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Improved RNA virus understanding is critical to studying animal and plant health,

and environmental processes. However, the continuous and rapid RNA virus

evolution makes their identification and characterization challenging. While

recent sequence-based advances have led to extensive RNA virus discovery,

there is growing variation in how RNA viruses are identified, analyzed,

characterized, and reported. To this end, an RdRp Summit was organized and a

hybrid meeting took place in Valencia, Spain in May 2023 to convene leading

experts with emphasis on early career researchers (ECRs) across diverse scientific

communities. Here we synthesize key insights and recommendations and offer

these as a first effort to establish a consensus framework for advancing RNA virus

discovery. First, we need interoperability through standardized methodologies,

data-sharing protocols, metadata provision and interdisciplinary collaborations

and offer specific examples as starting points. Second, as an emergent field, we

recognize the need to incorporate cutting-edge technologies and knowledge

early and often to improve omic-based viral detection and annotation as novel

capabilities reveal new biology. Third, we underscore the significance of ECRs in

fostering international partnerships to promote inclusivity and equity in virus

discovery efforts. The proposed consensus framework serves as a roadmap for

the scientific community to collectively contribute to the tremendous challenge

of unveiling the RNA virosphere.
KEYWORDS

RNA virus discovery, viral metagenomics, RNA-dependent RNA polymerase, viral
genome annotation, metagenomic metadata standards, virus evolution and diversity
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1 Introduction

RNA viruses (Orthornavirae) are genetic elements with RNA-

based genomes that replicate using their encoded RNA-dependent

RNA polymerase (RdRp) and by hijacking their host’s cellular

machinery. Progeny viruses are then transmitted to new hosts

either vertically, or horizontally most often in protein-based viral

particles that can sometimes be surrounded by a lipid envelope.

Viruses are widely diverse, infect all life forms (1), and include

many human pathogens of medical and epidemiological

importance (2), as well as various species with strong deleterious

impact in agriculture (3). Additionally, by infecting unicellular

eukaryotic and prokaryotic life forms, RNA viruses play a role in

shaping microbial ecosystems, from the oceans to the human gut

(4–8).

Historically, RNA virus discovery and characterization relied

on direct cultivation or isolation of the infective agents via

experiments that are often laborious and inherently restricted to

viruses infecting hosts amenable to laboratory cultivation or

propagation. The procedures typically involve the concentration

of infectious particles from symptomatic or diseased host cells or

tissues, followed by various identification techniques like

microscopy (imaging), neutralization (antibody), hemadsorption,

hemagglutination and plaque assays, and animal, plant, tissue or

cell culture inoculation. In most cases, isolated concentrated

particles would then undergo (viral) RNA extraction and

purification, followed by reverse transcription into cDNA and

subsequent sequencing enabling further genomic investigations

(phylogeny, genotyping, etc).
1.1 Recent developments in omic-based
RNA virus discovery: more, bigger, faster is
the new pace

The advent of the genomic era has gradually expanded RNA

virus discovery beyond experimental cultivation and isolation

methodologies. The substantial decrease in costs associated with

high-throughput nucleic acid sequencing, coupled with advances in

computational capacities for big data storage and processing greatly

facilitates the development of RNA virus discovery projects through

large-scale sequencing (omic-based).Importantly, this genomic-data-

driven exploration of the RNA virosphere using computational tools

offers a unique opportunity to bypass many biases and limitations of

traditional approaches, and goes hand in hand with the growing

recognition of global viral diversity in ecological systems as a whole,

including public health and one health [“pandemic preparedness”,

surveillance - (9)].

With an expanded diversity of environments sampled as well as

a growing re-assessment of publicly available sequencing data and

the continuous development of tools and resources, this field has

experienced massive growth in recent years, with no signs of

deceleration in sight (Figure 1) (8, 10–29).
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1.2 Interdisciplinarity nature of the field
limits data uniformity and standardization

RNA virus discovery is at the interface of various disciplines (i.e.

virology, molecular, and structural biology, evolution, genomics,

ecology, and computational sciences) and spans various fields

within virology itself, each with its specific virus groups of

interest, priorities, approaches, concepts, resources, etc. leading to

apparent discrepancies throughout the scientific process. This

heterogeneity manifests in both the experimental design, in the

interpretation of the data and in the eventual conclusions and data

sharing (novelty estimation, host inference, risk assessment, choice

of data deposition location).

This growing lack of standardization directly and severely

hampers interoperability - i.e. the ability to review, compare,

reproduce, share, and build on each other’s efforts. For instance,

what one study may consider as a new RNA virus group based on

coat or movement protein sequence similarity, another study may

consider part of an existing group using the RdRp comparison.

In recognition of these issues as detrimental to the advancement

of the field, we recently held the first “RdRp summit” (https://

rdrp.io/) - a discussion-centric event with the goals of fostering

reproducibility, collaboration and interoperability in omics-derived

RNA virus discovery. The event was attended by over 70

participants (60% in-person and 40% remotely), from 50 research

institutions across the world. Most attendees were ECRs, with half

of the participants listed as PhD students. To promote inclusion and

exchanges between all participants, the meeting featured both open

discussion sessions and traditional lectures, given by key

bioinformaticians and experimentalists. Herein, we summarize

the major insights and consensus that emerged from the workshop.
2 Current challenges in RNA
virus discovery

2.1 Multiplicity of experimental and
computational practices in RNA virus
discovery workflows

The initial source and type of environment, the preservation,

and preparation of RNA input have profound implications on the

whole analysis and final RNA virus discovery. The input for RNA-

virus metagenomic studies is often the total extractable RNA from

an environmental, vector or host-associated sample (12, 17, 30).

Alternatively, studies can focus on a size-selected fraction where

host cells are excluded and virus-like-particles (VLPs) are enriched

using filtration and/or centrifugation, otherwise known as viromics

or virion-associated nucleic acids (VANA)-based sequencing (22,

31). Double-stranded RNA (dsRNA) purification can also be

applied to total RNA samples to specifically target dsRNA virus

genomes and replicative intermediate of single-stranded RNA

(ssRNA) viruses instead of single-stranded transcripts and
frontiersin.org
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ribosomal RNAs (32). Beyond dsRNA enrichment, targeted

approaches such as the Fragmented and primer-Ligated dsRNA

Sequencing (FLDS) method also feature the ability to sequence both

ends of the genome (33, 34), from which pairs of segmented or

multipartite viral genomes can be searched (33). Deep sequencing

of small RNAs (sRNAs) can also be advantageous to plant and

mycovirus discovery, by using various sRNA size profiles depending

on the organism for RNA genome assembly (35–40). On the other
Frontiers in Virology 04
hand, untargeted total RNA extraction followed by RNA-seq better

reflects the global sample complexity, including host and viral

diversity, and can assist with host association, further answering

ecological questions (41). However, the choice of the kit used for

RNA extraction can substantially influence the downstream analysis

(42). Prior to sequencing, classical treatments include genomic

DNA digestion and either targeted ribosomal RNA (rRNA)

depletion, or poly(A) enrichment steps prior to reverse
B

A

FIGURE 1

The recent expansion of the omic-based RNA virus discovery field. (A) Examples of RdRp-based viral metagenomic studies and tools (PMID are
indicated in grey); (B) Multiplicity of publicly available sequences in the Sequence Read Archive based on human (pink bars) and other host
(grey bars) composition (bar chart, left axis) and total cumulative number of bases (blue line, right axis). Data taken from SRA metadata available via
BigQuery (nih-sra-datastore.sra.metadata).
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transcription of RNA into cDNA. Along with the choice of

sequencing platforms/technologies, those methods will directly

impact the subsequent RNA virus findability and identification.

Current computational identification of RNA viruses from

“-omic’’ data (mainly transcriptomic and metatranscriptomic

sequencing, i.e. bulk RNA-seq of either a single organism or a

community of organisms, respectively) is typically conducted via

direct comparative approaches following quality control and

filtering of raw reads and de novo assembly. The discovery of

viruses through omics data primarily depends on identifying

sequence similarities with existing RNA virus genomes, protein

sequences, or protein sequence profiles. This is often accomplished

using methods such as Hidden Markov Models (HMMs) or

Position-Specific Scoring Matrices (PSSMs). Similarity is defined

as a set of minimal statistical thresholds; typically established

arbitrarily in each study and thus further stresses the need for

standardized protocols.

Predominantly, the RdRp, which is the only protein shared by

all known RNA viruses, is used as the marker gene for RNA virus

identification (14). Virus RdRps share a right-hand-shape structure,

typical of DNA/RNA polymerases, with a palm-based active site

comprising several catalytic and structural motifs, which may

require additional host factors to constitute a mature, complete

replicase domain (43). Assignment of a query sequence as a

potential viral RdRp usually requires the identification of at least

the three “core” motifs, commonly referred to as A, B, and C, with

the presence of any additional motifs increasing the reliability of the

assignment and the presumed completeness of the analyzed

sequence (44). The presence of these motifs (or roughly the

region they occupy) is most often identified via sequence search

engines (BLAST, DIAMOND, MMseqs, etc) (45–47) or profile-

based approaches (HMM via HH-Suite or HMMER, or PSSM/

PWM using PSI-BLAST or MEME) (48–50), often used in

conjunction with public databases and repositories of RNA virus-

derived RdRp e.g. subsetting NCBI nr, or custom databases like

TSA-database derived RdRps (29), NeoRdRp (23), Palmscan (51),

or RdRp-scan (18).

Furthermore, the enhancement of RNA extraction methods,

sequencing technologies, and the rapid advancement in the

development of new AI-based techniques, among other factors, is

playing a crucial role in advancing RNA virus discovery. These

advances facilitate the improved identification of potentially

divergent and low-concentration viruses within overlooked

environmental or host taxa. Nevertheless, these developments also

reinforce the methodology gaps and heterogeneity between studies

and severely limit interoperability.
2.2 Consequences of procedural
inconsistency for comparative analyses
across studies

Choices in both the experimental procedures and subsequent in

silico analyses play a crucial role in how different studies handle,

share, report, and reach conclusions regarding the suspected viral

sequences in the corresponding data. Discussions held during this
Frontiers in Virology 05
first RdRp summit pinpointed the global lack of procedure and

good practice standards at every level (sampling, extraction,

sequencing, read and contig processing, as well as data analysis,

storage, submission, mining, survey, etc) (Figure 2). Ultimately,

those differences in the computational and experimental aspects can

constitute strong obstacles for the ability to adequately compare the

results of different studies and it seemed important to first

identify them.

Regarding RNA virus detection itself, there is a crucial lack of

standard minimal alignment statistics (e-value, %ID, %coverage,

etc). Also, the inconsistency of what is considered a genuine viral

genome/viral hit/viral sequence versus a potential “false-positive” or

contaminant poses a major risk of misinterpretation of results. The

ability to identify and discriminate true replicative RNA virus

signals from active or integrated viruses replicating via reverse-

transcriptases (RT) (divergent other palm-like polymerases)

(kingdom Pararnavirae), endogenous viral elements (EVEs), and

non-viral hits or contaminants, is absolutely crucial in our field.

However, there is currently no widely agreed-upon consensus about

defining quality standards for viral sequences and how to ensure

their identification as such. Compounding this issue is the lack of

definition for real RNA-virus derived sequences that are either

chimeric or misassembled, and thus are not likely to represent a

functional infectious entity. Plus, expanding our knowledge of the

RNA virosphere revealed an ever-increasing plurality of genome

architectures and RdRp properties, which make it even harder to

define one single rule for all of them. The recently-described divided

RdRps confirmed and validated in silico (52–54), which are encoded

by two distinct ORFs from separate genomic segments, constitute

the best example of such unexpected plurality. Such challenges

require continuous adaptation of standard practices and motivate to

establish community-driven, up-to-date guidelines for RNA

virus discovery.

Standardizing RNA virus detection would strongly require a

community-built consensus about performance evaluation

pipelines (sensitivity, recall, F1, precision, algorithm resilience,

etc.), similarly to the ongoing efforts in microbial and DNA virus

metagenomics (55–58). Directly linked to this, unequivocal

agreements on the plurality of operational taxonomic unit (OTU)

definitions, clustering thresholds, and minimal procedure for

genome completeness estimation of novel and divergent viruses

will help set gold standards for the scientific community (Figure 2).

The aforementioned considerations would also dramatically

decrease common inconsistencies regarding the multiplicity of

repositories that host the data as well as metadata associated with

viral metagenomics projects deposited in standard databases.

Indeed, one could note the major confusion between host and

sample source, arbitrary taxonomy assignment and gene, protein,

and genome annotations, the lack of information relating to sample

preparation, sequencing, and computational analysis, the

inadequacy of current tools for uploading viruses with divided

RdRps or segmented genomes, or sequences with alternative

START codons, and the inability for external users to revise/re-

assess/edit/annotate the deposited metadata. All of which leads to

an absurd rate of unclassified/unannotated sequences when dealing

with remote homology searches.
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Considering the rising scale of viral metagenomic studies and

the pace of virus taxonomy expansion, such misannotations or mis-

assignments in reference databases can have dramatic consequences

when propagated to new studies and data submission, and

drastically limit the scope and efficiency of data mining projects,

yet are increasingly essential in our field.
3 Solutions and future perspectives

While incredibly valuable, the interdisciplinarity in the RNA

virus discovery field also requires concerted efforts from researchers

to build connections between those communities, share, and adapt

our respective practices, tools, vocabulary, terminologies, and

standards to fit in with everyone’s domain language.

To tackle the first challenge consisting of establishing minimum

standards for RNA virus genome (or viral RdRp) annotations, cut-

off for parameters (alignment scores, e-values, query and reference

lengths, etc.) need to be agreed upon when comparing candidate

sequences to known valid RdRp sequence database vs. decoy - (RT)-

like - databases and sets of unclassified/unannotated sequences.

Annotation could then be automatically assigned based on these

comparison scores (true complete RdRp vs RT-like hits vs
Frontiers in Virology 06
unclassified/unknown). Discussions and lectures at the summit

also highlighted the importance of integrating additional

procedures into classical workflows such as placement within

phylogenies, genomic context scan (untranslated regions, RNA

structure, nucleotide and kmer composition among others), and

structural homology assessment using cutting-edge AI-based

prediction tools (59, 60), essential for distant homology detection

or validation. While some quality criteria and cut-offs can easily be

built in, some others may be very challenging. Defining boundaries

for the RdRp gene (minimal length to describe a RdRp, structural

attributes, minimal presence of the catalytic motifs, presence/

absence of additional domains, such as Nidovirus RdRp

associated nucleotidyl transferase domain - NiRAN) remains a

complex task and requires expertise and extended knowledge of

the viral strain (61–63).

In addition, the standardization effort should also promote the

integration into the standard discovery pipelines of the most recent

and state-of-the-art concepts in RNA virology such as the search for

potential additional segments (64), the screen for divided RdRp

(52–54), etc.

Another challenge consists of homogenization of manual and

automatic clusterization procedures and taxonomic assignment of

viral-like sequences. Formal virus classification by the International
FIGURE 2

Main challenges identified in the omic-based RNA discovery field and proposed solutions.
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Committee on Taxonomy of Viruses (ICTV) plays a vital role in

providing a reference language for scientists to communicate,

collaborate, and share knowledge about viruses. By coupling the

robust, updated, and standardized ICTV classification framework

with the power of omic-based RNA virus discovery, we can

collectively improve our description and global understanding of

RNA virus diversity (65).

Concretely, all these proposals will be pursued by the RdRp

summit community with different initiatives that are intended to be

maintained and updated over time by the community members. In

particular, the community will focus on:
Fron
I) Building a central infrastructure for the RNA virus discovery

community, which would work as a central repository for

data and knowledge.

II) Creating a curated database with automated quality scores

for data deposition based on the information provided. The

database should be community-driven and open to

feedback from end users to aid further curation.

III) Consolidating state-of-the-art experimental and computational

resources and knowledge to ensure the best up-to-date practices

among the community (pipelines, scripts, protocols, glossary,

guides, international journal club). Among others, this could

consist of recommended workflows for the challenging

identification of novel/remote RdRp, the Do’s and Don’ts of

annotating new, uncultivated RNA virus genomes, and

metadata recommendations for RNA viruses.

IV) In the same manner as the European Virus Bioinformatics

Center (https://evbc.uni-jena.de/), particular effort will be

put into enhancing the communication and uniting our

expanding community into one single spot through a

potential membership system, forums, round tables,

workshops, online chat channels, etc.
To conclude, the major consensus that emerged from the rich

discussions led during this first RdRp summit lies in the current lack

of interoperability and reproducibility in our field but also the

possible concrete solutions to tackle these obstacles (summarized

in Figure 2).

The omic-based RNA virus discovery community, as an open

science-to-society-oriented community, should be aware of its roles

and responsibilities to make its scope as transparent and accessible as

possible. Through the collective development of a user-friendly open

platform, we aim to build a solid foundation for communicating,

sharing, and performing comparable analyses using optimal and

state-of-the-art tools across a wide array of biological contexts by

reaching the broadest audience possible. With similar issues faced in

microbial metagenomics and omic-based DNA virus discovery, we

also intend to inspire from the emerging solutions and infrastructures

being developed in these related fields and learn from their

experiences in tackling these challenges (e.g. 66–68).

We believe these efforts will lay the groundwork to promote

ECRs insertion into the community, best practices and repeatability,

and ultimately ensure the best future for our exploration of the

RNA virosphere.
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