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ABSTRACT: Epitopes are specific regions on an antigen’s surface that the immune
system recognizes. Epitopes are usually protein regions on foreign immune-
stimulating entities such as viruses and bacteria, and in some cases, endogenous
proteins may act as antigens. Identifying epitopes is crucial for accelerating the
development of vaccines and immunotherapies. However, mapping epitopes in
pathogen proteomes is challenging using conventional methods. Screening artificial
neoepitope libraries against antibodies can overcome this issue. Here, we applied
conventional sequence analysis and methods inspired in natural language processing
to reveal specific sequence patterns in the linear epitopes deposited in the Immune
Epitope Database (www.iedb.org) that can serve as building blocks for the design of
universal epitope libraries. Our results reveal that amino acid frequency in annotated
linear epitopes differs from that in the human proteome. Aromatic residues are
overrepresented, while the presence of cysteines is practically null in epitopes. Byte
pair encoding tokenization shows high frequencies of tryptophan in tokens of 5, 6,
and 7 amino acids, corroborating the findings of the conventional sequence analysis. These results can be applied to reduce the
diversity of linear epitope libraries by orders of magnitude.
KEYWORDS: epitope analysis, library design, tokenization, natural language processing, byte pair encoding

Peptidic epitopes are mainly small protein regions from
microorganisms involved in noncovalent interactions with

immune cells, such as T lymphocytes and antibodies. Epitopes
can be classified into two groups based on their conformation
and their interaction with the recognition site within the
antibody, i.e., the paratope. Linear or sequential epitopes are
recognized by the antibody because of their specific amino acid
sequence. In this case, only the primary structure of the
peptide is recognized by the antibody. In contrast, conforma-
tional epitopes require several discontinuous segments of the
protein to play a role in the recognition. Detection is based on
the secondary and tertiary structure of both the antibody and
the antigenic protein. Thus, discovering epitopes in antigenic
proteins is not always straightforward. These proteins may
contain more than one linear epitope for different antibod-
ies.1,2 Moreover, structural epitopes can be challenging to
determine in scenarios without structural data, such as at the
onset of a viral outbreak.
The prediction of antibody−antigen binding (Figure 1) is a

central question in immunology. Finding epitopes in protein
sequences can accelerate the development of vaccines3 and
immunotherapies.4 Additionally, these sequences can be used
to design in vitro diagnostic tests to assess the exposure to
pathogens in humans, livestock, or vector animals and serve as
a first line of defense to prevent and monitor future epidemics.

All of these issues highlight the importance of having rapid
techniques to define and characterize epitopes. Traditional
methods to detect these sequences are based on experimental
procedures such as cocrystallization,5 cryogenic electron
microscopy (cryo-EM),6 phage display7 or array-based
oligopeptide scanning.8 However, these protocols are costly
and time-consuming, limiting the rapid response required for
the development of diagnostic tools, vaccines, and immuno-
therapies. To address this issue, one alternative is to create a
universal randomized epitope library that can be rapidly
screened against any target antibody.
Deep learning (DL) algorithms have shown great potential

to tackle complex biological problems, including directed
evolution of proteins,9,10 eukaryotic gene expression regu-
lation,11 and modeling nucleic acid aptamers.12 Among all
fields using DL, natural language processing (NLP) has
demonstrated significant advancements in the last years, in
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particular, in language understanding and generation. NLP
techniques are being applied in biological problems13 or design
novel functional proteins.14 Here, we have applied classical
computational analyses and an NLP-inspired tokenization
algorithm to identify sequence patterns in linear epitopes
deposited in the Immune Epitope Database (IEDB).15 The
results can be used as building blocks for the design of
neoepitope libraries.

■ RESULTS AND DISCUSSION
Global Amino Acid Propensity in Epitopes. The

predictability of antibody−antigen binding relies on the

assumption that paratope-epitope interaction motifs are
universally shared among the antibody−antigen structures.
Some studies sought to establish statistical relationships in
epitopes, but the number of sequences analyzed in these
studies has been limited to a few hundreds or thousands, and
they usually focus on conformational epitopes.16,17 These
works analyzed structural data of antibody−antigen complexes
and found a higher propensity of hydrophilic residues in
epitopes and an enrichment of aromatic residues in paratopes.
To investigate this phenomenon in a broader data set, we have
performed a computational study considering the annotated
epitopes in the IEDB. The IEDB contains experimental data on
B cell and T cell epitopes, including entries related to
infectious diseases, allergies, autoimmunity, and transplanta-
tion. Our statistical analysis revealed that epitopes share
common features related to their overall amino acid frequency.
Figure 2a and 2b depict the global propensity of each amino
acid in epitopes with a length of 8 (n = 55,609) and 9 (n =
268,118) amino acids, respectively, compared with the human
proteome (see Methods). Global propensity is an indicator
used to measure the relative occurrence of amino acids for a
given data set. These epitope lengths are two of the most
represented in the entire data set (n = 716,529) (Figure 2c).
The propensity for the rest of the epitopes is shown in Figure
S1, and the overall global propensity variation is shown in
Figure S2. The abundance of aromatic residues in epitopes is
significant, especially in the last position of these short
sequences, which is in contradiction with other reported
aromatic residue propensities in conformational epitopes.16,17

This phenomenon could be explained by the potential pi-
stacking interactions between the aromatic residues of the
epitope and the antibody, which may play a role in the
molecular recognition of this type of system.19 Pi-stacking has
several implications in other biomolecular recognition
processes.20,21 The long-range of interacting distances between
aromatic residues could account for their underrepresentation
in structural-based analyses, where contact residues are filtered
based on a distance cutoff of <4.5 Å, which is suitable for

Figure 1. Structural scheme of antibody−antigen binding. The figure
shows the antibody (heavy chains in green and light chains in
yellow)−antigen (in purple) complex between the Zika virus E
protein and the mouse monoclonal immunoglobulin G molecule
(IgG). The 18-mer amino acid epitope within the E protein is
highlighted in pink (montage made with PDBs: 1IGT and 5IRE).

Figure 2. Computational analysis of the IEDB sequences. (a,b) Amino acid global propensity and entropy for 8-mer and 9-mer epitopes,
respectively. The amino acids are underlined as follows: aliphatic in red, aromatic in green, acidic in orange, basic in blue, hydroxylic in pink, sulfur-
containing in yellow, and amidic in dark blue. (c) Length of the analyzed epitopes. (d) Number of aromatic residues in 8-mer epitopes. (e,f)
Position of aromatic residues in (e) 8-mer epitopes carrying a single aromatic residue and (f) 8-mer epitopes carrying 2 aromatic residues.
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capturing most molecular interactions in proteins, including
hydrogen bonds and van der Waals forces. However, this cutoff
excludes aromatic interactions, such as π-stacking, which occur
at distances ranging from 4.5 to 7.5 Å.18 Another relevant
phenomenon observed is the low propensity of cysteines in all
of the epitope positions. Cysteines contain a sulfur atom that
can form disulfide bonds with other cysteines. Disulfide bonds
are strong, covalent-like bonds, with a typical bond dissociation
energy of 60 kcal/mol.22 Antibody−antigen recognition is a
high-affinity interaction yet reversible, and hence, cysteines are
probably not good candidates for such rescindable binding.
Additionally, we computed the frequency and relative

positions of the aromatic residues in the epitopes. Figure 2d
shows that 56.5% of the 8-mer epitopes contain at least one
aromatic residue, corroborating the previous propensity data.
Figures 2e and 2f depict the position of the aromatic residues
in the epitope with 1 or 2 aromatic amino acids. It can be
observed that the probability of finding an aromatic residue at
the last position of the epitope is higher than that at any other
position. Considering this phenomenon, the relative entropy of
each position in the epitope sequence was also examined.
Relative entropy gives a numerical value of the amino acid
variation at each position by calculating the separation of the
amino acid distribution at each position in epitopes from a
position-independent reference state, the amino acid frequency
in all proteins in the human proteome (see Methods). This
analysis revealed that the last position of the epitope is
significantly more entropic than the others and that this
phenomenon is independent of the length of the epitope (right
panels of Figure 2a and 2b and Figure S3) up to 12-mers. The
results obtained from all the data sets indicate average relative
entropy values ranging from 0.15 to 0.3 (Table S1). These
values signify the high variability observed in epitopes, which
can be interpreted as a fundamental characteristic of their
biological role. In fact, a relative entropy below 0.3 has
previously been used to define hypervariable positions that
play a key role in protein−protein interactions.23

NLP-Inspired Tokenization of Epitopes. The IEDB data
set contains more than 106 epitope entries and continues to
grow daily. Analyses such as the search of protein motifs or
repetitions require specific computational techniques. For
instance, the EMBL’s European Bioinformatics Institute
(EMBL-EBI) hosts the PRATT software for protein pattern
analyses.24 This tool enables the identification of conserved
patterns in sets of unaligned protein sequences. However, it is
limited to analyzing only 100 protein sequences, highlighting
the need for algorithms that enable high-throughput analyses.
Other useful software, such as Pepsurf25 and MimoPro,26 are
valuable tools for epitope mapping after previous selection of
peptides using phage display technologies. However, these
tools require structural data of the antibody to accurately
compute the potential epitope sequences over the interaction
surface of the paratope. In this context, DL algorithms have
gained substantial importance in the field of bioinformatics27

over the past few years. In recent years, computer vision (CV)
and NLP have witnessed remarkable advancements, culminat-
ing in the development of cutting-edge tools such as DALLE2
or ChatGPT. Interestingly, there exist significant parallels
between human language and protein sequences.28 Not
surprisingly, NLP techniques have been widely applied to the
protein research realm, such as in homology detection or
protein functional classifications.28 With the advent of highly
performing language models, NLP is now accelerating the

analysis and design of protein sequences,29 and has even
allowed the prediction of protein structures with atomic
accuracy.30 NLP methods also allow the tokenization (slicing
an input in atomic units of information known as tokens) of
strings (Figure 4a), facilitating the search for contiguous
protein motifs and repetitions. In this work, we have used
tokenization techniques to extract meaningful linear patterns
from the epitope sequence data. The tokenization has been
carried out using the byte pair encoding (BPE) algorithm.31

BPE is a data compression algorithm that replaces the most
common consecutive pair of bytes of data with a byte that does
not appear in the data set. Hence, it can also be used to find
the most frequent bytes (or subwords) and has been widely
adopted in NLP preprocessing steps due to its speed and
performance. In the context of our epitope data set, BPE finds
overrepresented tokens sequentially, starting from single amino
acids and dipeptides and continuing with tokens of three, four,
and five amino acids, respectively, until finding the longest
token, which we set up to 10-mers in this study. Initially, we
observed a significant proportion of tokens containing multiple
repetitions of the same amino acid. Although poly-X patterns
proteins have been associated with roles in disease,32,33 we
have not found evidence in the literature suggesting their
involvement in Ab-antigen recognition. For instance, our
analysis of the IEDB database revealed that over 75% of 4-mers
containing polyA-, poly-P, poly-S, and poly-G correspond to
epitopes from Trypanosoma cruzi (Figure S4), which may
indicate a bias toward well-studied pathogens with distinctive
poly amino acid proteins, such as the mucin-like proteins from
T. cruzi.34 As our goal is to define an epitope library that
encompasses a wide range of pathogens, we have preprocessed
the data set to filter out entries containing poly-X patterns of
four or more identical amino acids. The final data set, including
epitopes of all lengths, was tokenized with an increasing
number of final tokens as a target (from 50 to 9950 tokens).
Larger vocabulary sizes allow for the finding of longer tokens.
Results revealed that tokens with lengths of 3 and 4 amino
acids still exhibit a significant proportion of tripeptides with
identical amino acids (e.g., “LLL”). To mitigate potential noise,
we focus on tokens with larger lengths. Figure 3 summarizes
the number of tokens of a certain length for each tokenized

Figure 3. Number of tokens of a certain length found at each
vocabulary size. BPE works sequentially, finding shorter tokens (2-
mers, 3-mers, and 4-mers) first. These tokens tend to plateau at their
limit; e.g., there are only 202 possible 2-mers. Tokens of longer
lengths only appear at larger vocabulary sizes; e.g., the first 10-mer
appears with a vocabulary size of 6372.
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vocabulary size. BPE operates sequentially, and thus at small
vocabulary sizes (<2000) 2-mers, 3-mers, and 4-mers are first
found. The occurrence of these token sizes tends to plateau
since there are only 202, 203, and 204 combinations for each
respective k-mer. Figure S5 illustrates the most common
tokens of the 3-mers and 4-mers. At vocabulary sizes of 2000
and beyond, 5-mers and tokens of larger sizes begin to emerge.
Tokens of those lengths showed an elevated frequency of
tryptophan residues in the epitopes, which supports previous
computational results. In particular, Figure 4b shows the
frequency of tryptophan residues on the 25 most repeated
tokens of 5, 6, and 7 residues versus the average frequency of
tryptophan in 9 bacterial and archaeal genomes.35 The
frequency of tryptophan is between 3 and 5 times higher in
these tokens, suggesting that it may play an important role in
the molecular recognition of linear epitopes. The 25 most
repeated tokens of 5, 6, and 7 residues are shown in Figure 4c,
4d, and 4e, respectively. Interestingly, 59% of the 25 most
represented tokens contained at least one aromatic residue.
Figure S6 compares the amino acid frequencies for 5-mers, 6-
mers, and 7-mers sets after tokenization with their natural
frequencies. We observed additional trends that were not
revealed in the statistical analyses. Specifically, we note the
elevated frequencies of residues D, G, P, R, S, and Y in epitope
tokens with lengths of 6 and 7, as well as the relatively low
frequencies of residues E, I, K, and L when compared to the
reference values.
This study provides useful insights into defining the

sequences of randomized libraries that will help to find
artificial epitopes. Since the construction of a universal library
including all the possible epitopes appears unapproachable,
optimizing the possible immunoresponsiveness of fewer
sequences of a focused, smaller designed library can be an
effective strategy. For instance, a completely randomized
library of 6 residues possesses a diversity of 6.4 × 107 variants,
whereas fixing one of these positions to tryptophan would
decrease this diversity by 20-fold. Furthermore, the tokeniza-

tion of the data set also provides means to reduce the size of
the epitope library for further studies. Table S2 summarizes the
number of tokens for different vocabulary sizes and their
respective coverage of the entire data set. For example, the 25
4-mers found at a vocabulary size of 2000 cover 1.4% of the
entire data set. These tokens allow for further position fixing;
e.g., creating a library with these 4-mers at all possible positions
of 6-residue library would reduce its variability to 104. Another
possibility is the use of degenerated codons. Generating a
library with 4 RVK codons, encoding charged hydrophilic
residues (A, D, E, G, H, K, N, R, S, T) and 2 YWC codons,
enriched in aromatic residues (F, H, L, Y) will reduce the
diversity by 2 orders of magnitude. Moreover, considering the
results of the tokenization, it is possible to additionally shorten
the protein sequence space by locking one or two codons to a
single amino acid, such as W or Y. These reductions can be
applied in countless possible combinations to fine-tune the
diversity of the library in a custom manner, fixing a restrictive
relative entropy in positions where diversity is not needed.

■ CONCLUSIONS AND OUTLOOK
In this study, we applied both classic statistical methods and
NLP-inspired algorithms to identify universal patterns in linear
epitopes deposited in the IEDB. Our results suggest that
certain trends, such as the patterned presence of aromatic
residues or the low frequency of cysteine residues, are common
in linear epitopes. These computational analyses aim to reduce
the size of the protein epitope libraries by minimizing the
randomization of the residues or fixing certain positions to a
single amino acid. This reduction in size will allow for a more
efficient screening of the library using various techniques.
Furthermore, the identification of patterns in epitopes

provides valuable insights for designing therapies and vaccines
based on the antibody−antigen interaction, for example, using
high-throughput data from epitope libraries to train ML
algorithms to better predict epitopes involved in specific
antibody−antigen interactions. Consequently, better strategies

Figure 4. Tokenization of the IEDB with the BPE algorithm. (a) Comparison between NLP-inspired tokenization applied to human
communication languages and protein languages. (b) Frequency of tryptophan residues in the 25 most represented tokens of 5, 6, and 7 amino
acids and in the whole bacterial genome. (c−e) The 25 most represented tokens of 5, 6, and 7 residues, respectively. The y axis represents the
number of tokens that appear in the given sequence.
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can be employed to neutralize pathogens and boost the
humoral and immune response.36,37 In the diagnostics field,
the COVID-19 pandemic has shown that the rapid develop-
ment of reliable antibody/antigen detecting devices is
paramount for the early detection and control of new
infectious pathogens. The fast production of such devices
can help in evaluating the exposure to pathogens and levels of
immunization after treatments or vaccination. Moreover, the
mass fabrication of these point-of-care diagnostic devices has
several advantages in public-health control. All of these factors
make it clear that fast, cheap, and easy-to-use antibody/antigen
detection devices will gain importance exponentially in the
following decades. The design of artificial neoepitopes can
accelerate all these processes, allowing the development of
tests for new pathogens or strains without the need of
established structural data from pathogens’ proteins.
The advancements in machine learning, specifically NLP

algorithms, have emerged as significant contributors in
extracting meaningful information from expansive protein
data sets. Notably, the BPE algorithm has demonstrated
efficacy in routinely identifying prevalent linear patterns in vast
data sets. Furthermore, the field continues to expand at an
unprecedented pace, with recent developments including the
use of generative models for constructing antibody libraries.38

Machine learning and NLP algorithms are proving to be
pivotal in analyzing protein data sets, facilitating a deeper
understanding of protein structure, function, and interactions.
Finally, understanding the molecular mechanisms that

govern epitope recognition could pave the way for the
development of artificial T cell-like complexes. The engineer-
ing of cells with the capacity to recognize specific pathogenic
epitopes would significantly advance the field of artificial-cell
therapies. In this context, previous research articles have
reported an enrichment of aromatic residues in the paratope
segment of the antibodies.17,39−41 These results, together with
our findings on the elevated presence of aromatic residues also
in the epitopes, could clarify the role of pi-stacking in
immunomolecular recognition. We hypothesize that these
aromatic residues in both the epitope and the antibody could
act as an interdigitated molecular zipper playing a key role in
the molecular recognition and allowing for quick and reversible
complex binding.

■ METHODS
Global Propensity and Relative Entropy Analyses.

Statistical calculations were conducted downloading the
nonpost-translation modified linear epitope sequences data-
base from www.iedb.com. Amino acid propensity was
determined with the standardized methods used elsewhere.42

Thus, global propensities (GP) for each amino acid at each
position have been calculated as follows:

GP
n N

N N

/

/
i
x

x
epitopes

ref ref
=

where nix is the number of epitope sequences that contain the
amino acid x at position i, Nepitopes is the total number of
epitope sequences, Nref

x is the total number of each amino acid
x in all positions in the reference set, and Nref is the total
number of positions in the reference set. The reference set of
the human proteome codon usage was obtained from ref 43.
The amino acid frequencies f(x) for each amino acid x are A
(0.07), C (0.023), D (0.047), E (0.071), F (0.036), G (0.066),

H (0.026), I (0.043), K (0.057), L (0.1), M (0.021), N
(0.036), P (0.063), Q (0.048), R (0.056), S (0.083), T
(0.054), V (0.06), W (0.012), and Y (0.027). Logarithmic
values of the global propensities were used in the heatmap
plots to normalize the data. Relative entropy calculations were
carried out with the regular protein engineering methodologies
to calculate entropies used in other articles.23 Thus, relative
entropy is calculated using the following equation:

D p f p
p

f
( ) ln

x
x

x

x

|| =

where D is the relative entropy and px is the proportion of
sequences with amino acid x at position i. A single factor
ANOVA analysis was performed to obtain the p-values for each
X-mer data set. The null hypothesis states that the mean
entropies at each position are equal, and the significance level
used to reject the null hypothesis is α = 0.05.
Tokenization. Byte Pair Encoding was used to tokenize the

epitope data set. Before tokenizing, we removed all sequences
with five or more contiguous amino acids of the same type
(e.g: “AAAAA”). We used the Hugging Face library44 in a data
set size is 716,529 epitopes and excluded the new line
character (“\n”) from the process. We tokenized from
vocabulary sizes ranging from 50 to 10000. The average
tokenization runtime for a certain vocabulary size is 27.87 s on
a standard workstation.
Data Visualization. Graphs and figures were made using

GraphPad Prism and Inkscape. Table of contents image has
been designed using www.biorender.com.
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W. D.; Pais, F. S.; Macedo, C.; Djikeng, A.; Teixeira, S. M. R.; El-
Sayed, N. M. Genomic Organization and Expression Profile of the
Mucin-Associated Surface Protein (Masp) Family of the Human
Pathogen Trypanosoma Cruzi. Nucleic Acids Res. 2009, 37 (10),
3407−3417.
(35) Nakashima, H.; Ota, M.; Nishikawa, K.; Ooi, T. Genes from
Nine Genomes Are Separated into Their Organisms in the
Dinucleotide Composition Space. DNA Res. 1998, 5 (5), 251−259.
(36) Piontkivska, H.; Hughes, A. L. Patterns of Sequence Evolution
at Epitopes for Host Antibodies and Cytotoxic T-Lymphocytes in
Human Immunodeficiency Virus Type 1. Virus Res. 2006, 116 (1),
98−105.
(37) Thörnqvist, L.; Sjöberg, R.; Greiff, L.; van Hage, M.; Ohlin, M.
Linear Epitope Binding Patterns of Grass Pollen-Specific Antibodies
in Allergy and in Response to Allergen-Specific Immunotherapy.
Front. Allergy 2022, 3, Article 859126.
(38) Constant, D. A.; Gutierrez, J. M.; Sastry, A. V.; Viazzo, R.;
Smith, N. R.; Hossain, J.; Spencer, D. A.; Carter, H.; Ventura, A. B.;
Louie, M. T. Deep Learning-Based Codon Optimization with Large-
Scale Synonymous Variant Datasets Enables Generalized Tunable
Protein Expression. bioRxiv, Feb. 12, 2023. DOI: 10.1101/
2023.02.11.528149.
(39) Peng, H.-P.; Lee, K. H.; Jian, J.-W.; Yang, A.-S. Origins of
Specificity and Affinity in Antibody−Protein Interactions. Proc. Natl.
Acad. Sci. U. S. A. 2014, 111 (26), E2656−E2665.
(40) Traxlmayr, M. W.; Kiefer, J. D.; Srinivas, R. R.; Lobner, E.;
Tisdale, A. W.; Mehta, N. K.; Yang, N. J.; Tidor, B.; Wittrup, K. D.
Strong Enrichment of Aromatic Residues in Binding Sites from a
Charge-Neutralized Hyperthermostable Sso7d Scaffold Library. J.
Biol. Chem. 2016, 291 (43), 22496−22508.
(41) Zavrtanik, U.; Lukan, J.; Loris, R.; Lah, J.; Hadzǐ, S. Structural
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