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We identify a mechanism for biological spatial pattern formation arising when the signals that
mediate interactions between individuals in a population have pulsed character. Our general
population-signal framework shows that while for a slow signal-dynamics limit no pattern formation
is observed for any values of the model parameters, for a fast limit, on the contrary, pattern formation
can occur. Furthermore, at these limits, our framework reduces, respectively, to reaction-diffusion
and spatially nonlocal models, thus bridging these approaches.

Introduction.— One of the striking manifestations of
self-organization in complex systems is the emergence of
regular spatial patterns at scales much larger than the
ones associated to the individual components [1].
In biological populations this phenomenon has
been observed in many contexts including semi-
arid vegetation [2–4], bird swarms [5, 6] or bacteria
colonies [7, 8]. Besides being fascinating, pattern
formation has been shown to critically affect the
stability and resilience of ecosystems [9, 10].

Behind the mechanisms responsible for self-
organization there is often an agent or substance
working as a signal that mediates the interactions.
Signals have distinct emission protocols, propagation
dynamics and occur in a wide range of temporal and
spatial scales [11]. For example, species might use
acoustic [12], visual [13] or chemical [14] signals to
attract, repel, harm or support targeted individuals. It
is this exchange of signals and the details of its dynamics
that ultimately drive self-organization process [15, 16]
and, consequently, control other key macroscopic
outcomes [9, 17].

Despite the numerous studies analyzing how
interactions control pattern formation, the focus
has been mostly on continuous and smooth signal
dynamics. This overlooks interactions that are mediated
by flashing pulsed signals. Therefore, how this fine-scale
dynamics scales-up affecting pattern formation is poorly
understood. Here we show that a timescale transition
from slow (smooth) to fast (pulsed) signal dynamics
creates a route to pattern formation alternative
to the most studied ones arising from Turing-like
mechanisms [18].

This finding is obtained by studying a general
activator-inhibitor (population-signal) model, where a
population interacts through the release of harmful
signals. Our study extends standard activator-inhibitor
structure [1, 20], by explicitly describing the fine-scale
dynamics associated with the release and spreading of
signals. This framework recovers two distinct structures
at the regimes of slow and fast signal dynamics that

can lead to qualitative changes in spatial stability. For
slow signal (with timescales similar to those of the
population), we recover a standard reaction-diffusion
system which, for a broad set of population and signal
dynamics, does not exhibit Turing instability for any
values of model parameters. For the same system
dynamics, but with sufficiently fast signals, the system
can be described by a single integrodifferential equation,
where the toxic effects are captured by a competitive
nonlocal spatial interaction. In this limit, spatial
instability can occur leading to pattern formation.
Since we explicitly derive the underlying interference

competition mechanism behind the nonlocal effective
description, these results address a long-standing
shortcoming: that paradigmatic nonlocal models of
competitive type leading to spatial patterns have been
usually proposed phenomenologically with no systematic
derivation [4, 21, 22]. In the cases in which such
derivation has been provided, the resulting equation did
not have the characteristics needed for pattern-forming
instabilities (see, for example Ref. [23])
Model.— Our aim is to model an ensemble of simple

organisms in a one-dimensional spatial domain (we do
not expect this dimensional restriction to be essential
for our results). They move, reproduce and release
harmful signals in the form of pulses. These pulses can
have biochemical origins, such as a toxic substance, but
can also be physical, in the form of electricity, heat,
sound and light, which can compromise the targets’
survival, and lead to a competing dynamics among the
individuals [13, 24, 25]. We describe this scenario at
the population-level by the following general density-field
description,

τρ∂tρ = L(ρ, ∂xρ)− ϵρϕ , (1)

τϕ∂tϕ = L(ϕ, ∂xϕ) +Rρ(x, t) , (2)

where ρ and ϕ are the population density and signal
intensity, respectively. L and L give the population
and signal dynamics when uncoupled, including diffusion
or other transport processes; τρ and τϕ explicitly set

ar
X

iv
:2

20
7.

05
19

1v
3 

 [
q-

bi
o.

PE
] 

 1
3 

A
ug

 2
02

3



2

the timescales for the population and signal dynamics,
respectively; and ϵ is an exposition factor related to
the population sensitivity to the toxin, which is released
according to Rρ.

We consider that signal releases occur in pulses that
are controlled by the population density in the following
manner: Their starting time-space locations {ti, xi} are
independent Poisson random events with a probability
of occurring within small intervals dx and dt given by
αρ(x, t)dxdt. The pulses have duration δ̄, negligible
spatial extent, and equal intensities I0:

Rρ(x, t) =
∑
i

I0Πδ̄(t− ti)δ(x− xi) , (3)

where Πδ̄(t) is the indicator function of the time interval
[0, δ̄]. The expected inter-event time, ⟨ti+1 − ti⟩, is

given by τR = 1/(N(t)α), where N(t) =
∫ +∞
−∞ ρ(x)dx is

the total population size. Eqs. (1-3) together establish
the model studied in this work, being constituted
by a continuous population model but with a pulsed
spatiotemporal dynamics for the signal [26].

The characteristic timescales are, besides τρ and τϕ,
the duration of the pulses, δ̄, and the mean pulse inter-
event time, τR. We will focus on cases in which pulse
duration is much shorter than release inter-event time,
which is itself much shorter than population dispersal and
other demographic processes, δ̄ ≪ τR ≪ τρ. This means
that there is a timescale separation between interaction
events and their consequences to population dynamics.

In the following, we investigate how the system spatial
stability changes as a function of the signal timescale, τϕ.
We obtain effective descriptions for the population-toxin
dynamics and the respective pattern forming conditions
for a) the slow signal-dynamics limit, in which the toxin-
field relaxation is slow, being comparable to population
dynamics timescales τϕ/τρ ∼ 1, and thus δ̄, τR ≪ τϕ; and
b) fast signal-dynamics limit, when signal response is the
faster of all the timescales, τϕ ≪ δ̄, τR, τρ (see Fig. 1).

Slow signal-dynamics limit.— When τϕ/τρ ∼ 1 the
inter-event release time is much shorter than population
and signal timescales, τR ≪ τϕ, τρ. Then, the toxin field
ϕ in Eq. (2) feels the average of the toxin release pulses,
which are many and occur too fast for ϕ to follow them.
Consequently, we can replaceRρ by its average over small
time windows ∆t ≪ τϕ and small vicinities ∆x:

⟨Rρ(x, t)⟩ ≡
1

∆t∆x

∫ 0

−∆t

∫ ∆x
2

−∆x
2

Rρ(x+ x′, t+ t′)dx′dt′.

(4)

Using Eq. (3), ⟨Rρ(x, t)⟩ = (∆x∆t)−1
∑nR

i=1 I0δ̄ =
I0δ̄nR/(∆x∆t), where nR is the number of pulses
that have occurred during the considered space-time
window. Noting that pulses are independent events, nR

for each cell follows a Poisson distribution with mean
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Figure 1: Schematic representation of the timescales of the
signal ϕ(x, t) in the fast signal-dynamics limit (τϕ → 0).
Signal response to two signal release pulses is shown for
moderately fast signals. ϕ remains mainly localized in time
within the pulse duration δ̄ (dashed rectangle). The rising
and decaying parts of the signal are indicated by the two
short segments close to the label τϕ. The vertical dotted
line indicates an intermediate time at which signal intensity
attains the steady G profile. In the plot, the lapse between
pulses is set to τR (the mean inter-event time) and the field
ϕ spreads according to Eq. (7) (with ν = 4 and µ = 1 as in
Fig. 3b).

αρ(x, t)∆x∆t. If ∆t is chosen sufficiently large (but
still much smaller than τϕ) nR becomes large and its
coefficient of variation (ratio of standard deviation to
mean) vanishes so that fluctuations can be neglected.
Thus nR ≈ αρ(x, t)∆x∆t. As a consequence, in the slow
signal limit, ⟨Rρ(x, t)⟩ ≈ I0δ̄αρ(x, t). The other terms in
Eqs. (1-2) can also be coarse-grained but, due to their
slow response times, they remain constant and unaffected
by the procedure: ⟨ρ⟩ ≃ ρ, ⟨ϕ⟩ ≃ ϕ, ⟨ϕρ⟩ ≃ ϕρ.

Fast signal-dynamics limit.— In this fast limit,
τϕ/τρ → 0, the signal dynamics is much faster than
any other process. Then, we can expect the signal field
to be always in constant equilibrium with the release
events: it immediately reaches a fixed stationary profile,
G(x) during the pulse duration, 0 < t − ti < δ̄, and
dissipates immediately when release ceases (we assume
a L dynamics that leads to signal dissipation in the
absence of releases). In Fig. 1, we present a schematic
representation of the fast signal propagation, highlighting
with a dashed rectangle the area in which signals would
be confined taking τϕ → 0. The profile G at intermediate
times (such as the vertical dotted line in Fig. 1) can be
obtained by solving Eq. (2) under the limit τϕ → 0. For a
single pulse in (3) at x = 0, L(G, ∂xG) + I0δ(x) = 0. The
conditions τϕ ≪ δ̄ ≪ τR guarantee that pulses are non-
overlapping, so that the solution of Eq. (2) can be built
just adding up the successive responses to the different
pulses: ϕ(x, t) ≈ ∑

i G(x−xi)Πδ̄(t−ti). We now perform,
as in Eq. (4), an average of Eq. (1) over small intervals
∆x and ∆t ≪ τρ. Because of timescale separation, all
terms remain unaltered except the last one containing
ϕ, which becomes ⟨ρϕ⟩ ≈ ρ ⟨ϕ⟩. Calculation of this
last average is performed in detail in the Supplemental
Material [27], with the final result ⟨ϕ⟩ ≈ δ̄α[G ∗ ρ], where
G ∗ ρ ≡

∫
G(x− x′)ρ(x′, t)dx′.
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Figure 2: (a) Profile G(x) from Eq. (8) and several ν.
(b) Corresponding growth rates λ(k) of perturbations to
the homogeneous solution, as a function of perturbation
wavenumber k. Parameters are Dρ = 0.01, µ = 1, ϵ̄ = r = 1,
Dϕ = γ = 1 and I0 = 102.

In summary, from model (1-3), the slow signal-
dynamics limit (δ̄ ≪ τR ≪ τϕ, τρ) leads to

τρ∂tρ = L(ρ, ∂xρ)− ϵρϕ ,

τϕ∂tϕ = L(ϕ, ∂xϕ) + R̄ρ , with R̄ ≡ αδ̄I0. (5)

Fast signal dynamics (τϕ ≪ δ̄ ≪ τR ≪ τρ) gives

τρ∂tρ = L(ρ, ∂xρ)− ϵ̄ρ [G ∗ ρ] , with ϵ̄ ≡ ϵδ̄α . (6)

Regardless of the choice of L(ρ, ∂xρ) and L(ϕ, ∂xϕ), the
fact that the two regimes lead to different coarse-grained
models suggests that their spatial stability also differs.
In fact, it can be shown that pattern formation does not
occur in the slow signal limit (Eq. (5)) for a large class
of operators (see [27] for precise conditions on L and L).
However, for this same class in the fast limit, it is well
known that Eq. (6) can lead to spatial patterns when the
signal profile G is sufficiently platykurtic [28, 29].
A particular example. — We illustrate the above

developments with the following dynamics,

L(ρ, ∂xρ) = (Dρ∂xx + r)ρ , (7)

L(ϕ, ∂xϕ) = Dϕ∂x(ϕ
ν−1∂xϕ)− [γϕµ−1]ϕ ,

which models populations of organisms moving
Brownianly with diffusion coefficient Dρ and reproducing
with growth rate r. This choice is a fundamental building
block for more complex population dynamics models [30].
For the signal dynamics, Eq. (7) gives a generalized
nonlinear diffusion-decay process characterized by
exponents ν, µ > 0. It allows to consider the case
where diffusion and decay are sensitive to signal
intensity in a negative (ν, µ < 1) or positive (ν, µ > 1)
manner, unraveling important channels through which
environment structure (e.g. propagation in porous
media, leading to ν > 1, see Ref. [31]) and mediator
inter-specific biochemical interactions [24, 30, 32–36] can
affect signal propagation dynamics.

Linear stability analysis and pattern formation.— The
pattern-forming stability conditions of model (1-3) with
the choice (7) can be obtained in the above studied

timescale limits. For slow signal dynamics (Eq. (5)) the
non-trivial homogeneous steady state is ρ0 = γ(r/ϵ)µ/R̄,
ϕ0 = r/ϵ. Standard linear perturbation around this state
identifies that all perturbation growth rates are negative
for any value of parameters, implying the stability of
the homogeneous state. Hence, no pattern-forming
instability can arise.
For fast signal dynamics the model reduces to a single

nonlocal equation, Eq. (6), with integral kernel G. This
is the solution of L(G, ∂xG) + I0δ(x) = 0, an equation
that can be solved exactly [5] for the particular choice
(7) discussed here (additional details are in [27]) giving:

G(x) = A [1− (1− q) |sx|] 1
1−q , A =

[
I0
2Dϕ

√
µ+ ν

2κ

] 2
µ+ν

,

(8)

with q = 1 + (µ − ν)/2, s2 = 2κAµ−ν/(µ + ν), and κ =
γ/Dϕ. If q < 1 the support of this solution is restricted
to |x| ≤ 1/(1− q).
Fig. 2a presents the different shapes of G(x) as

ν increases, while assuming linear decay (µ = 1).
The homogeneous steady solution is ρ0 = r/(ϵ̄G̃(0)),
where G̃(k) is the Fourier transform of G. Growth
rates of periodic perturbations of wavenumber k to the
homogeneous state are given by τρλ(k) = −Dρk

2 −
rG̃(k)/G̃(0) and are shown in Fig. 2b. Pattern formation
requires that, for some k, G̃ assumes a sufficiently
negative value, yielding λ(k) > 0 [28]. For the
present case, this occurs if toxin diffusion has a stronger
sensitivity to concentration when compared to the decay
process, ν > µ+ 2. The marginal case, ν = µ+ 2 (ν = 3
with µ = 1 in Fig. 2), corresponds to the triangular
kernel and the limit case ν → ∞ to the (most used)
top hat kernel, which is well-known to lead to pattern
formation [21, 38–40]. Thus, in contrast to the slow
signal-dynamics limit, pattern formation can occur under
fast signal dynamics, showing the importance of pulsed
dynamics on the macroscopic behavior of the system.

To support these analytical findings, we show in Fig. 3
direct numerical simulations (see Supplemental Material
for the numerical integration scheme [27]) of Eqs. (1-3)
and (7) (with µ = 1, ν = 4) for a slow (a) and a fast
(b) signal-dynamics regimes. This is done by keeping
the population timescale at τρ = 1/r = 1 for both
plots, and selecting the signal timescale corresponding
to τϕ = 1 ∼ τρ, and τϕ/τρ = 1/500 ≪ 1, respectively. In
agreement with the analytical results, for the slow signal
dynamics pattern formation does not occur for any of
the parameter values we have checked (Fig. 3a). On
the contrary, in the fast limit patterns develop, since
ν > µ + 2. Spatial population periodicity is seen to
emerge at long times in Fig. 3b, and the spatial pattern
remains stable afterwards (see [27]). The wavelength
of the final pattern can be analytically estimated as
2π/k⋆ ≃ 16.5, where k⋆ is the fastest growing mode in
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Figure 3: Temporal evolution of signal and population fields for the slow (a) and fast (b) signal regimes. The system is a line
of length 100 with periodic boundary conditions. Colors indicate field intensity ϕ(x, t) (upper panels), and population density
relative to the (fast-signal limit) homogeneous state, ρ(x, t)/ρ0 (bottom panels). In the upper panels crosses indicate release
instants and positions (not all releases are captured by the finite resolution of the heatmap). Data from numerical integration of
Eqs.(1-3), using an Euler scheme with δt = 10−6 and δx = 1.0. The dynamics is given by Eq. (7) with Dρ = 10−2, r = τρ = 1,
α = 102, δ̄ = 10−2 and ϵ = 10. Signal dynamics is set by µ = 1 and ν = 4, scaled by τϕ, in such way that Dϕ/4 = γ = 1/τϕ and
I0 = 102/τϕ. The slow and fast regimes were obtained setting τϕ = 1 and τϕ = 1/500, respectively. Mean interpulse interval is
in both cases τR = 1/(N(t)α) ≃ 10−1 (for a schematic close-up of the signal field in the fast-signal regime see Fig. 1).

Fig. 2b. This is roughly close to the periodicity seen in
Fig. 3b (see also Fig. S2 in Supplemental Material [27]).

Final remarks and discussion.— Our framework
allowed us to see how different fine-scale signal dynamics
impact at a coarser scale. It recovers standard reaction-
diffusion [1, 20] schemes in the slow-signal limit and
integrodifferential schemes [28, 41] in the fast-signal
limit, working as a bridge between the two mostly used
formalisms to describe interacting populations.

We crucially note that these two descriptions can
lead to different macroscopic outcomes. In this work,
we focused on showing that, for the same population
and mediator dynamics, a transition from slow to
fast pulsed signals can effectively lead to spatially-
extended interference competition in such way that
pattern formation occurs [21, 23, 28].

Our findings are of relevance in situations, from
chemistry to ecology, in which interactions between
the entities are mediated by pulses that are short
and fast compared to reaction processes. More
broadly, they stress crucial channels through which
environment and individual-level behavior can control
system spatial organization [42]. For example, our
approach can be extended to cases in which signals
regulate individual mobility [43, 44], a mediation that
has already shown to be relevant for population survival
and spatial patterns [15, 45]. Developmental programs

can also explore these channels to engineer specific
morphologies [26, 46]. Further extension aiming at
concrete problems should include realistic features such
as: state-dependent signal emissions [47, 48] accounting
for individuals response to attacks; memory [16];
persistence [15]; and multi-signal mediation where signals
establish a set of distinct biochemical interactions [11].
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Supplemental material: “Pulsed interaction-signals as a route to pattern formation”
Eduardo H. Colombo, Cristóbal López and Emilio Hernández-Garćıa

COARSE-GRAINING OF THE TOXIN FIELD IN THE FAST TOXIN-DYNAMICS LIMIT

We demonstrated in the main text that the signal field in the fast toxin-dynamics limit τϕ/τρ → 0 takes the
approximate form

ϕ(x, t) =
∑
i

G(x− xi)Πδ̄(t− ti) , (S1)

where G(x) is the steady profile attained under a single persistent pulse at x = 0 and {ti, xi} are the starting times
of the different toxin release events and their locations. Here, we calculate the average or coarse-graining of this field,
⟨ϕ(x, t)⟩, over small temporal and spatial intervals:

⟨ϕ(x, t)⟩ ≡ 1

∆t∆x

∫ 0

−∆t

∫ ∆x
2

−∆x
2

∑
i

G(x+ x′ − xi)Πδ̄(t+ t′ − ti)dt
′dx′ . (S2)

The temporal interval ∆t should satisfy ∆t ≪ τρ but we will also assume that it is larger than other microscopic time
scales: δ̄, τR ≪ ∆t. At difference with the slow toxin case, here the spatial coarse-graining is not really needed, so
that we eliminate it from the expression by taking the limit ∆x → 0. The remaining temporal integral acts on the
indicator function Πδ̄, selecting at any time t only the m pulses that have occurred anywhere in the system during
the interval [t−∆t, t]. Thus we have:

⟨ϕ(x, t)⟩ ≈ δ̄(∆t)−1
mR∑
i

G(x− xi). (S3)

mR is the the total number of releases for the population which follows a Poisson distribution with mean αN(t)∆t,
where N(t) =

∫
ρ(x, t)dx is the total population size. We have neglected the values of t for which a pulse is only

partially contained in ∆t. Because of the condition δ̄ ≪ ∆t such time intervals are very small and negligible at the
population scale τρ.

As in the calculation for the slow signal case, the condition τR ≪ ∆t implies a large value ofmR so that, by the law of
large numbers, its fluctuations can be neglected. Also in this case we can usem−1

R

∑
i G(x−xi) ≈

∫
dx′G(x−x′)pdft(x

′),
where pdft(x) = ρ(x, t)/N(t) is the probability density of the locations xi. Combining these results we arrive at

⟨ϕ⟩ ≈ δ̄α

∫
G(x− x′)ρ(x′, t)dx′ ≡ δ̄α[G ∗ ρ]. (S4)

CONDITIONS FOR THE ABSENCE OF PATTERN FORMATION IN THE SLOW SIGNAL-DYNAMICS
LIMIT

In this Section we establish conditions on the dynamics which are sufficient to guarantee that pattern formation is
absent in the slow signal-dynamics limit. In this limit, Eqs. (5) of the main text were found:

∂tρ = L(ρ, ∂xρ)− ϵρϕ (S5)

∂tϕ = L(ϕ, ∂xϕ) + R̄ρ . (S6)

By inspecting this structure we note that it is likely to not produce patterns, since it has a linear coupling between
the equations [1]. To obtain the exact class of operators for which we can guarantee that the homogeneous solution
of Eqs. (S5-S6) is stable, we perform the following calculations.

To begin with, the steady and homogeneous solution (ρ0 > 0, ϕ0 > 0) of (S5)-(S6) is

ρ0 = −L0(ϕ0)

R̄
, ϕ0 = − R̄

ϵ

L0(ρ0)

L0(ϕ0)
, (S7)
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where we have defined L0(ρ0) ≡ L(ρ0, 0) and L0(ϕ0) ≡ L(ϕ0, 0). Note that positivity of ρ0 requires L0(ϕ0) < 0. To
check the stability properties, we linearize: ρ(x, t) = ρ0 + δρ(x, t), ϕ(x, t) = ϕ0 + δϕ(x, t), L = L0(ρ0) + L1δρ(x, t) +
O(δρ)2, L = L0(ϕ0) + L1δϕ(x, t) + O(δϕ)2. Under Fourier transformation, δρ(x, t) → δρ̃(k, t), δϕ(x, t) → δϕ̃(k, t),
L1 → L̃k and L1 → L̃k, the linear stability of (ρ0, ϕ0) is guaranteed if the following linear growth rates λ±(k) have
negative real parts ∀k:

λ±(k) =
1

2

[
L̃k + L̃k − ϵϕ0 ±

√
(L̃k + L̃k − ϵϕ0)2 − 4(L̃k − ϵϕ0)L̃k − 4R̄ρ0

]
. (S8)

We now impose additional restrictions on L and L that would be sufficient to guarantee stability of (ρ0, ϕ0). First,
we assume that Lk < 0. This is the case if the dynamics of the toxin in the absence of release is some diffusion-
decay process. For the population dynamics implemented in L we assume that the maximum of L̃k is achieved at
k = 0, i.e. L̃k ≤ L̃k=0 = L0(ρ0)

′. This is the typical case in which gradient terms in the population dynamics are
diffusion-like, but excludes models in which higher order derivatives induce instabilities [2–4]. Finally, we restrict
to L0(ρ0)

′ ≤ L(ρ0)/ρ0 (= ϵϕ0). This is for example the case if L0(ρ0) is linear, or the well known logistic model
L0(ρ0) = aρ0− bρ20 with b ≥ 0. But excludes the case b < 0, which could lead to additional homogeneous instabilities,
as in [3, 4]. The stated conditions are sufficient to guarantee that L̂k + L̂k − ϵϕ0 < 0, and then Reλ±(k) < 0 ∀k, and
(ρ0, ϕ0) is stable so that no pattern-forming instability occurs. In the main text we focus on showing that, keeping
the same dynamics for L and L, in the fast-signal limit the result for the linear stability changes qualitatively and
allows pattern formation to occur for some classes of L and L.

STATIONARY SIGNAL DENSITY FIELD FOR A SINGLE RELEASE IN THE FAST
SIGNAL-DYNAMICS LIMIT

Under the dynamics

τϕ∂tϕ = L(ϕ, ∂xϕ) +Rρ(x, t) , (S9)

in the case of a single persistent and localized release, say at x = 0: Rρ(x, t) = I0δ(x) if t ∈ [ti, tt + δ̄], and in the fast
signal-dynamics limit τϕ → 0, ϕ immediately achieves a stationary profile G(x) which lasts while the pulse is present
(t ∈ [ti, tt + δ̄]). Assuming that the signal dynamics is ruled by

L(ϕ, ∂xϕ) = Dϕ∂x(ϕ
ν−1∂xϕ)− [γϕµ−1]ϕ , (S10)

the stationary profile G(x) satisfies
Dϕ∂x(Gν−1∂xG)− γGµ = −I0δ(x) . (S11)

This stationary solution can be found rewriting the above equation as

∂xxZ − νκZ
µ
ν =

−νI0
Dϕ

δ(x) (S12)

where Z = Gν and κ = γ
Dϕ

. Outside the release point we need that ∂xxZ = νκZ
µ
ν . The solution can be found [5]

using as ansatz a generalization of the exponential function, namely

eq(x) ≡ [1− (1− q)|x|] 1
1−q , (S13)

which is valid for |x| ∈ [0,+∞) for q ≥ 1 and |x| ∈ [0, 1/(1− q)] if q < 1. This function recovers the exponential

function in the q → 1 limit. Its derivative is given by
deq(sx)

dx = −seqq , then, consequently
d2eq(sx)

dx2 = s2qe2q−1
q . Hence,

substituting Z = A′eq′(s
′x) in Eq. (S12) we find s′2 = (A′)µ/ν−1κν/q′, q′ = µ+ν

2ν and A′ = Aν . Using that G = Z1/ν ,
we find that

G(x) = Aeq(sx) , (S14)

q = 1 +
µ− ν

2
, s2 =

2κAµ−ν

(µ+ ν)
, A =

[
I0
2Dϕ

√
µ+ ν

2κ

] 2
µ+ν

,

where the value of the amplitude A is found by considering the flux constrain introduced by the point release,
∂xZ|x=0 = −νI0/(2Dϕ). For q < 2, the area under the stationary profile is finite and it is given by G̃(0) ≡

∫
dxG(x) =

2A
(2−q)s .
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NUMERICAL INTEGRATION SCHEME

In order to numerically integrate Eqs. (1-3) of the main text, we follow a standard forward Euler scheme
complemented with the generation of the stochastic state-dependent toxic release Rρ. We discretize space in small
cells of size δx and time in small intervals of duration δt and define ρj,n ≡ ρ(x = jδx, t = nδt), and analogously with
ϕj,n. For the particular dynamics given by Eq. (7) of the main text, the evolution after one time-step δt of the
population and signal fields is obtained as follows:

ρj,n+1 = ρj,n + [Dρ(ρj+1,n + ρj−1,n − 2ρj,n)/(δx
2) + rρj,n − ϵρj,nϕj,n]δt/τρ , (S15)

ϕj,n+1 = ϕj,n + [Dϕ(ϕ
ν
j+1,n + ϕν

j−1,n − 2ϕν
j,n)/(νδx

2)− γϕµ
j,n +Rj,n]δt/τϕ .

We used that the nonlinear diffusion term ∂x(ϕ
ν−1∂xϕ) can be written as ν−1∂xxϕ

ν to help with numerical instabilities.
The stochastic variable Rj,n is the discretized version the pulse release function Rρ(x, t) given by Eq. (3) of the main
text. It is implemented as follows: Initially all Rj,n are set to zero. At each time step we check if a pulse will occur
somewhere in the system, with probability αN(t)δt, where N(t) =

∑
k ρk,nδx is the total population. If so, the needed

pulse location j is sampled from its probability ρj,n/
∑

k ρk,n. Then, the value Rj,n is set to I0/δx during δ̄/δt time
steps, being reset to zero afterwards. The denominator δx arises from the discretization of the spatial delta function.
To ensure that fast pulses are resolved by the numerical integration we consider δx = 1.0, smaller than signals’ reach
(∼ 10), and δt = 10−6, much smaller than the signal duration time δ̄ = 0.01.

NUMERICAL STEADY SOLUTIONS FOR FAST SIGNAL DYNAMICS
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Figure S1: Signal dynamics (dashed lines) from integration of Eq. (2) with (7) of the main text starting from vanishing toxic
signal, but with signal release fixed to a delta function at the origin (Rρ = I0δ(x)). Time is indicated by color as shown in
the colorbar. Parameters as in Fig. 3b of the main text. After a short transient the profile correctly approaches the stationary
profile calculated in the fast signal-dynamics limit from the integrodifferential description of Eq. (8) of the main text (solid
black line).

Both as a check of the numerical algorithm of the previous Section, and to show the validity of the integrodifferential
approximation in Eq. (6) of the main text, obtained in the fast signal-dynamics limit, we show in this Section two
simulations of the system (1-3) with (7) in a fast signal regime.

First, Fig. S1 displays an integration of Eq. (2) with (7) using the second equation of the numerical algorithm
(S15) in a situation of fast signal dynamics (parameters as in Fig. 3b of the main text) but with the release fixed
as a delta function at the origin Rρ(x, t) = I0δ(x) (Rj,n = I0/δx in the discretized version). We see that the signal
intensity profile correctly achieves in a short time the analytical steady form given by Eq. (8) of the main text, which
is adequate for this parameter regime.
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Figure S2: Snapshots of the density profiles at the long-time regime are shown as gray (95% transparent) solid lines. Snapshots
are from the same simulation as in Fig. 3b of the main text, but for 200 < t < 1000, being displayed at every unit time interval
(800 samples). The solid black line is the long-time state (LTS) of the integrodifferential Eq. (6), appropriate for this fast
signal-dynamics situation. This last solution was spatially shifted so that the peaks of the two solutions match.

Second, in Fig. S2, we show that the pattern produced by the numerical integration of the stochastic system (1-3)
with (7) of the main text, in the fast-signal regime (same simulation as in Fig. 3b of main text) matches the stationary
profile predicted by the integrodifferential description Eq. (6) of the main text, obtained by numerical simulation at
long times, using random fluctuations around the homogeneous solution as initial condition.
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