α2 
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proteins cannot by extrapolated from the results with α1 oligomers, since they differ in the 

cysteine content and lack equivalent residues at some positions in the central domain, among 

them C61r.  

 

5. Actual knowledge on MAT folding. 

 Most of the available data have been obtained in vitro using MAT I/IIIr, Bacillus subtilis 

and Methanococcus jannaschii MATs in unfolding and refolding experiments using denaturants 

such as urea and temperature [55-57]. Here we will refer mainly to MAT I/IIIr due to its high 

homology to the human enzyme. Refolding results indicated the need to populate an intermediate 

state to achieve the final active dimer and highlighted the importance of Mg2+ ions in the process 

[58]. Moreover, the last steps of the monomer refolding and their association need a reducing 

environment provided by DTT or appropriate GSH/GSSG molar ratios (10:1). Under these 

conditions fully active dimers were produced, although those obtained in the presence of 

GSH/GSSG contained a single disulfide bond (C35r-C61r) as well as several oxidized methionine 

residues [49]. Production of this single disulfide blocks the dimer-tetramer concentration-

dependent equilibrium observed in the fully reduced forms, thus providing further evidence of the 

key role of cysteines in the central domain for association. The presence of copper during 

refolding has also been shown to reduce the production of active MATα1 and MATα2 

oligomers, although no effect on the association state attained was observed [59].  

 Unfolding experiments revealed a rapid loss of AdoMet synthesis at very low urea 

concentrations, a process that preceded dimer dissociation [55]. In addition, structural 

information indicated that urea unfolding is a two-step process in which a monomeric 

intermediate (I) can be identified [55, 60]. The main characteristics of this state are: i) its lack of 

activity; ii) the conservation of a 70% of the secondary structure composition; and iii) some 

features of a molten globule. In addition, this intermediate exhibited reduced ANS binding 

capacity as compared to the native dimer, therefore suggesting exposure of a smaller hydrophobic 

surface to the solvent. The reversibility of MAT IIIr folding allowed calculation of the free 

energy of the process that is 65.69 kJ/mol. Kinetic experiments showed later the existence of a 

second short-lived intermediate (Ik
2) between I and the dimer that is supposed to be monomeric, 

although its precise association state has not been demonstrated [60]. Furthermore, tetramer to 
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dimer dissociation also occurs through a kinetic intermediate (Ik
1) that was detected following 

ANS fluorescence. This new state was suggested to be a dimer just before undergoing the 

conformational changes that differentiate MAT I and MAT III dimers [49]. The fact that this 

process can be followed by ANS fluorescence indicates that the dye binds near the 

tetramerization area, this site being identified as the 358PG359 dipeptider and the 131VGA134 stretchr 

located to the beginning of the active site loop. The free energy of tetramerization was calculated 

to be 29.24 kJ/mol and that of the overall process 102.14 kJ/mol, thus showing that the main 

contribution to the oligomer stability derives from monomer-monomer association. 

 Recently the stability of the highly divergent MATMj has been explored using urea and 

single tryptophan mutants at several secondary structure elements [56]. Despite its highly 

divergent sequence, MATMj seems to preserve the topology and structural features of the rest of 

the family, and hence some data can be extrapolated. Thus, although MATMj exhibits 

substantially higher stability than the mesophilic MATs, the structural elements more susceptible 

to urea denaturation are the exposed areas of three β-sheets at the flat contact surface between 

monomers, dimer dissociation requiring a wider perturbation involving the three domains of the 

molecule. In order to achieve higher stability the access of the denaturant to the monomer 

interface should be limited. Structural predictions show a tighter binding between monomers of 

MATMj as compared to MATr [56], and crystal structures illustrate that the active site cavity is 

much wider in MATr than in the E. coli counterpart [23]. Extrapolation of these data to MATr 

suggests that urea access to analogous secondary structure elements is easier and that a larger 

portion of the β-sheets is exposed to the denaturant because of a wider active site. Thus, a more 

important perturbation of the β-sheets can be expected, and hence the rapid loss of activity 

observed in a protein with a low affinity for the substrate Km
Met (∼1 mM) and its dissociation at 

inferior urea concentrations. 

 On the other hand, thermal denaturation of MATr is an irreversible process in which 

changes in activity and structure occur in the range 37-55ºC [61]. According to data obtained by 

two-dimensional infrared spectroscopy the first elements to undergo unfolding are the most 

solvent exposed, α-helixes and β-turns. Exposure of hydrophobic residues and intersubunit 

hydrogen bonds are the second events that lead to final aggregation. These results could be a 



Folding and association in MAT1A mutants 
 

12 

consequence of two phenomena, dimer dissociation and monomer aggregation or direct 

aggregation of unfolded dimers.  

 The only in vivo folding data available refer to MATc, which has been identified among 

the substrates of the GroEL/GroES chaperonin system [62]. Several authors have indicated that 

the capacity of the active site cavity of this chaperonin would be able to admit proteins no larger 

than ∼50 kDa, thus precluding the folding of MAT dimers in its inner space. The combined data 

available suggest that a monomeric intermediate (analogous to I) can be folded by the 

chaperonin, and such a monomer, according to ANS binding results, may expose a smaller 

hydrophobic surface to the solvent than the final dimer. Thus, this intermediate will need to 

accomplish some additional conformational changes to allow the establishment of the large 

number of hydrophobic contacts observed among monomers in the dimer. This association step 

may require additional chaperones that remain unidentified, the effects of copper accumulation 

on MAT oligomers suggesting a role for metallochaperones in this step [59]. 

 

6. Post-translational modifications. 

 The identification of post-translational modifications that could regulate MAT behavior 

has been the subject of study for several years, although the information obtained to date is quite 

limited. Most of the data relate to the redox regulation of the protein and have been attained with 

rat MAT I/III. Both in vitro and in vivo studies showed that MAT activity is decreased under 

oxidative conditions due to reductions in the GSH/GSSG ratio [16, 51, 63, 64]. Moreover, redox 

stress induced the accumulation of inactive dimers in animal models [65]. Analysis of the agents 

that let to such behavior revealed MAT inhibition by GSSG, H2O2 and NO, and related this 

inactivation to the production of an intrasubunit disulfide and C121r hydroxylation or 

nitrosylation, respectively [16, 52, 66, 67]. The use of mutants and refolding systems allowed 

identification of C35r and C61r as the residues involved in the disulfide, and showed that 

production of this covalent modification blocks dimer-tetramer exchange [49, 68]. The presence 

of these two cysteines in the central domain suggests that the disulfide may contribute to the 

stabilization of the β-sheet through which interactions for tetramerization are established. Two 

additional cysteines exist in this sheet, C57r and C69r that according to the structural data appear 

at disulfide bond distance but with their sulfhydryl groups facing opposite directions [44]. 
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Although not demonstrated yet, it is possible that folding intermediates in which anomalous 

disulfide patterns are established are favored during oxidative stress, and hence rendering inactive 

species that may or may not associate into dimers. The accumulation of inactive or poorly active 

dimers described during disease or intoxication processes that reduce the GSH/GSSG ratio may 

relate to the production of this kind of oxidized species, an aspect that remains unsolved. 

 Regarding nitrosylation and hydroxylation, the presence of C121r in a flexible loop at the 

active site entrance, has led authors to postulate the putative role of this modification in the 

control of the access of substrates to the catalytic site. This modification has been suggested to 

block the loop in a closed conformation, thus impeding catalysis [52, 66, 67]. The presence of 

acid and basic residues in the proximity of the cysteine to be nitrosylated is a requirement for the 

modification to take place [69]. Such residues have been identified in rat MATα1 as D355r, 

R357r and R363r and its key role further demonstrated by mutation to serine, a substitution that 

led to decreased NO modification. Some of the mutations identified in human persistent 

hypermethioninemia affect the equivalent R356h residue introducing a glutamine or proline in 

this position, and change P357h to leucine. Therefore, impairment in NO-induced regulation of 

MAT I/III activity is expected to occur in these patients. Both C121r nitrosylation and the C35r-

C61r disulfide provide regulatory mechanisms apparently restricted to α1 oligomers, as the 

catalytic α2 subunits lack the equivalent cysteine residues (G120 and A60).  

 In vitro refolding assays in the presence of GSH/GSSG allowed identification of 

methionine residues susceptible to oxidation (amino acids 20r, 65r, 139r and 151r) [49]. However, 

the impact of methionine modification on activity and oligomerization has not been explored 

further. The introduction of additional methionine residues due to human mutations (I322Mh) 

may provide the enzyme with a new oxidation target with higher affinity for modification. The 

location of this residue in the dimer structure and its contribution to the monomer-monomer 

stability may be affected by this substitution, rendering proteins with low activity as reported [34, 

35].  

 Phosphorylation may be another mechanism through which MATs can be regulated [70]. 

Analysis of their sequences revealed several putative phosphorylation sites for a variety of 

kinases, although only PKC modification of MAT I/III at T342r has been demonstrated in vitro 

[71]. One of the mutations identified to date in humans occurs at E344h, residue that is substituted 
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by alanine. Such a change of charge near the phosphorylation site could be key for kinase 

recognition, thus altering the modification pattern. This effect could be also expected to occur in 

other human mutations that also locate next to putative phosphorylation sites, these include: 

R264Hh, K289Nh and G336Rh. However, both R264Hh and K289Nh may not be at truly 

phosphorylation sites due to their location at the active site cavity.  

 

7. Alterations in MAT behavior in disease. 

 Changes in expression, oligomerization and MAT activity have been described in several 

pathologies and animal models of disease (Figure 7). Probably the largest amount of data 

published refers to hepatopathologies related to ethanol abuse and hepatomas, although results 

concerning leukemia and cognitive diseases are also available. Several authors have reported 

reductions in MAT1A mRNA levels during human alcoholic cirrhosis, although discrepancies 

about MAT2A transcript levels have been published. Thus, Avila et al. showed no induction of 

MAT2A by ethanol [72], whereas other studies reported increases in MAT2A expression, an 

effect mediated by TNFα [73]. In parallel, decreases in MAT activity and accumulation of dimers 

have been described that correlate with the corresponding reductions in AdoMet concentration 

[65, 74-77]. In contrast, differences in the effects on AdoHcy production among models occur, 

although the net effect in the methylation index (AdoMet/AdoHcy ratio), a decrease, is the same. 

Liver damage during ethanol consumption may be derived from the impairment of methylation 

reactions and GSH-dependent detoxification capacity. Reductions in GSH levels and increases in 

protein nitrosylation are known to take place in these cases, effects to which MAT I/III is 

susceptible. Other protein modifications caused by products of ethanol catabolism cannot be 

excluded, although this aspect has not been analyzed. Several reports have shown also that 

treatment with AdoMet attenuates ethanol liver injury [75], thus highlighting the importance of 

MAT function in the development of cirrhosis. 

 In the early 70s, Halpern et al. described the high dependence of human cancer cells on 

exogenous methionine for growth, whereas normal cells can use Hcy instead [78]. Therefore, the 

interest in understanding the alterations caused in the methionine cycle during carcinogenesis 

grew in order to search for useful drugs against this pathology. This search was conducted using 

a variety of carcinogens in animal models in which the effects exerted by the drugs in this 
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pathway were analyzed [79-85]. The results obtained showed a shift from MAT1A to MAT2A 

expression, reflected by reductions in MAT1A mRNA, protein and activity, and the 

corresponding increases in these parameters for MAT2A. The preferential expression of the α2 

catalytic subunit renders a decrease in AdoMet levels that correlates with a global DNA 

hypomethylation [86]. This relationship with hepatocellular carcinoma (HCC) was further 

confirmed with the production of a MAT1A knockout mouse that spontaneously develops the 

disease [87], and reinforced by the observation that AdoMet therapy is efficient in preventing 

HCC [88]. In contrast, silencing of MAT2A expression in normal or MAT1A-overexpressing 

hepatoma cells produced cell death [89]. MAT2B provides a growth advantage to hepatoma cells, 

and its overexpression is normally associated with hepatic dysfunction [90]. In all these processes 

iNOS induction increases NO production leading not only to MAT I/III inactivation, and hence to 

a reduction in AdoMet concentration, but also to effects on several transcription factors that may 

control the switch among MATs [79]. 

 Wilson’s disease is another interesting pathology in which copper is accumulated in the 

liver due to mutations in the ATP7B transporter, thus leading to redox stress, among other 

effects. Several animal models of the disease exist and in one of them, Long Evans Cinnamon 

rats (LEC), changes in MAT activity and AdoMet levels were described at late stages of disease 

[91]. Several years later Delgado et al. examined the changes in the methionine cycle in this 

model but at early stages of copper accumulation, and showed changes in the expression pattern 

of the MAT isoenzymes [59]. In 9 week-old animals, a switch between MAT1A and MAT2A 

expression was already detected, but surprisingly MAT2B followed the opposite trend to 

MAT2A decreasing by 80%. Copper effects on MAT2B expression were also shown to rely on 

redox mechanisms in experiments carried out in cell culture. The changes in MAT1A expression 

correlated with decreases in protein, AdoHcy and GSH levels, the net result being an increase in 

the methylation index and a decrease in the GSH/GSSG ratio. As observed in other pathologies, 

copper accumulation also modified the MAT I/III ratio, but in this case reductions in dimer 

content were observed. Analysis of the effect of copper on MAT isoenzymes in vitro confirmed 

inhibition of the enzyme activity and showed the influence of this metal in folding of the 

subunits. Recombinant MATα2h oligomer activity was more susceptible to metal inactivation 

than that of MATα1r oligomers [59]. 



Folding and association in MAT1A mutants 
 

16 

 Patients suffering from several neurological diseases are known to display alterations in 

transmethylation reactions [92-96], and several animal models showed an association between 

methionine synthesis and/or MAT activity and development of myelopathies, ataxia and other 

related diseases [97-99]. Parkinson’s patients show low AdoMet and AdoHcy levels in blood and 

increased erythrocyte MAT activity [95], although no relationship with age and duration of the 

disease has been reported. L-dopa treatment induces a short-term increase in hepatic and brain 

MAT expression and activity, as well as in AdoMet levels [100], but AdoMet depletion is 

observed in long therapies [101-105]. 

 Currently, newborn screenings for the detection of hypermethioninemia are carried out all 

over the world. Most of the cases identified are due to defects in CBS, fumaryl acetoacetate 

hydrolase (tyrosinemia type I) or liver disease, however in a small number of patients this 

alteration is due to mutations in the MAT1A or GNMT genes [105]. The first patient with isolated 

persistent hypermethionemia due to MAT1A mutation was reported in 1974 [106], and ever since 

new mutations have been identified, a summary of which is included in Table 1. Many patients 

are asymptomatic, but in a few cases neurological defects have been noticed. The most severe 

cases present demyelination and correspond to mutations that introduce early stop codons in the 

MAT1A ORF, leading to subunits of ∼350 amino acids. One of these patients was treated with 

AdoMet and an improvement in demyelination was reported, thus suggesting that these 

symptoms derive from low AdoMet production [94]. In addition, former experiments using 

cycloleucine, a MAT inhibitor, in rats showed development of myelin abnormalities that were 

prevented by AdoMet [107]. All these data together and the absence of such symptoms in 

patients exhibiting shorter forms of the α1 protein led Hazelwood et al. [36] to propose the 

hetero-oligomerization hypothesis, which will be discussed in the last section of this chapter to 

explain the origin of the disease. This hypothesis presented a conceptual problem at the time of 

its proposal that was related to the restricted expression pattern known for MATI/III (considered 

hepatic only) and alterations in the nervous system, where only MAT II was known to exist.  

 

8. MAT tissular distribution and subcellular localization. 

 Early data on MAT tissue-specific expression derived mostly from activity measurements 

carried out in samples from different tissues at two methionine concentrations (to distinguish 
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among MAT isoenzymes with different Km
Met) and in the presence of DMSO (a known activator 

of MAT III). The same is true for the subcellular distribution that was analyzed in fractionation 

experiments. All these data established the extrahepatic presence of MAT II, together with the 

hepatic expression of MAT I/III in normal tissues. This postulate was reassessed in the last 

decade using Northern and Western blot and real time PCR. The compiled results confirmed the 

broad MAT2A and MAT2B expression [90] and a wide distribution for MAT1A that exceeds 

normal adult liver [28]. The expression levels correlated with early results: i) very high for 

MAT1A in liver followed by pancreas [28]; ii) high for MAT2B in spleen, heart, lung and very 

low in normal adult liver [90]; and iii) high in extrahepatic tissues, fetal liver and hepatoma for 

MAT2A [5]. Subcellular distribution was also thought to be restricted to the cytosol and 

fluorescence microscopy confirmed this localization for the β subunit [90]. However, recent 

studies by immunohistochemistry, confocal fluorescence microscopy, subcellular fractionation 

and western blot showed MATα1 in the cytosol of hepatocytes and pancreatic cells but also in 

the nucleus of almost every cell type analyzed [28]. Thus, the question arises as to which may be 

the biological role for this distribution. 

 Nuclear MATα1r was mainly monomeric, although a small amount of active tetramers 

could be detected in this compartment in liver [28]. The protein colocalized with nuclear matrix 

markers and both nuclear distribution and matrix localization were independent of AdoMet 

synthesis capacity, the inactive F251Dr mutant showing the same pattern than the wild type 

protein. Basic residues in the C-terminal domain were shown to be involved in the 

nucleocytoplasmic distribution, and two partially overlapping areas were identified that are 

implicated in localization. One area delimited by amino acids 313r, 368r, 369r and 392r was 

related to cytosolic retention, whereas that comprised by residues 340r, 344r and 393r was linked 

to nuclear localization. The subcellular distribution of a truncated protein at residue 351Xr, 

analogous to some of the mutants detected in human patients with hypermethioninemia, was also 

examined. This shorter form appeared mainly in the nucleus and colocalized with the nuclear 

matrix marker SC-35. The use of mutants showing preferential nuclear or cytosolic localization 

allowed correlation of nuclear MATα1r distribution with increases in specific epigenetic 

modifications (H3K27 trimethylation) [28]. This result suggested the need for the presence of 

active nuclear MATα1 oligomers to guarantee specific methylations, and opened the possibility 
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of additional unknown functions for the nuclear monomers. Moreover, identification of the areas 

responsible for nucleocytoplasmic distribution close to the in vitro phosphorylated T342r residue 

deserve additional studies to determine the role that such modification may have in the control of 

MAT subcellular localization. Additionally, both the nucleocytoplasmic distribution and its 

putative control by phosphorylation may be altered in patients with mutations in these areas, such 

as those related to E344h and G336h residues which induce charge changes at the molecular 

surface (Table 1).  

 

9. Hazelwood’s hypothesis of MAT hetero-oligomerization in demyelination. 

 The observation of demyelination exclusively in patients with MAT1A mutations leading 

to subunits ∼350 amino acids long, together with the improvement observed in the symptoms of 

one of this patients upon AdoMet treatment let Hazelwood et al. propose that truncated α1 

subunits may hetero-oligomerize with α2 monomers sequestering them in an inactive oligomer, 

and hence producing a decrease in AdoMet levels [36]. This decreased concentration of the 

methyl donor will lead to the corresponding lack of methylation products, among them 

phosphatidylcholine and creatine, important for neural sheath [108] and neural structure [109]. 

Thus, administration of AdoMet would allow recovery of normal intracellular levels of the 

methyl donor, and hence the improvement observed in the patient symptoms [94]. This 

hypothesis was postulated in 1998 when only the MATc crystal structure was available [45], and 

the importance of the R264 residue in dimerization was known. Preservation of this arginine and 

the high homology among α1 and α2 human sequence (84%) seemed enough to consider hetero-

oligomerization plausible. Now when more MAT structures are available [23], it is known that 

monomers may have slightly different orientations between each other in different species [44], 

and the impact of these truncations on the monomer subunit and the intersubunit interactions in 

the dimer can be reexamined. Thus, truncated subunits will lack approximately half of the C-

terminal domain, specifically the area mostly related to the monomer surface. The impact this 

deficiency will have in folding of the remaining C-terminal domain structure, including the β-

sheet that participates in monomer-monomer contacts, is unknown. However, this fact will force 

a rearrangement of the region to hide amino acids that will become otherwise exposed. Moreover, 

the 351X mutant not only suffers the truncation of part of this domain, but also a change in its 
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sequence that affects a ∼15% of the central domain. This means an almost completely different 

C-terminal domain, and hence making preservation of its structure and interaction pattern 

unlikely (Figure 5).  

 As mentioned in previous sections, the last years have also seen some in vitro folding 

studies that showed the need of populating a monomeric intermediate I to attain the final active 

structure. The appropriate conformation of this intermediate will allow the final changes in the 

subunit structure and the association into active oligomers. The importance of this intermediate 

may require chaperonin assisted folding, as deduced from the finding of MATc as a substrate of 

the GroEL/GroES system [62]. To date, it is not known if truncated MATs will achieve a similar 

intermediate state allowing association with the α2 subunits. Moreover, if additional chaperones 

are needed to catalyze the last folding and association steps, the possibility exists that the 

modifications concerning the C-terminal domain may preclude recognition or achievement of a 

structure resembling at least part of the wild type structure (N-terminal and central domains). 

Even if the truncated monomer is able to oligomerize, two association scenarios can be 

considered: i) correct hetero-oligomerization, which should render a dimer with one complete 

active site (from the two in the molecule); and ii) an hetero-oligomerization pattern different from 

that in the native dimer, an alteration that will be of special importance for the active sites that 

locate between momoners. Structures of E. coli and mammalian MATs are almost identical, and 

hence overexpression of the truncated forms in bacteria is expected to produce hetero-oligomers 

with MATc. These experiments were performed and no MAT activity was reported by 

Chamberlin et al. [30]. In our hands, overexpression of a 351Xr mutant let to inclusion body 

production, thus suggesting incorrect folding of this type of subunit [28].  

 Another problem of Hazelwood’s hypothesis at the time of its proposal was derived from 

the identification of MATα1 oligomers only in liver. Now that expression of MAT1A has been 

proven in other tissues [28], this problem no longer exists, although new aspects have to be 

considered. First, the putative interaction of inappropriately folded truncated species with 

proteins other than the α2 subunits should be taken into account. Such anomalous interactions 

may be responsible for the observed symptoms. Second, MATα1 expression in extrahepatic 

tissues occurs mainly in the cell nucleus, where most of the protein appears as monomers. A 

truncated form similar to that of patients with demyelination showed its preferential accumulation 
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in the nucleus in several cell types, thus suggesting that the effects observed may derive from the 

functions MAT is exerting in that particular compartment. To date we only know that nuclear 

accumulation of MATα1 correlates with H3K27 trimethylation, an epigenetic modification 

related to gene repression. Accumulation of truncated mutants in the nucleus will either favor this 

modification (i. e. repressing myelin related genes) or interfere with this methylation due to 

anomalous binding of MATα1 truncated species that are incorrectly folded. Finally, the 

hypothesis did not consider α2β interactions. No data exist about how these subunits interact, 

neither of the role of spliced β-subunit variants, and hence of the effect that α2-truncated α1 

hetero-oligomerization may exert in recognition of the regulatory subunit.  

 

CONCLUSION  

 The knowledge on MAT structure, catalytic mechanism and regulation has increased 

enormously during the last decades. However, this accumulated information has provided no clue 

to the relationship between some MAT1A mutations and the demyelination observed in patients 

expressing the corresponding truncated forms. The main aspects that remain to be clarified to 

understand this relationship include: i) the structure of the truncated protein subunits; ii) its 

oligomerization abilities with either α2 and β subunits; iii) understanding the in vivo folding 

pathway for MATs and the chaperones/chaperonines involved; iv) the effect of nuclear 

accumulation of truncated subunits in cellular behavior (i.e. myelin production); and, v) 

elucidation of the nuclear functions of MATα1, and hence of its alterations due to truncations. In 

addition, the putative existence of MAT I/III moonlighting related to its presence in to date new 

subcellular locations, and hence the effect that mutations could have on these additional functions 

cannot be underestimated. Thus, the number of questions related to MATs that await an answer is 

increasing, despite the large effort made to date to get insight the knowledge of the relationship 

among this family of enzymes and disease.  
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FIGURE LEGENDS 

 

Figure 1. Reactions involving S-adenosylmethionine. The figure summarizes the reactions in 

which S-adenosylmethionine participates in any kind of cell organized according to the group 

that is transferred in each case. S-adenosylhomocysteine (SAH) and S-adenosylmethioninamine 

are intermediates in some of these processes. 

 

Figure 2. The methionine cycle in mammalian liver. The first step of methionine metabolism 

is the synthesis of S-adenosylmethionine by methionine adenosyltransferases (MATs). This 

compound is used as methyl donor by a large number of methyltransferases (MTase), and among 

them glycine N-methyltransferase (GNMT), leading to methylated acceptors and S-

adenosylhomocysteine. This demethylated compound is degraded by S-adenosylhomocysteine 

hydrolase (SAHH), in the only reversible reaction of the cycle, to render adenosine and 

homocysteine. Methionine can then be resynthesized from homocysteine by methylations 

catalyzed by methionine synthase (MS) and betaine homocysteine methyltransferase (BHMT) that 

use 5-methyltetrahydrofolate (MTHF) and betaine as methyl donors, respectively. MTHF is 

synthesized by methylene tetrahydrofolate reductase (MTHFR) an enzyme inhibited by S-

adenosylmethionine. Homocysteine can enter also the trans-sulfuration pathway, where it is 

converted to cystathionine by cystathionine β-synthase (CBS). 

 

Figure 3. Organization of the MAT amino acid sequence among structural domains and 

impact of human deletions and sequence extensions. The figure shows the sequence stretches 

involved in each domain, the percentage of contribution in each case appearing below. The 

impact of human mutations leading to truncated or extended monomers is also shown. Changes 

from the wild type sequence are indicated in magenta. 

 

Figure 4. Impact of truncations in the monomer structure. The figure shows the structural 

elements of each domain preserved in the truncated human MATs; N-terminal (blue), central 

(red) and C-terminal (green) domains.  
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Figure 5. The human 351X mutant changes a large stretch of its C-terminal sequence. The 

827insG in the human MAT1A ORF leads not only to an early stop codon, but also to a complete 

change in the reading frame, and therefore in the sequence starting on residue 276. Comparison 

of the resulting sequence and the wild type is shown in the upper part of the figure, whereas the 

lower part depicts the effect of the sequence changes in the side chains (residues 271-stop) is 

depicted. The last common amino acids (271-275) appear in cyan and blue for the wild type and 

351X C-terminals, respectively. 

 

Figure 6. The human MATα1 dimer. The figure shows the expected structure for the human 

α1 dimer created by mutation in the rat sequence of the 1QM4 pdb file; the sequences of both 

proteins are 95% identical. Monomer A surface appears in blue, the areas of contact with 

monomer B (salmon) being shown in gray. The three β-sheets of monomer B (one contributed 

per domain) appear oriented against the contact areas of monomer A. The arrow indicates the 

entrance to one of the active sites of the molecule. 

 

Figure 7. Summary of the knowledge on MAT regulation. The scheme represents the different 

levels (mRNA, protein and activity) reported for MAT regulation during disease or under several 

treatments. Black dashed arrows indicate increases, whereas red dashed arrows stand for 

decreases in any of the parameters examined. Abbreviations correspond to: superantigen 

staphylococcal enterotoxin B (SEB); S-adenosylmethionine (AdoMet); methylthioadenosine 

(MTA); phytohemagglutinin (PHA); interleukin 2 (IL-2); interleukin 6 (IL-6); lipopolysaccharide 

(LPS); buthionine sulfoximine (BSO); oxidized glutathione (GSSG); 3-morpholinosydnonimine 

(SIN-1); S-nitrosoglutathione (GSNO). 
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TABLE 1 
 

Mutations in the MAT1A gene detected in human persistent hypermethioninemia 
 

Exon Gene 
mutation 

Protein 
mutation7 

inheritance Recombinant protein 
characteristics3 

Liver 
activity6 

Ref. 

I C65T S22L HO1   110] 
G113A S38N CHE2 No activity5 68% 35, 111 
T125C L42P HO   110 

 
II 
 C164A A55D CHE 17%4  34 

G205A G69S    42 
255delCA 92X CHE No activity5  35, 111 

 
III 
  G98S HO 100% activity4,5                                                                    35 

C426T A142 CHE   34 V 
 539insTG 185X HO, CHE  7% 30, 36 

C595T R199C CHE, HO 10% activity5  30 VI 
 C745T R249W    42 

G791A R264H  <1% activity4,5 

monomer 
low 35, 37-39, 

42, 43 
G791T R264C CHE No activity5  35 
C790T R264C    42 
G867T K289N    42 
G870A V290 CHE   34 
T914C L305P CHE 25%4  34 

 
 
 

VII 
 

827insG 351X HO No activity5  30 
T966G I322M HO, CHE 21%4,5  34, 35 

G1006A G336R CHE 23% activity5  35 
A1031C E344A CHE 12%5  35 

1043,1044del 350X HO No activity5  30, 40 
G1067A R356Q CHE 53% activity5 low 30, 112 

 R356P    42 

 
 
 

VIII 
 

C1070T P357L CHE 31%4  34, 42 
T1131C Y377 CHE   34 
G1132A G378S CHE 0.1% activity5  30, 41, 112 
G1161A W387X CHE, HO 75% activity5 

dimer 
 41 

 
 

IX 

G1188T X396YfsX464    42 
1HO, homozygosis 
2CHE, compound heterozygosis 
3Mutant activity levels versus wt protein upon COS-14 or E. coli5 overexpression  
6Measured in liver biopsies 
7Residue change in the resulting protein 
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