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Abstract

This work aimed to evaluate the potential of visible-near-infrared (VNIR) and thermal

infrared (TIR) imagery, acquired from an unmanned aerial vehicle (UAV), to detect

vine water status. Three irrigation treatments were designed to impose weekly evapo-

transpiration (ET) to KC = 0.2, KC = 0.4 and KC = 0.8 of reference ET. In-situ leaf area

index (LAI) and midday leaf (ΨLeaf)  and stem water  potential  were collected during

seven UAV overpasses. TIR-based temperature correlated highly with the water status

variability observed between treatments (ΨLeaf: r = -0.68). However, VNIR indices were

less correlated with ΨLeaf  (r < 0.4), revealing the importance of TIR imaging to capture

the vine physiological response to water stress, with foliage differences being less ap-

parent between treatments. 

Keywords: remote sensing, irrigation, vineyards, thermal infrared, multispectral

Introduction

More than 7 Mha of the Earth’s surface is devoted to grapevine production according to

the  Organisation  International  de  la  Vigne  et  du  Vin (OIV,  2022),  occupying  a

particular  historical,  cultural  and  economic  importance  in  the  Mediterranean  region

(Limier et al., 2018). While vineyards have traditionally been cultivated through rain-

fed  conditions,  irrigation  practices  are  becoming  increasingly  widespread  in  the

Mediterranean basin, particularly due to the increase of extreme heat and drought events

stemming from climate change (Rienth & Scholasch, 2019; Romero et al., 2022). 

The precise quantification of water availability and vine water status is therefore essen-

tial to provide guidelines on agronomic management solutions to optimize grape pro-

duction in light of these changing conditions. In recent years, large advances have been

made in the use of unmanned aerial vehicles (UAV) to support the precise monitoring of

agronomic activities (e.g., de Castro et al., 2021). Particularly, the use of UAVs in con-

junction  with  visible-near-infrared  (VNIR)  and  thermal  infrared  (TIR)  sensors  have

shown great promise to monitor vine water stress (Bellvert et al., 2014; Kustas et al.,

2022).  VNIR sensing has  been well  established in  the retrieval  of  vegetation traits,

while TIR imaging can capture vegetation physiological response through its relation-

ship with transpiration and, thus, crop water use. Although, there is still a greater need

to fully evaluate the radiometric accuracy of UAV sensors (Fawcett et al., 2020) and



how this may impact the capabilities of these systems to provide adequate agronomic

management solutions. A particular bottleneck in this regard is the ‘black box’ nature of

most conventional drone processing software (i.e. Pix4D, Agisoft Metashape). This not

only limits the ability to improve UAV-based remote sensing applications for crop mon-

itoring but is also an economic and scientific barrier to many potential researchers and

early-adopters. 

The main objective of this study was to evaluate the capabilities of a UAV-based pay-

load using VNIR and TIR sensors to track water stress over grapevines treated with dif-

ferent irrigation regimes, through the use of fully open-source processing chains (i.e.

OpenDroneMap).  Remote  sensing-based  vegetation  indicators  were  benchmarked

against in-situ biophysical measurements collected during UAV overpasses. 

Materials and Methods

The case study was implemented in a 0.5 ha vineyard (Petit Verdot) located at the ‘El

Socorro’ experimental farm (Belmonte de Tajo, Madrid, Spain; altitude 755 m.a.s.l.) in

central Spain. The area is characterized by a typical semi-arid continental Mediterranean

climate with mean annual air temperatures of about 14°C and average annual rainfall of

420 mm (Guerra et al., 2022). In 2021, a drip irrigation system was installed to allow

variable  and  precise  irrigation  application  to  study  the  effect  of  water  stress  on

grapevines. The experimental design was established following a randomized block de-

sign with three replications for three different treatments (Fig. 1). The three different ir-

rigation treatments consisted on maintaining different crop coefficient (KC) compared to

the reference ET (ET0) as calculated by the FAO Penman-Monteith method (Allen et al.,

1998) using daily meteorological data from a nearby tower. The irrigation period in

2022 began in early June and ended at the end of September, where irrigation inputs

were adjusted weekly over the three treatments in order to maintain a Kc of 0.2 (0.2KC,

under-irrigated), 0.4 (0.4KC, control) and 0.8 (0.8KC, over-irrigated). 

Seven field campaigns (Jun-21, Jul-05, Jul-19, Aug-02, Aug-16, Aug-30, Sept-19) were

carried out during the 2022 vine phenological period to acquire UAV imagery and in-

situ  vine  biophysical  measurements. Three  permanent  sampling  points  (i.e.  vines)

spaced evenly at each repetition (3) of each treatment (3) resulted in a total of 27 field

measurement  points  in  each  campaign.  Midday  leaf  (ΨLeaf)  and  stem  (ΨStem)  water

potential were measured at each sampling point using Scholander pressure chamber. In

Figure 1. Aerial view of the El Socorro farm (a), scheme with the 3 different irrigation treatments 
distributed in 3 blocks and 36 vine rows (b), and construction of the drip irrigation system (c, d).



addition,  leaf  area  index  (LAI)  measurements  using  the  Licor  LAI-2200C (LICOR

Bioscience USA, 2011) were acquired following the protocol established for vineyards

suggested  by  White  et  al.  (2019).  A  DJI  Matrice  300 UAV

(https://www.dji.com/matrice-300)  was  used  to  acquire  visible-near-infrared  (VNIR)

and  thermal  infrared  (TIR)  imagery  using  a  multispectral  Parrot  Sequoia+

(https://www.parrot.com/us/support/documentation/sequoia) along with a DJI Zenmuse

H20T  (https://www.dji.com/zenmuse-h20-series),  respectively.  Both  sensors  jointly

acquired images at 40-50 m above surface with a 70% overlap, resulting in a native

pixel resolution of between 3-5cm. 

Ortho-mosaics  were  processed  using  OpenDroneMap  (https://www.open-

dronemap.org/), an open-source drone processing software (source code is available at

https://github.com/OpenDroneMap/ODM  )  . VNIR data from Sequoia were radiometri-

cally  calibrated  using  camera  correction  and  a  downwelling  irradiance  sensor  (see

https://docs.opendronemap.org/arguments/radiometric-calibration/).  Three  vegetation

indices (VIs) were selected that exploited the different spectral bands available on the

Sequoia sensor. The normalized difference vegetation index (NDVI, eq. 1, Rouse et al.,

1974) is the most widely used VI and has been been shown to correlate with vegetation

density (e.g. Gitelson, 2004). The optimized soil-adjusted vegetation index (OSAVI, eq.

2, Rondeaux et al.,  1996) was proposed to limit the effect of soil reflectance on the

NDVI signal, especially for conditions of low vegetation cover. The red-edge NDVI

(reNDVI, eq. 3, Gitelson and Merzlyak 1994), was also selected since red-edge bands

tend to be less affected by the canopy structure (e.g. Dong et al., 2019).

NDVI=
pNIR − pRED

pNI + pRED
(1)

OSAVI=
pNIR − pRED

pNIR+ pRED+0.16
(2)

reNDVI=
pNIR − pRedEdge

pNIR+pRedEdge
(3)

where pNIR,  pRedEdge and pRED are the reflectance factors of band 4 (~790 nm),

band 3 (~735 nm) and band 2 (~660 nm) of the Sequoia sensor, respectively. Raw TIR

H20T image tiles (i.e. in R-JPEG format) were converted to a single band radiometric

temperatures using the open-source DJI Thermal SDK software (https://www.dji.com/

downloads/softwares/dji-thermal-sdk).  These individual  temperature image tiles  were

then mosaicked together with OpenDroneMap. The resulting ortho-mosaic represented

the at-sensor radiometric brightness temperature (BT) as emissivity was maintained at 1

and no atmospheric corrections were applied.  Grapevine pixels were extracted by first

classifying the image into three main classes: vegetation, soil and shadows using a ran-

dom forest (RF) image classifier method, implemented using the scikit-learn (https://

scikit-learn.org/stable/index.html) Python package. The RF model was trained using all

four of Sequoia’s multispectral bands over 30 points manually selected over each class

(total of 90 points). Vegetation pixels were then extracted by further discarding pixels

with NDVI values less than 0.2 to limit crown edge pixels that may be affected by soil/

shadow interference. Furthermore, a digital surface model from a 3D point clouds de-

rived from concurrent high-resolution RGB camera (DJI P1,  https://www.dji.com/zen-

muse-p1) was used to extract only vegetation pixels with canopy height greater than

0.75 m to filter out vegetation pixels associated to weeds. 

https://www.dji.com/zenmuse-h20-series
https://www.parrot.com/us/support/documentation/sequoia
https://www.dji.com/matrice-300
https://www.dji.com/zenmuse-p1
https://www.dji.com/zenmuse-p1
https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html
https://www.dji.com/downloads/softwares/dji-thermal-sdk
https://www.dji.com/downloads/softwares/dji-thermal-sdk
https://docs.opendronemap.org/arguments/radiometric-calibration/
https://github.com/OpenDroneMap/ODM
https://www.opendronemap.org/
https://www.opendronemap.org/


Using this procedure, vine pixels were selected for each block (three treatments with

three repetitions) for all dates assessed (total N = 63) to perform the statistical analyses.

These analyses examined whether significant differences within vine water status indic-

ators were apparent between irrigation treatments on both UAV-based radiometric in-

dicators and in-situ measurements. A repeated two-way analyses of variance (ANOVA)

was performed using treatments and time (i.e. sampling dates) as independent variables.

Along with this,  post-hoc analysis  with  pairwise t-tests  examined how the different

treatments and dates differed and interacted with each other. In-situ measurements of

ΨLeaf, ΨStem and LAI, along with the three VIs and BT, were used as dependent variables

to examine how the different UAV-based indicators captured the different treatment ef-

fects. Furthermore, linear regression models were developed between in-situ measure-

ments and VIs to assess their relation and the predictive power of the UAV system to

estimate vegetation biophysical indicators.

Results and Discussion

Mean values of  ΨLeaf,  ΨStem  and LAI for each treatment and sampling date, along with

boxplots grouped by treatment, are shown in Fig. 2. The repeated two-way ANOVA

showed significant differences for ΨLeaf between treatments (F-Score = 106.9; p = 0.008)

and sampling dates (F-Score = 60.3; p = 0.002). However, the interactions between both

terms were not significant (p = 0.2).  The post-hoc analysis also revealed significant

pairwise differences between the three treatments (0.2KC vs 0.4KC: p = 0.02; 0.2KC vs

0.8KC:  p = 0.003; 0.4KC vs 0.8KC:  p = 0.02;). Significant treatment effects were also

found for ΨStem (F-Score = 34.1; p = 0.015) along with a significant sampling date effect

(F-Score = 177.4;  p = 0.004). As Fig.  2e shows, there were clear differences between

treatments on all dates except on September 16th, where ΨStem values between treatments

converged together. Recent irrigation and rainfall inputs prior to the field campaign on

September 16th likely reduced the overall grapevine water stress (i.e. Fig. 2d) and con-

tributed to the convergence of both ΨStem and ΨLeaf on this date. Post-hoc pairwise t-tests

showed that the mean values were most significantly different between 0.2 and 0.8 KC

treatments (p = 0.01), followed by 0.4 and 0.8 KC (p = 0.04) and then 0.2 and 0.4 KC (p

= 0.09). It should be noted that in-situ ΨStem sampling began on July 19th campaign so

there are fewer sample points compared to ΨStem and LAI.  

For LAI, borderline non-significant effects were found for both treatments (F-Score =

6.45; p = 0.09) and dates (F-Score = 7.29; p = 0.05), while the interactions of both were

not significant  (F-Score: 2.50;  p = 0.25). LAI values between the 0.2KC and 0.4KC

treatments were very similar throughout the period assessed (Fig. 2f) and their differ-

ences were highly insignificant (p = 0.89). The 0.8KC treatment showed larger differ-

ences compared to both 0.2KC (p = 0.19) and 0.4KC (p = 0.21), visually apparent during

the peak summer period (starting from the July 19th campaign as seen in Fig. 2f). How-

ever, these results suggest that changes to vine foliage density were not as sensitive to

water stress, with non-significant treatment effects on LAI. Only the over-irrigated (i.e.

0.8KC) treatment showed important differences during the peak and late summer period

(Fig. 2f), but overall differences were not. Mean LAI values were 1.81 and 1.85 m2/m2

for 0.2KC and 0.4KC, respectively which were much lower to the mean 2.49 m2/m2 ob-

served in 0.8KC. By contrast, both ΨStem and ΨLeaf showed more consistent and significant



differences  between  treatments.  These  in-situ  measurements  confirm  an  important

physiological response from the grapevines to the induced water stress, which did not

translate as significantly to alterations in vine foliage density. 

 

 

 

Radiometric VIs from the UAV payload showed similar responses to the treatments as

compared to the in-situ measurements (Fig. 3). To make comparisons more robust, BT

was  normalized  on each overpass  (nBT),  using  minimum and maximum vine  pixel

values,  to  limit  differences  in  BT between  dates  due  to  meteorological  conditions.

ANOVA revealed significant differences due to irrigation treatments for all indices (p

<0.001). NIR-based VIs showed a similar to response to LAI observations, where mean

values of NDVI and OSAVI were very similar between treatments 0.2KC and 0.4KC (i.e.

mean NDVI values were 0.42 and 0.43, respectively) while the 0.8Kc treatment had

consistently higher values (i.e. mean NDVI  = 0.49). 

Figure 2. Boxplots grouped by treatment (0.2KC - red, 0.4KC -green and 0.8KC-blue) for in-situ 
measurements of (a) leaf water potential (ΨLeaf), (b) stem water potential (ΨStem) and (c) leaf area index

(LAI). Mean and standard deviation of (d) ΨLeaf, (e) ΨStem and (f) LAI over the UAV overpass dates.

Figure 3. Time-series, grouped by treatment (0.2KC - red, 0.4KC -green and 0.8KC-blue), for derived 

VNIR-based vegetation indices and normalized brightness temperature (nBT). 



By contrast, reNDVI showed a somewhat different response to the treatments and had

different  temporal  pattern  compared to  NDVI and OSAVI (Fig.  3).  reNDVI values

experienced larger decreases in 0.2KC (mean reNDVI = 0.04) but smaller differences

were observed between 0.4KC (mean reNDVI = 0.047) and 0.8KC (mean reNDVI =

0.046).  The  sequoia  red-edge  band  was  reported  by  Fawcett  et  al.  (2020)  to  have

significant  offsets  compared  to  field  spectroscopy.  As  such,  further  radiometric

evaluation  is  needed  to  better  understand  the  potential  of  the  red-edge  band  for

grapevine precision monitoring.  Differences  between 0.2KC and 0.4KC were slightly

more apparent with BT, with the mean nBT increasing to 0.33 compared to 0.29 in

0.4KC. Large differences were also observed between the mean nBT in 0.4KC and 0.8KC

(mean nBT decreased to 0.19 in 0.8KC). The treatment differences for nBT were also

relatively consistently maintained throughout the phenological period, while being more

pronounced from august onwards (Fig. 3).

Fig 4. shows significant and negative correlations between BT with both ΨLeaf (r = -0.68;

p < 0.001) and ΨStem (r = -0.5; p < 0.001). It is somewhat surprising that ΨStem were less

correlated to BT as compared to ΨLeaf (although both were significant) since in-situ ΨStem

were more sensitive to irrigation treatments (Fig. 2). However, there were also fewer

ΨStem measurements since field sampling for this variable only began from the July 19th

campaign onwards, therefore statistical results may be affected by a smaller sample size.

By contrast, VNIR-based indices were much less correlated with  ΨLeaf   (r < 0.4) and

ΨStem   (r < 0.35). VNIR indices generally correlated well with LAI (e.g., OSAVI: r =

0.51, p < 0.001) while BT observed no relationship with LAI (r = -0.04, p = 0.74). 

This demonstrated the importance of TIR imaging to monitor vine water status, as also

discussed  in  Bellvert  et  al.  (2014).  VNIR  data  were  less  capable  to  explain  the

variability of  in-situ water potential measurements. Since TIR information is directly

related to stomatal closure, it is more suited to capture the crop water status and its

Figure 4: Figure 4. Linear regression models developed between in-situ measurements (leaf and stem 

water potential and leaf area index) and (a-c) VNIR indices and (d-f) brightness temperature. Best 

performing VNIR index is shown in figure. 



physiological response as compared to VNIR imaging, which is more suited to monitor

crop traits related to foliage structure or density. Indeed, changes to crop foliage may

not react as quickly to water stress as compared to crop transpiration, as shown from the

in-situ data taken throughout the main vine foliage period. By contrast, VNIR indices

were found to significantly correlate with LAI, which plays an important role in the

canopy radiation interception and, thus, on the partitioning of evapotranspiration (ET)

between soil evaporation and plant transpiration. In fact, accurate LAI has been shown

to be a critical factor in remote sensing-based ET modeling schemes, especially for ET

partitioning  (Kustas  et  al.,  2019).  Therefore,  results  from  this  study  suggest  the

combined use of TIR and VNIR imaging within a UAV payload has good potential to

estimate vine transpiration and give quantitative irrigation recommendations. 

Conclusion

The grapevines demonstrated a notable physiological response to the different irrigation

treatments through significant differences within  in-situ water potential observations,

but structural changes in foliage were not as sensitive to water stress as suggested by the

field LAI measurements. Notably, changes in foliage density were mostly apparent for

the over-irrigated treatment (i.e. 0.8Kc), however a non-significant treatment effect was

found for LAI measurements. UAV-based TIR acquisitions were better able to track the

different water status levels, having significant correlations with field acquisitions of

water potential, in particular with ΨLeaf. In contrast, VNIR-based VIs were found to not

relate well with the crop physiological response to water stress but seem to have poten-

tial predictive power to estimate crop foliage density (i.e. LAI). These results suggest

that this relatively low cost and open source UAV processing chain has large potential

to quantify vine water stress through, for example, the combined use of VNIR and TIR

imaging for precise transpiration retrievals. 
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