
Abbreviations:  
RSF: resource selection functions combined with biologging‐derived data. 
IDM: imperfect detection models coupled with camera trap data. 
DNP: Doñana National Park. 
BR: Biological Reserve. 
CR: Calibration Region. 
dwat: Euclidean distance (km) to the nearest artificial water hole. 
dvera: Euclidean distance (km) to the nearest marsh–shrub ecotone. 
v1: Proportion of dense scrub dominated by Erica scoparia and Pistacia lentiscus. 
v2: Proportion of low‐clear shrubland, composed mainly of Halimium halimifolium, Ulex minor and 
Ulex australis. 
v3: Proportion of herbaceous grassland. 
v4: Proportion of Eucaliptus sp. and Pinus sp. Woodland. 
v5: Proportion of bare land, sandy dunes and beaches. 
v6: Proportion of watercourse vegetation covered mainly by Juncus sp. Patches. 
time: Sampling occasions of five days, the occasion date. 
year: Period date, in this case 2015 or 2016. 
typeuse: Type of land use that predominates at the sampling point. 
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Abstract 16 

Habitat use is a virtually universal activity among animals and is highly relevant as regards 17 

designing wildlife management and conservation actions. This has led to the development of a 18 

great variety of methods to study it, of which resource selection functions combined with 19 

biologging-derived data (RSF) is the most widely used for this purpose. However this approach 20 

has some constraints, such as its invasiveness and high costs. Analytical approaches taking into 21 

consideration imperfect detection coupled with camera trap data (IDM) have, therefore, 22 

emerged as a non-invasive cost-effective alternative. However, despite the fact that both 23 

approaches (RSF and IDM) have been used in habitat selection studies, they should also be 24 

comparatively assessed. The objective of this work is consequently to assess them from two 25 

perspectives: explanatory and predictive. This has been done by analyzing data obtained from 26 

camera traps (60 sampling sites) and biologging (17 animals monitored: 7 red deer Cervus 27 

elaphus, 6 fallow deer Dama dama and 4 wild boar Sus scrofa) in the same periods using IDM 28 

and RSF, respectively, in Doñana National Park (southern Spain) in order to explain and predict 29 

habitat use patterns for three studied species. Our results showed discrepancies between the 30 

two approaches, as they identified different predictors as being the most relevant to determine 31 

species intensity of use, and they predicted spatial patterns of habitat use with a contrasted level 32 

of concordance, depending on species and scale. Given these results and the characteristics of 33 

each approach, we suggested that although partly comparable interpretations can be obtained 34 

with both approaches, they are not equivalent but rather complementary. The combination of 35 

data from biologging and camera traps would, therefore, appear to be suitable for the 36 

development of an analytical framework with which to describe and characterise the habitat 37 

use processes of wildlife.  38 

KEYWORDS: N-mixture models, resource selection functions, imperfect detection models, 39 

Doñana National Park, habitat use, wild ungulates.  40 
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1. INTRODUCTION 41 

Habitat use is an almost universal activity among animals and affects all of the individuals' 42 

choices and movement parameters (Begon et al., 2006; Manly et al., 2002). Its evident 43 

relevance has led considerable attention to be paid to both establishing a theoretical framework 44 

for habitat use studies and describing the ways in which organisms of different taxa actually 45 

evaluate and select from available habitats (Cody, 1981). One of the main conceptual bases of 46 

habitat use studies is that organisms should respond positively to environments in which their 47 

survival and reproductive success are higher (Levins, 1968; Orians, 1980). However, it is often 48 

difficult to establish correlations between habitat features and animals’ fitness in real-world 49 

situations, since they are the result of multiple biotic and abiotic interactive factors that should 50 

be disentangled from individual/population monitoring data.  51 

Biologging is (in a broad sense) the approach most frequently used to describe the habitat use 52 

patterns of wildlife (for a review, see Wilmers et al., 2015). Biologging consists of collecting 53 

remote data concerning free-ranging animals by using attached electronic devices (Cooke et 54 

al., 2004). This provides valuable information on the animals’ movements and behaviour, 55 

which is very useful as regards understanding their spatial use and habitat selection patterns 56 

(Miller et al., 2010; Mulero-Pázmány et al., 2015). Biologging is, therefore, usually combined 57 

with resource selection functions in order to study habitat use patterns (Gillies et al., 2006). 58 

Briefly, the objective of these functions is to identify and parameterize the differences (in 59 

environmental terms) between animals’ locations (used) and their availability in the area 60 

(Gillies et al., 2006; Manly et al., 2002). However, biologging still has some constraints, which 61 

are principally related to: i) its invasiveness, since it is necessary to capture animals, which 62 

requires a relevant sampling effort and could also potentially affects the animals’ behaviour, 63 

and ii) its expensiveness, signifying that the budgets of most of research projects allow only a 64 

reduced number of animals to be monitored (Miller et al., 2010; Recio et al., 2011).   65 
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Camera traps are a non-invasive sampling method with a huge potential in wildlife monitoring 66 

(Burton et al., 2015; Iannarilli et al., 2021; O’Connell et al., 2011; Steenweg et al., 2017). They 67 

consist of automatically-trigger cameras that allow to collect photographic evidence of 68 

presence of animals in determined sites (Rovero et al., 2010; O’Connell et al., 2011). When 69 

non-invasive camera traps are coupled with statistical models that take into account imperfect 70 

detection, the result is a cost-effective alternative to biologging with which to study habitat use 71 

patterns (MacKenzie et al., 2002), assuming that the fitness of a species (dictated by habitat 72 

features) is correlated with population density (Boyce et al., 2016). These models, when 73 

employed in a hierarchical framework, use data obtained from sequential repeated (remote 74 

camera) surveys to generate probabilities of detection and to produce reliable estimates of the 75 

species’ occupancy and abundance, in addition to determining the main drivers of these 76 

patterns (Kelly & Holub, 2008; MacKenzie & Royle, 2005; Royle, 2004). Nevertheless, camera 77 

traps have some constraints too: i) the time spent in processing photographic images (Jiménez 78 

et al., 2017; but see Delisle et al., 2021), the fact that data can only be obtained when animals 79 

are active, missing inactivity periods (Gould et al., 2019), and, when combined with N-mixture 80 

models, inability to know the effective sampling area of cameras (Gilbert et al., 2021).    81 

Resource selection functions coupled with biologging data (hereafter denominated as the RSF 82 

approach), and imperfect detection models coupled with camera traps (hereafter denominated 83 

as the IDM approach) have been used together in various studies to, for example, describe 84 

population dynamics (Duquette et al., 2014), assess the transferability of inferences from the 85 

individual to the population level (Bassing et al., 2022) or design biological corridors (Meyer 86 

et al., 2020), among others. These approaches have been also used separately in order to 87 

describe wildlife habitat use (e.g. Goulart et al., 2009; Schofield et al., 2009; but see Coleman 88 

et al., 2014), although few comparative studies exploring the equivalence of the patterns 89 

described have been carried out (but see Bassing et al., 2022). However, it should be borne in 90 
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mind that these approaches are based on two quite different sampling strategies, since 91 

biologging usually collects a lot of information from a few individuals (individual scale), while 92 

camera trapping collects (usually random) information from the different individuals present 93 

in specific points (population scale), so the first is limited with the number of individuals 94 

marked, and the second limited with the number of sites sampled. In addition, one must also 95 

be aware that the analytical processes are different, where resource selection functions analyse 96 

habitat use based on individual animals, while N-mixture models analyse the relative 97 

abundance of each site and associate it with habitat predictors. In both approaches, the obtained 98 

predictions can be interpreted as intensity of habitat use. 99 

In this context, the objective of this study was to compare RSF and IDM when used in order to 100 

carry out wildlife studies on habitat use patterns. We have specifically worked with three 101 

highly-mobile mammal species: red deer (Cervus elaphus), fallow deer (Dama dama) and wild 102 

boar (Sus scrofa), and assessed whether both approaches are able to: i) identify the main 103 

environmental gradients explaining species intensity of habitat use and ii) produce spatial 104 

patterns of intensity of habitat use. Our hypothesis is that the inherent peculiarities of each 105 

approach (i.e. sampling and analytical differences) should lead to a description of habitat  use 106 

on a different scale and that the results obtained after employing the two approaches will not, 107 

therefore, be equivalent.    108 

 109 

2. MATERIAL AND METHODS 110 

2.1 Study Area 111 

The study was performed in Doñana National Park (hereafter, DNP; 37º 08’ N; 6º 47’ W), a 112 

nature reserve located on the Atlantic coast of South-Western Spain (Figure 1). DNP has a total 113 

area of 54,252 ha, and hosts a variety of ecosystems including marshlands, lagoons, scrub 114 
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woodland, forests and sand dunes, which has led to its declaration as a World Heritage Site and 115 

Biosphere Reserve (UNESCO 2014). This environmental heterogeneity maintains a great 116 

biodiversity. The group of wild ungulates in DNP includes a moderate density of red deer (6.3 117 

individuals/100 ha, standard deviation [SD] 1.48) and fallow deer (3.9 individuals/100 ha, SD 118 

0.99) and a moderately-high density of wild boar (5.7 individuals/100 ha, SD 1.18) (Vicente et 119 

al., 2014). DNP is characterised by the fact that it has rainy autumns and winters, and hot and 120 

dry summers, all of which produce irregular inlets of water that determine the ungulates’ 121 

activity (Barasona et al., 2014a; Laguna et al., 2018).The Biological Reserve (BR) in the DNP, 122 

which is located in its central region (see the red polygon in Figure 1), is the principal 123 

management area (related to cattle production) that overlaps with our data, while the study area 124 

considered herein was the Calibration Region (CR), in which sampled wild ungulate movement 125 

patterns overlapped,  using biologging and camera traps (blue polygon in Figures 1 and 2). CR 126 

was employed as a study area (because all habitat conditions are within environmental domain 127 

of the models, see Figure 1S), while BR and DNP were used to extrapolate the prediction 128 

(because they have habitat conditions not necessarily within the domain of the model, as top 129 

right and left pictures show in Figure 1S).  130 

 131 

2.2 Environmental predictors 132 

We selected the environmental predictors according to previous studies on wild ungulates’ 133 

habitat use in our study area (Barasona et al., 2014a; Laguna et al., 2018; Triguero-Ocaña et 134 

al., 2020a): Euclidean distance (km) to the nearest artificial water hole (dwat); Euclidean 135 

distance (km) to the nearest marsh–shrub ecotone (dvera); proportion of dense scrub dominated 136 

by Erica scoparia and Pistacia lentiscus (v1); proportion of low-clear shrubland, composed 137 

mainly of Halimium halimifolium, Ulex minor and Ulex australis (v2); proportion of 138 
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herbaceous grassland (v3); proportion of Eucaliptus sp. and Pinus sp. woodland (v4); 139 

proportion of bare land, sandy dunes and beaches (v5), and proportion of watercourse 140 

vegetation covered mainly by Juncus sp. patches (v6). For further descriptions of the layers, 141 

see Barasona et al. (2014a). The original data were raster layers of 10x10 meters for land use 142 

(v1-v6) and 100x100 meters for distances (dvera and dwat), but all were rescaled to 100x100 143 

meter layers. These environmental predictors were estimated for each 100x100 meter grid that 144 

covers all the non-flooded region of DNP. 145 

 146 

2.3 Resource selection functions and biologging data (RSF approach) 147 

 We used data concerning seven red deer, six fallow deer and four wild boar monitored with 148 

GPS-GSM collars (Microsensory System, Spain) from the second half of September to the first 149 

half of December 2015, and from the second half of March to the first half of April 2016. These 150 

animals were captured in the scrubland-marsh ecotone (“la vera”). The captures were carried 151 

out by a specialised scientist (B and C experimentation categories) following the protocol 152 

approved by the Animal Experiment Committee of Castilla-La Mancha University and by the 153 

Spanish Ethics Committee (PR-2015-03-08; for further details, see Triguero-Ocaña et al., 154 

2020a). GPS-collars were set up to record one location every two hours, and had a mean 155 

positioning error of 26 m (SD = 23.5 m). For each location, the collars also recorded the 156 

individuals’ IDs, the date and the time (solar time). In order to obtain more similar and 157 

equivalent data to that of the IDM, we restricted the locations to the period of animal activity. 158 

Camera traps can detect animals only when they are active (Rowcliffe et al., 2014), while 159 

biologging provides data from all hours of the day. The periods of activity of the species in the 160 

study area (see Triguero-Ocaña et al., 2020b) were used as the basis on which to eliminate the 161 
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central hours of the day (from 9:00 to 19:00 h) in order to ensure that both data sources were 162 

as comparable as possible.  163 

Habitat use was assessed from biologging data by employing within-home-range resource-164 

selection functions (Manly et al., 2002). The environmental information for each location 165 

considered in the RSF approach was assigned by using zonal statistics with the “extract” 166 

function from the “raster” R package (Hijmans, 2020), in this case considering a buffer of a 26 167 

m radius around each one (according to GPS positional error; see also Triguero-Ocaña et al., 168 

2020a). We compared the used versus available resources by using logistic regression mixed 169 

models (Gillies et al., 2006), in which the individual was included as a random-effect factor, 170 

and environmental characteristics were fixed factors. The use of resources was determined by 171 

the locations of each individual, while the availability was sampled by randomly creating 10 172 

times the number of locations (1:10 ratio of used to available points; Fieberg et al., 2021) within 173 

each individual kernel home range 95% (Khr95). We assigned a weight of 5000 to the available 174 

locations and a weight of 1 to the used locations (Fieberg et al., 2021). All these analyses were 175 

performed using R v.3.6.2 (R-Core Team, 2019), with the “adehabitat” (Calenge, 2006), and 176 

“glmmTMB” (Brooks et al., 2017) R packages. 177 

 178 

2.4 Imperfect detection models and camera trap data (IDM approach) 179 

Simultaneously to the biologging study (from the second half of September to the first half of 180 

December 2015, and from the second half of March to the first half of April 2016), 38 and 27 181 

cameras (LTL Acorn, LTL-5310 series) were placed in the study area in the 2015 and 2016 182 

seasons, respectively, of which 4 and 1 cameras were discarded from the analyses owing to 183 

operational problems (see Figure 2). The cameras were set on wooden stakes between 30 and 184 

50 cm above the ground, were programmed to record 3 consecutive pictures per activation, 185 
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with less than 1 second between triggers and were active for 24 hours. Camera traps have been 186 

established systematically with random origin, with a distance of 500 m between each of them 187 

in 2015 and 1 km in 2016, and no bait was used in either season.  188 

We employed imperfect detection hierarchical models to determine habitat use with the data 189 

obtained from the camera traps (MacKenzie et al., 2002; Royle, 2004). The observational 190 

process (detectability) was estimated by splitting the study period into five-day occasions 191 

(sampling occasions) in order to avoid low detection probabilities (King et al., 2021), 192 

considering each occasion as a visit and each camera trap as a sampling unit (site). We 193 

additionally established a 10-minute window, such that detections more than 10 minutes apart 194 

were considered as independent events (Tanwar et al., 2021). Detectability may vary according 195 

to the site or survey characteristics, and we considered the occasion date (time) and the period 196 

date (year) as observation covariates, and the type of dominant land use (typeuse; i.e.  type of 197 

land use that predominates at the sampling point) as a site covariate that could potentially affect 198 

the detection process. The ecological process (relative abundance) relates only to site 199 

characteristics, and we employed all the environmental predictors mentioned above as 200 

covariates of site. The environmental information concerning each of these variables was 201 

assigned to each camera trap using zonal statistics with the “extract” function from the “raster” 202 

R package (Hijmans, 2020). With regard to our study species (red deer, fallow deer and wild 203 

boar), we determined intensity of use by comparing the differences in the animals’ relative 204 

abundance around each camera trap (assuming that the fitness of a species is correlated with 205 

population density; Boyce et al., 2016), taking into account the environmental characteristics 206 

of each site by using counts of detections and single-season N-mixture models (Royle, 2004). 207 

As the focus was on spatial variation in habitat use, we used single-season models, while year 208 

was also included in the ecological process as a fixed factor in order to control for differences 209 

in intensity of use depending on the season. Another possible approach would have been the 210 
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use of site-occupancy models (MacKenzie et al., 2002), which employ detection/non-detection 211 

histories (0/1) as input data. However, given the small size of our sampling area and the high 212 

average occupancy for two species (high percentage of study area occupied, see percentage of 213 

cameras with detections in Table 1S), we decided to use detection counts within an N-mixture 214 

modelling framework so as to incorporate as much as heterogeneity in habitat use for each 215 

species. Since it was not possible to meet the strict set of assumptions required by N-mixture 216 

models in order to obtain total abundance estimations (e.g. population sampled in closed units), 217 

we interpreted our model predictions as relative abundance or simply as intensity of habitat use 218 

(Searle et al. 2020). All analyses were performed using R v. 3.6.2 (R-Core Team, 2019), with 219 

the “unmarked” package (Fiske & Chandler, 2011). 220 

 221 

2.5 Model selection and predictions 222 

The best model for each approach was selected by following a backward stepwise selection 223 

procedure based on Akaike’s information criteria (AIC). This procedure consists of starting 224 

with the full model (all predictor variables included), and in each step, removing the variable 225 

that most decreases the AIC score when removed. The stepwise procedure is stopped when it 226 

is not possible to improve the model by removing additional predictors. We maintained the 227 

model with lowest AIC and all the models with a similar fit (AIC difference lower than 2 units; 228 

Burnham & Anderson, 2002). In those cases in which more than one model was available, we 229 

create an average model based in these models, applying a weight to each model based on its 230 

AIC by using the “model.avg” function of “MuMIn” package (Burnham & Anderson, 2002).  231 

Once the best model had been selected (one per species and approach), it was projected at a 232 

resolution of 100x100 meter in order to predict species intensity of habitat use in the CR by 233 

using the “predict” function from the “raster” R package (Hijmans, 2020). We comparatively 234 
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assessed concordance between spatial patterns from each approach used for the CR, and also 235 

predicted the BR and DNP level so as to explore the consistence between approaches when the 236 

models were extrapolated (outside the domain of the model, see dvera and dwat in Figure 1S). 237 

This was done by carrying out a reclassification in quartiles (0-25%, 25-50%, 50-75% and 75-238 

100%) beforehand in order to avoid problems resulting from a different scale in the predictions, 239 

and led to the attainment of a common intensity of habitat use level category (levels from lowest 240 

to highest adequacy of the environment for the species). The agreement between the predictions 241 

was estimated by using a weighted Cohen's kappa coefficient (Cohen, 1960). The weighted 242 

kappa is a modification of Cohen’s kappa that considers the closeness of agreement between 243 

categories when there are more than two, penalising the disagreement with greater force when 244 

the difference between categories is greater. The index ranges from -1 (complete disagreement) 245 

to 1 (complete agreement), and the value 0 indicates a concordance similar to that expected by 246 

chance. In our case, we employed a matrix of weights established as 0 on the diagonal and the 247 

distance from the diagonal squared outside of the diagonal (default conditions; Revelle, 2015). 248 

 249 

3. RESULTS 250 

Both approaches, i.e. RSF and IDM, were compared in terms of the explanatory variables 251 

selected and the spatial patterns predicted. In the case of red deer, the main variables 252 

highlighted by the RSF approach were related to wet enclosed areas (by considering estimates 253 

p-value and z-value weights; see the model in Table 1). With regard to the IDM approach, the 254 

main variable was related to wet areas in the relative abundance process, and year and time in 255 

the detection process (Table 1). The agreement between the predictions generated by the two 256 

approaches (Figure 3) was, according to Cohen's weighted kappa coefficient, 0.225 (with a 257 

confidence interval [CI] of 95% from 0.181 to 0.270) at the CR level, 0.221 (CI95% from 0.210 258 

to 0.235) at the BR level, and 0.112 (CI95% from 0.101 to 0.123) at the DNP level (Figure 3).  259 
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In the case of wild boar, the main variable highlighted in the RSF approach was related to wet, 260 

dry and enclosed areas (Table 1). With regard to the IDM approach, the main variables were 261 

enclosed, dry and wet areas in the relative abundance process, and year in the detection process 262 

(Table 1). The agreement between the predictions generated by the two approaches for wild 263 

boar (Figure 3) was, according to Cohen's weighted kappa coefficient, 0.260 (CI95% from 264 

0.210 to 0.311) at the CR level, 0.490 (CI95% from 0.470 to 0.510) at the BR level, and 0.580 265 

(CI95% from 0.570 to 0.590) at the DNP level (Figure 3).  266 

Finally, in the case of fallow deer, the main variables highlighted in the RSF approach were 267 

related to wet and enclosed areas (Table 1). With regard to the IDM approach, the main 268 

variables were related to enclosed and wet areas in the relative abundance process, and year in 269 

the detection process (Table 1). In this case, the agreement between predictions generated by 270 

the two approaches (Figure 3) was, according to Cohen's weighted kappa coefficient, 0.150 271 

(CI95% from 0.113 to 0.190) at the CR level, 0.360 (CI95% from 0.330 to 0.390) at the BR 272 

level, and 0.550 (CI95% from 0.540 to 0.550) at the DNP level (Figure 3). 273 

 274 

4. DISCUSSION 275 

Several comparative studies of different methodologies with which to study animal habitat use 276 

have been carried out (e.g. Mulero-Pázmány et al., 2015). Modern analytical approaches whose 277 

purpose is to take into account imperfect detection (such as site-occupancy or N-mixture 278 

models) have become popular in species occupancy and abundance modelling in recent years, 279 

and have consequently become complementary approaches to classical approaches already 280 

established in various research topics (e.g. Duquette et al., 2014; Meyer et al., 2020), one of 281 

which is the study of the habitat use (Coleman et al., 2014). The results obtained in this study 282 

suggest that RSF and IDM can produce partly comparable interpretations concerning intensity 283 
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of habitat use, but that there are notable differences between them which vary according to 284 

species. The lack of support for equivalence between IDM and RSF approaches in our study 285 

support our hypothesis, but more studies using different populations, species, scales, 286 

contrasting environments and particularly longer periods of data collection should be carried 287 

out in order to verify our results. Moreover, these discrepancies could indicate that each 288 

approach captures different information on populations of the same species (Bassing et al., 289 

2022), and a combination of both approaches could overcome the limitations of each one and 290 

improve the descriptions of wildlife habitat selection.  291 

Our first objective was to discover whether the IDM approach was able to detect the main 292 

environmental gradients by determining intensity of habitat use in the same way that the RSF 293 

approach does. The tendency of both approaches to agree or not depends on the species. The 294 

common explanatory variables in the red deer models obtained for both approaches were those 295 

related to proximity to wet environments (dvera and dwat; see Table 1), but the RSF approach 296 

highlighted a preference for shrubland landscapes (v2, given that it shows a negative trend of 297 

all land uses, except v2 that is missing), in addition to avoiding forest areas (v4; Table 1), which 298 

was what produced the difference between both approaches. All these tendences are consistent 299 

with previous studies carried out under Mediterranean climate conditions (e.g. Alves et al., 300 

2014; Barasona et al., 2014a; Braza & Álvarez, 1987). The wild boar attained a negative 301 

relationship with shrubland (v1 and v2) and drier areas (v5) for both approaches (Table 1), and 302 

this coincides with previous studies, which have shown that the wild boar avoids of shrubland 303 

during its activity period (Acevedo et al., 2006, 2014). Additionally, the RSF approach 304 

highlighted a clear tendency towards wet (dwat and v6) and herbaceous areas (v3; Table 1), 305 

and this dependence on water and herbaceous points in the driest season has also been shown 306 

in previous studies (Abaigar et al., 1994; Barasona et al., 2014b). Nevertheless, although RSF 307 

approach selected more environmental factors, both indicated the same trend, highlighting the 308 
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water sources as a key factor in southern Spain. With regard to the fallow deer, both approaches 309 

coincide, showing a tendency to avoid more enclosed areas (v1 and v2) and a strong preference 310 

for wet environments (dwat and dvera; Table 1), similar to the results obtained in previous 311 

studies (Braza & Álvarez, 1987). However, the RSF approach also included an avoidance of 312 

forest areas (v4, in IDM it was not statistically significant; Table 1), as has occurred in previous 313 

studies (Barasona et al., 2014a; Braza & Álvarez, 1987).  314 

The RSF models were, in general, more complex for all the species (i.e. included a larger 315 

number of statistically significant predictors). This difference between approaches could be 316 

principally owing to the quantity and quality of the different sources of data: GPS collars record 317 

near continuous spatial  data, no matter where the animal is moving, but at an individual level 318 

(Hebblewhite & Haydon, 2010), whereas camera traps can obtain near continuous temporal 319 

detections of many individuals at a population level, but are limited to specific survey points 320 

(Burton et al., 2015; Iannarilli et al., 2021; O’Connell et al., 2011). Camera traps monitor finite 321 

space and locations, thus limiting the extent and resolution of inference and, therefore, the 322 

power to estimate the effects of multiple predictors at once (Bailey et al., 2007; Phillips et al., 323 

2019; Wakefield et al., 2011; Watanuki et al., 2016). When using camera traps it is 324 

consequently necessary to employ a large number of sampling points in order to obtain the 325 

quantity of variation required to obtain intensity of habitat use precise predictions from 326 

complex models and avoid bias in the sampling process (Burton et al., 2015; Hofmeester et al., 327 

2019; Iannarilli et al., 2021; Tanwar et al., 2021). 328 

Our second objective was to explore the consistency of the predicted patterns of intensity of 329 

habitat use in each approach. In this respect, we obtained differences in consistence among the 330 

species at the three levels: CR, BR and DNP. These types of discrepancies in predictions have 331 

already been seen in previous studies (Bassing et al., 2022; Phillips et al., 2019). Concretely, 332 

agreement was obtained for all the species in the study area (CR level; see Figure 3). The best 333 
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concordance was observed for wild boar, followed by fallow deer and red deer (Figure 3), 334 

which may be related to the similarity of the explanatory factors in the RSF and IDM 335 

approaches for each species (Table 1). Nevertheless, prediction agreement followed different 336 

trends when extrapolated (BR and DNP level), depending on the species, and agreement 337 

decreased when comparisons were made on larger scales (CR > BR > DNP; see the visual 338 

pattern and Kappa coefficient in Figure 3) for red deer, while agreement increased with scale 339 

(DNR > BR > CR; Figure 3) for wild boar and fallow deer. One possible explanation for this 340 

discrepancy could be related to the models’ capacity to capture the complete environmental 341 

gradient of the species in the sampled area. When the more relevant gradients for the species 342 

are not included in the model, imprecise predictions could be produced in the study area, and 343 

higher discrepancies in new (extrapolated) territories (Elith & Leathwick, 2009; see differences 344 

in covariate gradients between methods and/or levels of prediction in Figure 1S, as differences 345 

in quantity of data of typeuse v1 and v2 between approaches). According to this hypothesis, 346 

the models for red deer produce under-representative predictions (in one or both approaches), 347 

and the disagreement between them increases when they are extrapolated. In the case of wild 348 

boar and fallow deer, both predictions were able to capture the environmental characteristics 349 

of the preferred areas and, therefore, provided good descriptions of the general patterns on large 350 

spatial scales (increasing the agreement to these scales). 351 

When the intensity of habitat use patterns obtained were compared with those shown in 352 

previously published studies, IDM approach for red deer was more concordant (Barasona et 353 

al., 2014a). In the case of wild boar and fallow deer, both approaches were similar to those 354 

shown in previous works (Barasona et al., 2014a, 2014b). One reason for the discordance 355 

between the red deer RSF model and those shown in previous works may be the short data-356 

collection period employed and/or a scarce number of individuals monitored, which could have 357 

produced bias (caused by a lack of time and/or individuals sampling data). As a general 358 
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recommendation, employing longer periods in both approaches, along with establishing more 359 

sampling points in the case of IDM and more individual in the case of RSF, could lead to more 360 

robust predictions, since it would be possible to provide a good characterisation of all the 361 

habitats and preferences (Bassing et al., 2022; Phillips et al., 2019).  362 

Our study showed that each approach differed as regards the main variables that influenced 363 

intensity of habitat use, but that all the selected variables are, to some extent, refuted by 364 

previous research. This may indicate that both methodologies can correctly determine habitat 365 

use, but that each of them identifies different features (Bassing et al., 2022). This is something 366 

that could be expected if we look at the key peculiarities of each approach, where RSF collects 367 

data at the individual level and analyzes habitat use against availability within each animal's 368 

home range, while camera trapping works at the population level in specific sites, comparing 369 

the relative abundance between the different sampled points. Therefore, the RSF approach is 370 

relating the predictor variables to the relative probability of selection within home range, while 371 

the IDM approach is relating the predictor variables to relative abundance differences between 372 

sampled sites. One reason of discrepancies based on these key peculiarities is the multi-scale 373 

interaction of the species with the environment (McGarigal et al., 2016), signifying that each 374 

approach detects some scales better than others. This may be owing to these key peculiarities 375 

of each approach (concretely individual-specific data in RSF vs. site-specific data in IDM). 376 

The RSF approach may, therefore, focus more on the within home range habitat selection (3rd 377 

order of Johnson’s four levels of habitat selection), while the IDM approach may focus on the 378 

home range habitat selection (2nd order of Johnson's levels), bearing in mind that the variables 379 

that affect each level are not necessarily the same (Bassing et al., 2022; Boyce, 2006; Cushman 380 

& McGarigal, 2004). Another reason could be that each approach obtains a different range of 381 

values for the predictors (see differences between approaches in ranges as dvera or v6; Figure 382 

S1), sampling different components of the same population’s habitat use (Bassing et al., 2022). 383 
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In other words, one approach obtains more variability from some predictor variables, and the 384 

other obtains more variability from others, and the set of predictors with greater variability may 385 

have more weight in each model. This may be related to the limitations of each model, where 386 

the IDM only obtains data on the predictors in a finite number of sampling points, the RSF 387 

obtains them from a finite number of home range of monitored animals. According to the 388 

results obtained in the present work, the use of biologging as a classic tool in habitat use studies, 389 

and the increase in the use of camera trapping in the last decades as a novel tool (Rovero & 390 

Zimmermann, 2016), show that both methods are complementary, and that approach greatly 391 

depends on the objective of the study. The complementary information contained in each kind 392 

of data therefore indicates that data integration is a promising tool with which to obtain the 393 

more informative and precise models of habitat selection required in order to support decision-394 

making in wildlife management and conservation (Apollonio et al., 2017; Fletcher et al., 2019; 395 

Isaac et al., 2020; Miller et al., 2019).  396 

 397 

5. CONCLUSIONS 398 

The two approaches tested, i.e. RSF and IDM, were not equivalent as regards identifying the 399 

main environmental gradients that explain the intensity of habitat use of the species studied: 400 

red deer, wild boar and fallow deer. The spatial patterns of habitat use have a greater or a lower 401 

level of agreement depending on the species studied. The spatial patterns maintained (and 402 

sometimes increased) the agreement between approaches beyond the study area (Biological 403 

Reserve and Doñana National Park) as long as the predictions were representative of the 404 

complete environmental gradient. Both approaches determined intensity of habitat use patterns 405 

well, but identified different features of it, probably because IDM relates environmental 406 

features to differences in relative abundance to a population level, while RSF relates 407 



18 
 

environmental features to the relative probability of use at individual level. If the need arises 408 

to choose between both methodologies, it is, therefore, necessary to consider which best fits 409 

the proposed objective, or whether it is possible to combine both, thus resulting in the 410 

attainment of more informative and more precise habitat selection models. Future studies 411 

should consider repeating this comparison of approaches with longer periods of data collection 412 

and on more patchy landscapes in order to obtain a more robust conclusion. 413 
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Figure captions 659 

Figure 1. Study area location. The Biological Reserve (principal management area that overlaps 660 

with our data; red continuous line) and the Calibration Region (our study area; blue 661 

discontinuous line) are located in Doñana National Park (grey area). 662 

Figure 2. Calibration Region (blue line) and Biological Reserve (red line), showing the home 663 

range (kernel 95%) of collared individuals by species (A) and the grid of camera traps by 664 

sampling period (B). 665 

Figure 3. Predicted patterns of habitat intensity of use for wild ungulates in the Calibration 666 

Region (blue line). The Biological Reserve (red line) and Doñana National Park have been 667 

delimited in order to extrapolate predictions. The approaches were resource selection functions 668 

obtained from biologging derived data (RSF approach) and imperfect detection models 669 

obtained from camera trap data (IDM approach). Maps represent IDM (A) and RSF approach 670 

(B) for red deer; IDM (C) and RSF approach (D) for wild boar; and IDM (E) and RSF approach 671 

(F) for fallow deer. Habitat intensity of use patterns were divided into four levels (quantiles) in 672 

order to assess the agreement between the predictions produced by the approaches with Cohen's 673 

weighted kappa coefficient at three different levels of extension, with their respective 95% 674 

confidence interval values in brackets: Calibration Region (study area, in blue), Biological 675 

Reserve (in red) and Doñana National Park (in black). 676 
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