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Abstract
The X-ray Integral Field Unit (X-IFU) instrument on the future ESA mission Athena
X-ray Observatory is a cryogenic micro-calorimeter array of Transition Edge Sensor
(TES) detectors designed to provide spatially-resolved high-resolution spectroscopy.
The onboard reconstruction software provides energy, spatial location and arrival time
of incoming X-ray photons hitting the detector. A new processing algorithm based on
a truncation of the classical optimal filter and called 0-padding, has been recently
proposed aiming to reduce the computational cost without compromising energy res-
olution. Initial tests with simple synthetic data displayed promising results. This study
explores the slightly better performance of the 0-padding filter and assess its final
application to real data. The goal is to examine the larger sensitivity to instrumental
conditions that was previously observed during the analysis of the simulations. This
0-padding technique is thoroughly tested using more realistic simulations and real
data acquired from NASA and NIST laboratories employing X-IFU-like TES detec-
tors. Different fitting methods are applied to the data, and a comparative analysis is
performed to assess the energy resolution values obtained from these fittings. The
0-padding filter achieves energy resolutions as good as those obtained with standard
filters, even with those of larger lengths, across different line complexes and instru-
mental conditions. This method proves to be useful for energy reconstruction of X-ray
photons detected by the TES detectors provided proper corrections for baseline drift
and jitter effects are applied. The finding is highly promising especially for onboard
processing, offering efficiency in computational resources and facilitating the analysis
of sources with higher count rates at high resolution.
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1 Introduction

The X-ray Integral Field Unit (X-IFU; [6]) is a high-resolution cryogenic imaging
spectrometer that will be one of the two instruments on-board the ESA’s Athena mis-
sion [31]. It will operate in the 0.2–12 keV band and provide unprecedented spectral
resolutionwith a FullWidth at HalfMaximum (FWHM) of 2.5 eV at 7 keV. TheX-IFU
Focal Plane will contain a large array of Transition Edge Sensors (TES; [36]) with
several tens of TES per readout channel using a Time Division Multiplexing (TDM)
scheme [18]. The on-board Event Processor [34, 35] hardware will reconstruct the
detected events caused by the impact of X-ray photons in the detector to estimate their
energy, arrival time and spatial location (based on impact pixel).

Event processing poses a significant challenge, demanding a delicate balance
between achieving high energy resolution from photons and minimizing computa-
tional costs. The effectiveness of selected algorithms for working in event processing
must be optimized to prevent degradation of the energy resolution caused by detector
non-linearity.

Numerous studies have investigated different algorithms to characterize the energy
of detected photons by X-IFU [8, 9, 12, 14]. Building upon our previous findings
in Ceballos et al. [9], this paper offers a more comprehensive understanding of the
ongoing efforts to identify the most suitable strategy for maximizing energy resolution
with this instrument.

At the core of reconstructing X-IFU events lies the classical optimal filtering tech-
nique [38]. This method involves digitizing time stream data into fixed-length records,
which are then utilized to construct the signal and noise components of the filter.

In order to construct the filter, two steps are followed (see e.g. [7, 17]). Firstly, the
Discrete Fourier Transform (DFT) of the average ofmultiple pulse records is calculated
to create the signal portion. Meanwhile, the noise portion is generated by averaging
the spectra of several pulse-free records. The f = 0 Hz bin of the DFT, typically
containing a slowly varying and arbitrary offset, is usually discarded to achieve a final
filter that is zero-summed. This zero-summed filter is crucial as it effectively rejects
the signal baseline during processing.

When working in the time domain, the most accurate estimate of photon energy is
obtained by computing the scalar product of the data pulse and an optimal filter. This
straightforward approach provides a proportional estimate of the photon energy

Ê = k
∫

d(t) of (t) dt, (1)

where d(t) is the pulse data, of (t) is the time domain expression of the optimal filter
and k is the normalization factor to give Ê in units of energy

k =
∫ 〈|N ( f )|2〉

S( f ) · S∗( f )
d f . (2)
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The matched filter (a normalized model pulse shape, S( f )) and the noise spectrum
(N ( f )) are used to initially build the optimal filter in frequency domain as

OF( f ) = S∗( f )
〈|N ( f )|2〉 . (3)

The optimal filtering technique relies on the assumption that all pulses are scaled
versions of a single template, which is not valid for non-linear detectors likeAthena/X-
IFU. Therefore, Ê serves strictly as an energy estimator that requires correction to
obtain the final energy. This correction involves applying a gain scale obtained from
filtering pulse templates measured at different calibrated energies (see Section 5).
To underscore the distinction between real energies and estimated (or reconstructed)
"pseudo-energies," we will employ (k)eV units for the former and (k)êV for the later.

The energy resolution of the instrument, determined after event reconstruction, is
measured by the FWHM of the Gaussian broadening resulting from the instrumental
setup and reconstruction algorithm, in addition to the Lorentzian natural profiles of
the lines in a typical X-ray complex.

As the average value of the filtered pulse is set to 0 (specifically the f = 0 Hz
bin), the number of samples used in the discrete expression of the data pulse and
filter can influence the final energy resolution achieved through the optimal filter [17].
Increasing the record length can improve resolution, but it comes with the trade-
off of higher computational demands as well as more sensitivity to low frequency
fluctuations. Furthermore long filters cannot be built at high count rates due to the
temporal proximity of the photon arrival.

In a previous study [14], we aimed to reduce the on board computing operations by
exploring optimal filters of varying lengths and comparing their performance in terms
of energy resolution.

The filters under investigation were:
• FULL: This filter uses a pulse template obtained by maximizing the length of the
data records (NFULL samples).

• SHORT: The pulse template in this filter is constructed using shorter pulses
(NSHORT samples), specifically half the length of the record, to save computa-
tional resources.

• 0-padding: A modified version of the FULL filter truncated to half its length in
the time domain. This approach is equivalent to 0-padding the data pulses in the
scalar product of filter and pulse (Section 2.1).

The analysis was conducted using syntheticmonochromatic data at 6 keV simulated
with the X-IFU official simulator xifusim [28].

The primary finding indicated that the 0-padding technique outperformed both the
SHORT and FULL filters in terms of energy resolution. Remarkably, it outperformed
the FULLfilter (which is currently the baseline filter for high resolution events) despite
being only half its length. This result suggests that 0-padding offers a viable alternative
for reducing the computational burden associated with optimal filtering.

However, to apply these findings in real-life scenarios it was crucial to extend the
analysis to more representative simulations, including photons from a typical X-ray
line complex with controlled simulated energy resolution.
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Moreover, the initial analysis revealed that the 0-padding filter is more sensitive to
variations in instrumental conditions, especially changes in bath temperature leading
to baseline drifts. Therefore, it was essential to test this approach using real laboratory
data before considering 0-padding as an optimization or even a feasible alternative to
the current baselined reconstruction algorithm.

This paper presents the energy resolution results obtained by applying the0-padding
filter to a realistic X-IFU simulation of the Mn Kα line complex and to TES (X-IFU-
like) real data from theGoddard Space Flight Center (GSFC) and theNational Institute
of Standards andTechnology (NIST) laboratories.We compare these resultswith those
obtained using the FULL optimal filter, which serves as the baseline method at these
laboratories, as well as with those obtained with the SHORT filter, equal in length to
the 0-padding filter. Additionally, we assess the performance and potential systematic
effects of different analysis algorithms, along with some external factors that could
influence the results.

It is important to highlight that although the initial motivation of this work stems
from the effort to find the optimal algorithm for reconstructing energy for the X-
IFU instrument, the results presented are applicable not only to data on X-IFU-type
detectors but can also be useful for other present or future TES detectors.

This work benefited significantly from the use of the software SIRENA [10, 11]
(Software IFCA for Reconstruction of EveNts for Athena X-IFU)1, a package devel-
oped to reconstruct the energy of the incoming X-ray photons after their detection in
the X-IFU TES detector.

Section 2 explores mathematically the possible reasons behind the better perfor-
mance of the 0-padding filter. Section 3 describes the simulations of the Mn Kα

line complex with xifusim and the performance of the filters on these simulated
data. Section 4 provides a description of the laboratory data utilized in the analy-
sis. In Section 5, the real-data reconstruction process is presented, and Section 6
describes and compares the two techniques utilized to fit the energy distribution
and retrieve the energy resolution. Section 7 presents the results of the filter com-
parison in terms of the measured energy resolution. The analysis to other line
complexes at energies different from the standard Mn Kα complex from which the
optimal filters are built is described in Section 8. Finally, Section 9 summarizes the
main conclusions of this work.

2 Insights into the effectiveness of 0-padding

2.1 Energy reconstruction in detail

In practical terms, the application of Eq. (1) to compute the reconstructed energy of a
pulse is evaluated through a discrete sum expressed as follows

Ê =
Nfinal∑
i=1

d(ti ) · õf (ti ). (4)

1 Available at https://sirena.readthedocs.io/
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In this equation d(ti ) represents the discretized pulse, sampled at Nfinal time values
denoted as ti . Likewise õf (ti ) corresponds to the optimal filter in the time domain.
For the sake of simplicity in the notation, we incorporate the normalization factor
from Eq. (2) into õf (ti ). This makes it clear that Eq. (4) is essentially a dot product
calculation between the discretized pulse and the optimal filter, considering them as
vectors.

As an example, Fig. 1(a) illustrates a noise-free 6 keV pulse, which was simulated
using the xifusim simulator (v.0.8.3) with an LPA2.5a instrument configuration file
(1 pixel) and a sampling rate of 156.25 kHz. This configuration served as the baseline
for the X-IFU instrument at the time of writing and it was consistently used throughout
this paper.

In Fig. 1(b), we can observe the optimal filter computed from that pulse, making use
of a noise spectrum derived from 100000 noise streams. The cumulative sum of the
dot product of the pulse and optimal filter is represented by the purple line in Fig. 1(c).
As expected, when extending the sum in Eq. (4) up to Nfinal = NFULL = 8192 (the
full length of the simulated pulse) the reconstructed energy is measured as 6.00 kêV,
as indicated next to the blue filled circle.

It is important to note that the cumulative sum initiates as negative, reaches a peak
around sample 1800, and then decreases monotonically. This pattern is predictable, as
themost significant part of the pulse has been included in the scalar product by the time
the cumulative sum reaches the peak. Beyond that sample, the optimal filter remains
relatively constant and negative, while the pulse mainly consists of the baseline value
due to the completed exponential decay of the pulse.

In an effort to grasp the impact of filter truncation on the estimation of the pulse
energy using the 0-padding filter, we can decompose the dot product of Eq. (4) into
two components,

Ê =
Ncut∑
i=1

d(ti ) · õf (ti ) +
Nfinal∑

i=Ncut+1

d(ti ) · õf (ti )

≡ Ê0-pad +
Nfinal∑

i=Ncut+1

d(ti ) · õf (ti ), (5)

where Ncut is an intermediate time sample that represents the point selected to truncate
a FULL filter to construct a 0-padding filter. Ê0-pad corresponds to the reconstructed
energy obtained by performing the dot product using the first Ncut samples. Specif-
ically, we emulate the 0-padding optimal filter as examined by Cobo et al. [14] by
selecting Ncut = 4096. This is illustrated in Fig. 1(c) with the vertical green dashed
line. In this particular case, the calculated energy is Ê0-pad = 16.60 kêV (green filled
circle), which is significantly higher than the expected 6.0 keV value. This discrep-
ancy is in line with the fact that the second term in Eq. (5) is negative. An even more
extreme 0-padding scenario can be achieved by computing the summation only up
to Ncut = 1100. This is shown by the vertical orange dashed line in the same figure,
resulting in Ê0-pad = 12.62 kêV.

123



   14 Page 6 of 46 Experimental Astronomy            (2024) 57:14 

Fig. 1 Panel (a): Example of a noise-free pulse generated with xifusim, corresponding to a photon of
6 keV. The entire pulse comprises NFULL = 8192 samples, with a pre-trigger (i.e., the data signal before
the rising of the pulse) of 1000 samples and a baseline of ∼7085 (arbitrary) units. Panel (b): Optimal filter
constructed from the same pulse displayed in the previous plot. The inset plot is a zoom-in on the vertical
axis revealing that the flat part of the optimal filter contains negative numbers (below the horizontal dotted
line marking the zero level). Panel (c): Cumulative sum of the dot product of the pulse and the optimal filter
represented above. The filled colored circles in this panel indicate the reconstructed energy obtained when
the upper limit of the summation in Eq. (4) is calculated only up to the sample indicated by the vertical
dashed lines: Ncut = 1100 (orange), Ncut = 4096 (green), and Nfinal = NFULL = 8192 (blue) for a
sampling rate of 156.25 kHz
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As previously mentioned in the introduction, the optimal filter is computed from a
single-energy template, making each reconstructed energy an energy estimation that
needs to be converted into a real energy using a gain scale conversion. To achieve
this, we simulated noise-free pulses with energy values ranging from 0.5 to 12.0 keV
in increments of 0.1 keV using xifusim. By applying the optimal filter computed
using the 6.0 keVpulse as the template,wedetermined the corresponding reconstructed
energies. Subsequently, we fitted an eleventh degree polynomial to the relationship
between the real (simulated) energies and the reconstructed energies. This relationship
is presented in Fig. 2 for the three filters depicted in Fig. 1(c): FULL (NFULL = 8192;
blue line), 0-padding (Ncut = 4096; green line), and extreme 0-padding (Ncut = 1100;
orange line). This figure also represents the corresponding gain scale for the SHORT
filter (NSHORT = 4096), although it is visually indistinguishable from the FULL filter
curve.

These gain scales, particularly those corresponding to 0-padding and extreme
0-padding, are responsible for transforming the reconstructed energies Ê0-pad of
16.60 kêV and 12.62 kêV, respectively, into calibrated energies of 6.00 keV in both
cases.

The crucial aspect to comprehend here is how the uncertainties in the measurement
of the energy are affected by the 0-padding truncation and how these uncertainties
change when the corresponding gain scale correction is applied.

Fig. 2 Gain scales computed for different filters: FULL (NFULL = 8192; blue line), 0-padding (Ncut =
4096, using the FULL filter data; green line), and extreme 0-padding (Ncut = 1100, using the FULL filter
data; orange line). The gain scale for the SHORT filter (NSHORT = 4096) is indistinguishable from the
FULL filter curve in this representation. The three horizontal grey dashed lines correspond to real energies
of 1, 6 and 11 keV, from bottom to top. The tangent lines to the gain scale curves at the intersection with
those three horizontal lines are shown with black line segments, and the corresponding slope values are
displayed next to the intersection points (the values associated with the SHORT filter are given in red color
between parentheses)
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2.2 Propagation of random uncertainties

To get an initial understanding of how the truncation introduced in the 0-padding
approach affects uncertainties (and consequently impacts the measured energy reso-
lution), we begin by examining the random uncertainty associated to the computation
of the energy estimator given by Eq. (4). It is worth noting that systematic effects
arising from our incomplete knowledge of the system will be addressed during the
application of the gain scale correction.

In a simplified scenario, we disregard the random uncertainties in the optimal filter
in comparison with those in the pulse. This approximation is justified given that the
optimal filter, in real-world situations, is derived from an average pulse (achieved by
averaging pulses corresponding to photons of a certain energy). The random uncer-
tainty in each sample of this averaged pulse is anticipated to be significantly less than
the random uncertainty associated with each sample of individual pulses, the energy
of which we aim to determine.

Even though there are specific frequencies with more noise in the system, we
will operate under the additional approximation that the noise within different time
samples of a specific pulse is uncorrelated,which facilitates the following computation.
Applying the law of propagation of uncertainties to Eq. (4), we obtain

(�Ê)2 =
Nfinal∑
i=1

(
õf (ti )

)2 · (
�d(ti )

)2 � (�d)2
Nfinal∑
i=1

(
õf (ti )

)2

= (�d)2
Ncut∑
i=1

(
õf (ti )

)2 + (�d)2
Nfinal∑

i=Ncut+1

(
õf (ti )

)2

≡ (�Ê)20-pad + (�d)2
Nfinal∑

i=Ncut+1

(
õf (ti )

)2
. (6)

In this equation, we have approximated the uncertainty at each sample of the pulse
�d(ti ) by its average value �d. We have also split the final expression into two
terms, similarly to what we have done in Eq. (5), to clarify the computation in the
0-padding case. The resulting expression suggests that the expected uncertainty in the
reconstructed energy scales with the sum of the squares of the optimal filter values.

Considering the typical shapeof the optimalfilters, it is clear that themost significant
contributions to the uncertainty described by the sum in Eq. (6) occur at the time
samples where the pulse exhibits its abrupt increase and subsequent decline. This
behavior is evident in Fig. 3. In particular, panel 3(a) compares the FULL (NFULL =
8192; blue line) and SHORT (NSHORT = 4096; red line) optimal filters, computed
from the same 6 keV pulse depicted in Fig. 1(a). The insets highlight the differences
between them. In addition, panel 3(b) represents the cumulative sum of the squared
values for both filter data. These curves demonstrate a drastic change starting around
sample 1000 (where the pulse is triggered). They stabilize beyond the sample where
most of the pulse’s exponential decline has occurred, after which they flatten.
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Fig. 3 Panel (a): Comparison of the FULL (NFULL = 8192; blue line) and SHORT (NSHORT = 4096;
red line) optimal filters constructed from a noise-free pulse corresponding to a photon of 6 keV. The inset
plots are zooms that highlight the differences between both filters for values close to zero, subplot (a1), and
for values around the maximum and minimum filter peaks, subplots (a2) and (a3), respectively. Panel (b):
Cumulative sum of the squared FULL (blue line) and SHORT (red line) optimal filters displayed above.
The inset is a zoom of the grey shaded region of the diagram, highlighting the smooth increase of the curves
beyond the time samples where most of the information of the pulse is concentrated. The filled symbols
indicate the summation factor in (�Ê)2 from Eq. (6) for the filters SHORT (Nfinal = 4096; red circle),
and FULL (Nfinal = 8192; blue circle). The open symbols depict the corresponding summation factor in
(�Ê)20-pad resulting from the truncation of the FULL filter for 0-padding (Ncut =4096; green open square),
and 0-padding extreme (Ncut =1100; orange open triangle)

Interestingly, the inset figure in panel 3(b) (a zoomed-in view of the graph region
demarcated by the shaded grey rectangle) reveals that the displayed cumulative sums
indeed exhibit a modest, but not negligible, positive increase after sample ∼ 1800.
The filled colored circles indicate the summation factor in (�Ê)2 from Eq. (6) for the
FULL and SHORT filters. Analogously, the open symbols represent the summation
factor in (�Ê)20-pad, resulting from the truncation of the FULL filter for 0-padding
(Ncut =4096; green open square), and 0-padding extreme (Ncut =1100; orange open
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triangle). The value for the 0-padding case is slightly below the one corresponding
to the FULL filter, as expected considering the second term in the last expression of
Eq. (6), which is always positive but only incorporates optimal filter values very close
to zero. In addition, the 0-padding value is substantially below the one associated
with the SHORT filter. This result is also easy to understand looking at the insets of
Fig. 3(a), where the SHORT filter exhibits larger absolute values than the FULL filter
in most samples.

Given the earlier approximation, where the uncertainty�d(ti ) at each pulse sample
can be represented by itsmean value�d, the previous results imply that the uncertainty
in the reconstructed energy obtained with 0-padding should be marginally smaller
than the uncertainty associated with the FULL filter estimate. Moreover, it should be
noticeably smaller than the uncertainty linked to the SHORT filter.

It is crucial to note thatwhile the aforementioned results highlight the relative signif-
icance of uncertainties in reconstructed energies, these energies still require conversion
to a real scale using the appropriate gain scale transformations.

When focusing on pulses produced by photons within a narrow energy interval (like
our 6 keV simulated pulses), the application of the gain scale can be approximated
by a linear transformation. Under these circumstances, the propagation of uncertain-
ties depends solely on the slope of this transformation. Interestingly, the derivatives
illustrated in Fig. 2 for the FULL and 0-padding gain scales at a fixed real energy
are identical within four significant figures. This suggests that the gain scale of the
0-padding filter is the same as the one corresponding to the FULL filter except for a
horizontal shift in this diagram.

As a result, the uncertainties associatedwith the reconstructed energies aremodified
by the same factor when converted into real energies upon applying the gain scale
correction. This accounts for why the uncertainties in the final energies obtained with
the 0-padding filter remain slightly smaller than those associated with the FULL filter.
The same comparison holds true when evaluating the 0-padding and SHORT filters.

We have quantified this effect using 1000000 monochromatic noisy 6.0 keV pulses
simulatedwithxifusim, whose reconstructed energieswere computed using the four
filters FULL, SHORT, 0-padding and 0-padding extreme, and later transformed into a
real energy scale using their corresponding gain scale corrections. The mean energies
obtained in each case, together with the associated dispersion expressed as FWHM,
are summarised in Table 1.

For a given filter, the FWHM corresponding to the reconstructed energies is
stretched by the slope values indicated at the locations of the filled circles in Fig. 2:
1.133 (FULL), 1.136 (SHORT), 1.133 (0-padding) and 1.526 (0-padding extreme).
When we move from reconstructed energies to gain-scale corrected energies we
observe an increase of ∼ 13% in FWHM for the FULL, 0-padding and SHORT
filters. Interestingly, the FWHM of the mean energy reconstructed with the 0-padding
extreme filter was the smallest (1.419 eV); however, when applying its gain scale
transformation, this value is stretched by ∼ 53% (2.166 eV), making it the worst
option.

It is essential to emphasize that the uncertainty quoted in each FWHM value, as
presented in Table 1 columns (4) and (6), has been calculated by dividing the simulated
dataset into 100 sub-samples, each containing 10000 pulses. The standard deviation of

123



Experimental Astronomy            (2024) 57:14 Page 11 of 46    14 

Ta
bl
e
1

St
at
is
tic
al
su
m
m
ar
y
of

m
on
oc
hr
om

at
ic
no
is
y
6.
0
ke
V
pu
ls
e
si
m
ul
at
io
ns

Fi
lte
r
le
ng
th

R
ec
on
st
ru
ct
ed

en
er
gi
es

[ê
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the resulting 100 FWHM estimates was then computed and divided by the square root
of 100 to obtain the uncertainty in the mean. This process is analogous to having 100
identical TES, each collecting 10000 monochromatic 6 keV pulses. Although there
may appear to be small differences in FWHM among different filters, a statistical
analysis must be conducted considering these expected uncertainties. This analysis
must account for the fact that the FWHM values obtained with different optimal fil-
ters are paired for a specific simulated TES, meaning each subset of 10000 pulses
in the simulated dataset. In this regard, although Fig. 4(a) shows some overlap in
the histogram distributions of the 100 FWHM estimates corresponding to the differ-
ent optimal filters listed in Table 1, the mean FWHM values are statistically different.
Figure 4(b) visually represents this difference, indicating that the 0-padding estimate is
consistently lower. AWilcoxon signed-rank test for paired data [42] (non-parametric)
rejects the null hypothesis that the FWHM obtained using FULL, SHORT, and
0-padding extreme are lower than the FWHM obtained with 0-padding, with a p-
value of zero in all three comparisons.

The outcome is not unexpected when we employ Ncut = 1100. At this cut-off,
we are disregarding vital information present in the pulse data, as the exponential
decay is still evident at that time sample. Consequently, the signal-to-noise ratio of
the reconstructed energy would be significantly lower than when considering all the
informative pulse samples. Furthermore, the larger slope in the corresponding gain
scale transformation would further degrade the energy resolution.

As a final validation of all the approximations leading toEq. (6), we have verified the
proportionality between the energy uncertainty (�Ê) and the noise in the pulse (�d)
with the help of additional numerical simulations. In particular, we have simulated
monochromatic noisy pulses using as starting point the prediction of xifusim for a
6.0 keV noiseless pulse, and adding Gaussian noise with varying standard deviation.
After computing the reconstructed energy using the optimal filters FULL, SHORT,
0-padding, and 0-padding extreme, we have applied their gain scale transformations

Fig. 4 Panel (a): histogramof FWHMvalues corresponding to the energy resolutions obtainedwith different
optimal filters (as indicated in the legend) for 100 simulated TES pixels observing 10000 monochromatic
6 keV pulses each. The mean values and standard deviations correspond to the values listed in column (6)
of Table 1. Panel (b): comparison of the individual 100 FWHM values whose histograms are displayed
in panel (a), using for the horizontal axis the ones retrieved using the 0-padding filter. The dashed line
indicates the 1:1 relation. Note that all the points appear above this line
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to obtain the corresponding corrected energies and associated FWHM. In Fig. 5 we
represent the difference between thefinal FWHMvalues obtainedwithFULL,SHORT,
and 0-padding extreme, compared to the FWHM corresponding to 0-paddingmethod,
as a function of the noise (standard deviation) in the pulse. Each filled circle represents
100000 simulated noisy pulses, whereas the thin lines correspond to the prediction
�Ê ∝ �d, where �d is the assumed standard deviation in the pulse, as shown on
the horizontal axis of this figure. We find that the 0-padding technique consistently
performs slightly better than FULL and is significantly superior to both SHORT and
0-padding extreme. This advantage is particularly pronounced as the noise level in the
pulse increases.

In conclusion, the aforementioned discussion has demonstrated that a 0-padding
filter constructed from a truncated FULL filter tends to slightly outperform the latter,
as long as the truncation occurs at a time sample where the essential pulse information
has already been captured by the first term in Eq. (5). In such cases, the gain scale slope
at the reconstructed energy in the FULL and the 0-padding filters is notably similar.
The small increase in noise experienced by the FULL filter due to the inclusion of
unnecessary samples in the dot product computation is consequently translated into
the gain-scale corrected energies.

3 X-ray line complex simulation

Before delving into the analysis of real data, the next step after the analysis of the
performance of the optimal filters on 6 keVmonochromatic simulated pulses, involves
running more realistic simulations, generating pulses following a theoretical profile of

Fig. 5 Comparison of energy dispersion values (FWHM) derived from various filters. The differences
between the FWHM values derived from FULL, SHORT, and 0-padding extreme with respect to the
FWHM of the 0-padding filter are plotted against the standard deviation �d in the pulse. Each filled circle
represents 100000 simulated noisy pulses. Thin lines indicate the theoretical prediction �Ê ∝ �d, where
�d is the assumed standard deviation in the pulse
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Table 2 Lorentzian coefficients
for Mn Kα complex

Kα E0[eV] FWHM [eV] Amplitude

11 5898.882 1.7145 0.784

12 5897.898 2.0442 0.263

13 5894.864 4.4985 0.067

14 5896.566 2.6616 0.095

15 5899.444 0.97669 0.071

16 5902.712 1.5528 0.011

21 5887.772 2.3604 0.369

22 5886.528 4.2168 0.100

Note: Given by Eckart et al. [21]. This complex is constituted by 8 sin-
gle lines distributed in two sub-complexes. The first column provides a
two-digit identification: the sub-complex number and the line number
within each sub-complex. The following columns indicate the centroid,
width (given as a FWHM) and relative amplitude of the lines

standard X-ray line complexes used in laboratories: specifically the Mn Kα complex.
To achieve this, we also utilized the xifusim simulator.

A laboratory-measuredMnKα complex is the convolution of the natural Lorentzian
profile of the X-ray lines and the Gaussian broadening caused by the instrumental
setup. The resulting profile of this Lorentzian-Gaussian convolution is referred to as
a Voigt profile [40].

The process of generating lists of photon energieswithin theMnKα complex for the
simulations, involved following their Lorentzian line profiles with the line parameters
described in Table 2. To broaden the lines in a manner similar to the instrument’s
behaviour, we included an intrinsic controlled Gaussian profile with varying widths.
We randomly selected 300 uniform values of FWHM between 0.7 and 2.3 eV for
this purpose. This interval was chosen to get final broadened FWHM values in the
range from 2.2 to 3.0 eV, similar to the one measured with the laboratory pixels (see
Section 6). For each intrinsic width value, we constructed aMnKα complex randomly
drawing 10000 photon energies with the appropriate distribution (again, this number
was selected to reproduce the typical number of photons/pixel in the laboratory data
of Section 6).

In practice, to calculate the energy of each photon we inverted the cumulative dis-
tribution function (CDF) of the line complex. This was achieved by using a uniformly
distributed random number between 0 and 1 as input to the CDF. The CDF of the line
complex was computed by adding the expected CDF of each line2.

These lists of photon energies served as inputs for the xifusim simulator which
generated a current pulse for each photon.

2 The CDF of each Voigt profile was computed using numerical integration of the voigt_profile
function available in the SciPy Python package ([41], https://scipy.org/) within a predefined energy range
[Emin, Emax]. In addition, the required integral in the interval (−∞, Emin] was computed using Eq. (1.19)
in Kumar [29], which was evaluated employing the hypergeometric function hyp2f2, available in the
mpmath Python library ([30], https://mpmath.org/). This last approach was not used to evaluate the CDF at
any arbitrary energy because the use of hyp2f2 is slow and the numerical integration of the Voigt profile
provided enough accuracy.
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To gain further insights into the factors influencing the performance of the filters,
we devised an additional analysis to differentiate how noise in the filter and noise
in the pulse affected the reconstruction process and the determination of the energy
resolution. In this case, the way to determine the energy resolution is by measuring
the Gaussian FWHM broadening that affects the Lorentzian profiles of the lines in
the complex. The instrument magnifies the simulated Gaussian width, and measuring
the final FWHM for each set of simulations allowed us to analyze and compare the
impact of the instrument on the performance of the different filters under conditions
similar to those of the laboratory data in Section 6.

During the simulations, we generated two sets of pulses: one with the nominal
xifusim noise and the other with the nominal noise enhanced by a factor of 5. For
constructing the optimal filters we used a noiseless pulse template at 6 keV, which is
close to the mean energy of the Mn Kα complex. Additionally, we derived a noise
spectrum from the average of 100000 instrument-expected noise streams or white-
noise streams. We included the case of white noise, even though it is not realistic for
a real instrument, as it simplifies calculations, and in this scenario, the optimal filter
reduces to just the pulse template [38].

The reconstruction of the pulse energies was performed using the three filters intro-
duced in Section 1 which were also used in the analysis of monochromatic pulses
as discussed in Section 2. The 0-padding extreme filter is no longer relevant in the
following discussion as it does not provide reasonable values for the energy resolution.
The lengths of these filters were as specified in Table 1. For the energy calibration of
the Mn Kα photons, the gain scale derived from the monochromatic simulations was
utilized.

The results of applying the different filters are presented in Fig. 6. This figure dis-
plays the recovered Gaussian FWHM values of the four different noise combinations
in both the pulses and the filters. As anticipated, the FWHMvalues obtained are greater
than the intrinsic simulated values, indicating the effect of the detector broadening the
complex lines.

From these plots, several conclusions can be drawn. When simulating pulses with
the nominal noise (panels (a) and (c)), the analysis of the simulations revealed that
the 0-padding filter performed slightly better than the FULL filter and clearly out-
performed the SHORT filter. This is true at least under ideal instrumental operational
conditions, i.e. in the absence of baseline drifts or jitter effects (see Section 5). The
right figures of the panels clearly show the relative difference of the FWHM values
they produce, with respect to the 0-padding value.

The slight difference in the FWHM value range between panels (a) and (c) may
be attributed to the fact that the noise conditions for the pulses and the optimal filter
in panel (a) are the same, representing realistic instrumental noise. In contrast, in
panel (c), the filter was constructed with white noise, which did not fully replicate the
conditions of the pulse simulations. As a result, this led to slightly larger resolution
values.

Interestingly, when we artificially increased the noise of the pulses (panels (b)
and (d)) we observed a similar behavior in the filters, albeit with a more pronounced
difference in the resolution values. This reaffirms our previous observation from the
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Fig. 6 Comparison of Gaussian FWHM values obtained after optimal filter reconstruction of xifusim
simulated pulses under different noise conditions. Panels (a) and (c) depict pulses simulated with the
expected instrumental noise while panels (b) and (d) show pulses with noise enhanced by a factor of 5.
The optimal filter is constructed from a noiseless template in all cases. The noise spectrum part of the filter
was generated using expected-noise streams (for panels (a) and (b)) and white-noise streams (for panels (c)
and (d)). In each panel, the left figure displays the quadratic difference between the FWHM value obtained
with each filter (blue, red and green symbols for FULL, SHORT and 0-padding filters respectively) and
the simulated FWHM. In panel (a) this accounts for the squared instrumental resolution in xifusim. The
figures on the right of each panel display the difference between the FULL and SHORT filter FWHMvalues
(blue and red symbols respectively) and the 0-padding FWHM value. In all plots, differences are plotted
against the Gaussian FWHM values used in the simulations
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analysis ofmonochromatic pulses inSection 2 that the better performance of0-padding
scales with the level of instrumental noise.

Additionally, the similarity of the resolution values regardless of the filter noise
conditions (nominal or white-noise) indicates that the dominant factor influencing the
filter performance is the noise present in the pulses as already discussed in Section 2.

Given that the ideal non-varying conditions defined during the simulations may not
reflect the realistic conditions encountered during the detector operations (on-board or
in the laboratories), it becomes crucial to verify whether the corrections implemented
during the reconstruction process on real data are adequate to ensure the differential
performance of the filters observed in the simulations.

For this purpose, the next step involves the analysis of realistic TES laboratory data.

4 The laboratory data

The measurements used in this analysis were taken on a 1-k pixel prototype X-IFU
array developed by NASA/GSFC. Up to 250-pixels in the array can be readout using
8-column × 32-row TDM developed by NIST/Boulder. X-rays are generated by flu-
orescing different metallic and crystal materials, which enables measurements over
the energy range 3.3 keV (K Kα) to 12 keV (Br Kα). Full details on the design and
performance of the detector and readout can be found in Smith et al. [36] and Durkin
et al. [18].

Specifically, the data analyzed in this work belong to three datasets with different
X-ray line complexes, count rates and bath temperature drifts:

• 10Jan2020 (GSFC): initial dataset with several line complexes and 8×32 channels
in the detector.

• 30Sep2020 (GSFC): lower count rate dataset of line complexMnKα (8×32 chan-
nels), to avoid an additional effect on the energy resolution caused by a possible
imperfect removal of cross-talk events which could contaminate the Mn complex.

• LargeTdrift (NIST): two column measurement (2× 32 channels) taken with the
NASA Large Pixel Array (LPA) array at NIST in a cryostat that exhibits much
larger drift. This datasetwas used to test 0-padding reconstruction under conditions
of worse temperature stability.

Laboratory data are stored in triggered records of data streams containing the current
pulses induced by the X-ray photons. A typical record with a single pulse is displayed
in Fig. 7 for the three different datasets. As shown, the pulses differ in both the total
length of the data record and the pre-trigger length.

To construct the optimal filter used in the data reconstruction, the pulse template
used for creating the signal part was obtained by averaging a large number of isolated
Mn Kα pulses at 5.9 keV, as monochromatic as possible. To achieve this, records
containing multiple pulses and pulses with heights outside the range of the Mn Kα

complex were excluded from consideration. Furthermore, records contaminated by
cross-talk events (events produced by a close-in-time impact of another X-ray photon
in a different pixel of the same TDM readout column) were also removed from the
analysis.
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Fig. 7 Data records showing typical pulses for each dataset: 10Jan2020 (left), 30Sep2020 (middle), LargeT-
drift (right). In the X axis, the time in samples for a sampling rate of 195.3125 kHz and in the Y axis the
intensity of the pulse in arbitrary units

For the noise spectrum, we selected the cleanest set of noise records, ensuring they
were free from instrumental artifacts or undesirable effects. Records that produced the
largest residuals from the mean noise spectrum were excluded from the selection.

Using the above mentioned pulse template and noise spectrum, we constructed the
three types of optimal filters introduced in Section 1 and utilized in Section 2 and
Section 3.

The specific lengths of the filters in the analysis are detailed in Table 3. It is worth
noting that not all the samples in the records were used because the final samples were
discarded to avoid alignment problems during template creation. Additionally, for the
case of LargeTdrift, the pre-trigger length was reduced due to the shorter pulse length.

5 Data reconstruction

The energy of the pulses generated by laboratory X-ray photons is estimated using
SIRENA through optimal filtering, as described in Section 1.

Initially only photons from the Mn Kα complex, which were used to construct the
filter template, were utilized to study the detector’s energy resolution. This approach
was chosen to minimize any imperfection in the TES non-linearity correction per-
formed by the gain scale transformation.

5.1 Energy calibration

Similar to the simulations presented in Sections 2 and 3, a gain scale correction is
applied to obtain the real energies from the initial energy estimations.

Table 3 Optimal filters
pre-trigger lengths and total
lengths selected for the analysis

DATA Pre-trigger FULL SHORT 0-padding

10Jan2020 2000 8000 4096 4096

30Sep2020 450 8000 4096 4096

LargeTdrift 1000 2900 1450 1450

Note: in samples, for a sampling rate of 195.3125 kHz
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The adopted procedure for energy calibration has been developed to ensure its
automatic application and it is illustrated in several steps as depicted in Fig. 8. To
begin, we determine a global offset between an already calibrated pixel (orange curve)
reconstructed with the FULL filter, and a pixel of interest (blue curve) reconstructed
with 0-padding. The energies of this reference pixel were refined with a gain scale
correction obtained from amanual identification of the line complexes whose energies
are listed in [21] and tables in Section 8. This first step is illustrated in Fig. 8(a). The
offset represents the energy difference between the corresponding Mn Kα complex
peaks. By applying this global offset we can clearly observe the discrepancy in the
energy scale between the reference and the pixel of interest, as shown in Fig. 8(b).

To address the distortion in the energy scale,we initially performa linear fit by cross-
correlating the reference and the pixel of interest within the energy interval containing
the Cr Kα and Mn Kβ complexes, using a varying stretching/shrinking coefficient, as
shown in Fig. 8(c). The maximum value in this figure indicates the scale deformation,
where a negative coefficient corresponds to energy scale shrinking, and a positive
coefficient corresponds to stretching. The linear correction is then applied, as shown
in Fig. 8(d), with the green line representing the energy of the pixel of interest after
aligning it with the reference data using the required stretching coefficient.

However, it becomes evident that a linear correction alone is inadequate to achieve
precise energy calibration across the entire available energy range, as illustrated in
Fig. 8(e). To obtain a more refined energy calibration, we identify the line complexes
above a predefined relative threshold, as shown in Fig. 8(f). In this process, we use the
initial linear correction derived from the Cr Kα–Mn Kβ region to predict the expected
location of subsequent line complexes at both lower energies (complexes V Kα, Ti
Kα, and Sc Kα) and higher energies (Co Kα, Ni Kα, Cu Kα, Zn Kα, Ge Kα, and Br
Kα). This allows us to compute a gain scale correction, as depicted in Fig. 8(g), which
is fitted using a fifth-degree polynomial. The choice of a fifth-degree polynomial is
due to the smaller number of reference energy points compared to the simulations.
The application of this gain scale correction results in the corrected energy scale, as
seen in Fig. 8(h).

5.2 Baseline drift and jitter corrections

Once the energies of the photons are brought to the correct energy scale, they need to
be corrected for instrumental variations that occur during data acquisition. The most
notable effects are attributed to baseline time drift caused by instabilities in the TES
setup’s bath temperature, and the offset between the physical/real arrival time of the
photon and its measured/digitized arrival time (jitter) [24].

These two corrections are applied sequentially using a cross-correlation technique,
as illustrated in Fig. 9. In this example, gain scale calibrated data in the Mn Kα energy
range (shown as the small blue points in panel 9(b)) are displayed as a function of the
time index indicating the arrival time order of the pulses.

The first step involves computing an expected energy histogram, represented by
the thick blue line in panel 9(a), based on an assumed initial Gaussian FWHM for
the theoretical line complex Voigt profile. Next, a sample histogram (thin green line)
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Fig. 8 Illustrationof the energy calibrationprocedure. Panel (a):Determinationof a global offset between the
pixel of interest (blue, reconstructed with 0-padding filter) and an already calibrated reference pixel (orange,
reconstructed with FULL filter) using theMnKα complex peaks. Panel (b): Application of the global offset,
highlighting the energy scale discrepancy between the reference and pixels of interest. Panel (c): Initial
linear fit to the energy distortion achieved by cross-correlating the reference and pixels of interest in the
Cr Kα–Mn Kβ region. Panel (d) Application of the linear correction to align the problem pixel with the
reference data. Panel (e): Inadequacy of the linear correction for a precise energy calibration across the
full energy range. Panel (f): Identification of line complexes above a predefined relative threshold for a
refined calibration. Panel (g): Computation of the gain scale correction using the initial linear correction
for a progressive identification of neighbouring line complexes. Panel (h): The resulting corrected energy
scale after applying the gain scale correction
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Fig. 9 Illustration of cross-correlation method for baseline drift and jitter corrections. Panel (a): A compari-
son between the expected energy histogram of theMn Kα complex (thick blue line) and a sample histogram
(thin green line) obtained by combining photons within a relatively narrow time window. Panel (b): Gain
scale calibrated data (small blue points) displayed as a function of the time index indicating the arrival time
of the pulses. The shaded green rectangle exemplifies the width of the moving window used to compute
the sample histogram at different times. The green filled circles indicate the relative offsets measured by
cross-correlating the two histograms displayed in the top panel

is computed by considering the data values enclosed within a moving window of a
fixed width (hereafter referred to as the xwidth parameter), represented by the green
shaded rectangle in panel 9(b).

The cross-correlation of both the expected and the sample histograms provides
the average energy offset for the data points within the moving window, depicted as
green filled circles in panel 9(b). As each time window contains xwidth photons
and yields only one offset estimate, a final correction for each individual photon
is determined by fitting a low-order polynomial to the derived offsets. A Savitzky-
Golay interpolationwith second degree polynomials and a predefined number of points
(referred to as the smooth parameter) can be used for this purpose. In cases where
an abrupt energy offset is detected, as observed after the first three computed offsets
presented in panel 9(b), the data to be interpolated are split into subsets separated
by these energy jumps. This approach is adopted to prevent interpolation attempts
across the energy jumps (when present). If the number of data points within a subset
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falls below the specified smooth parameter, a straightforward linear interpolation is
utilized.

After correcting the energy of each photon, the procedure is repeated for a few
iterations. Before each new iteration, the average energy-corrected data histogram
is recomputed and its Gaussian FWHM is fitted (for a detailed description of the
fitting procedure, refer to Section 6). This fitted FWHM value is then used to create
a new expected histogram. Typically, the use of 3 iterations is sufficient to achieve
convergence.

Additionally, we tested the cross-correlation method by using the global averaged
data histogram as the expected histogram, instead of a theoretical profile. This alter-
native approach yields the same correction, although its convergence is slower.

The choice of the cross-correlation window size (xwidth parameter) is crucial as
using too small a value leads to noisy offset estimates, while too large a value only
provides a coarse-grained determination of the energy variation we aim to correct.
If we were to unrealistically make xwidth too small, it would result in the offset
correction overcompensating for the actual energy displacement. To investigate the
potential bias introduced by a too small xwidth parameter, we conducted numerical
simulations using 30 series of 1.6 × 106 photons following the Mn Kα complex
distribution, assuming a Gaussian FWHM of 2.2 eV and without any distortion in the
energy scale. The cross-correlation method was applied with xwidth values ranging
from 51 to 601 and smooth values of 11, 31 and 51 points.

The results for the Gaussian FWHM and global energy offset of the corrected line
complexes are displayed in Fig. 10, revealing that the cross-correlationmethod tends to
slightly over-correct the FWHM, especially for small xwidth and smooth parame-
ters (see panel 10(a)). At the same time, it introduces a minor energy offset in the mean
energy of the Mn Kα complex (see panel 10(b)). A horizontal dashed line at the ratio
FWHM(fit)/FWHM(sim) = 0.99 is drawn in panel 10(a) to indicate a 1% threshold
for the resolution over-correction introduced by the cross-correlation method. This
value is well below the 6% resolution calibration requirement of the X-IFU. Based
on the analysis of these simulations, we have decided to adopt xwidth = 201 and
smooth = 11 as the default choices for the baseline drift and jitter corrections.

The graphical illustration of the correction procedure, applied to pixel 1 in the
10Jan2020 dataset, is shown in Fig. 11, clearly depicting the baseline variation that
occurred during data acquisition and the slight curvature of the energy dependence
with the phase (jitter).

6 Energy resolution determination

To determine the energy resolution (FWHM of the Gaussian component), for both the
simulated Mn Kα complex and the laboratory data, we employed two independent
approaches: standard fitting of the energy distribution histogram and a new procedure
based on the cumulative distribution function (CDF; [8]).
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Fig. 10 Impact of cross-correlation window size (xwidth parameter) and polynomial smoothing factor
(smooth parameter) on fitted Gaussian FWHM. Panel (a): Ratio of fitted Gaussian FWHM to simulated
GaussianFWHMas a function of cross-correlationwindowsize. Panel (b): Energy offset in the reconstructed
data with varying window sizes for cross-correlation corrections. Both plots consider three smoothing
factors: 11 (blue dots), 31 (orange dots), and 51 (green dots) points

6.1 Histogram fitting

The histograms of the corrected-calibrated energies obtained by applying the different
filters were fitted using the Fitting module of AstroPy [3, 5] employing the Levenberg-
Marquardt algorithm and least squares statistic (LevMarLSQFitter).

For the Mn Kα complex, we utilized a model that simultaneously fits the eight
Lorentzian profiles described in Table 2 alongwith an additional Gaussian broadening.
The relative intensities of the Lorentzian lines are tied, and the distance between the
line centers is also tied relative to the location of a single line. The FWHMs of the
Lorentzian profiles are fixed. The Gaussian broadening is a free parameter and is
common for all the lines. The FWHM of this Gaussian broadening is used as the
figure of merit to quantify the energy resolution of the detector.
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Fig. 11 Corrections of Mn Kα complex pulses for TIME (linked to baseline) and TIME+JITTER effects,
using pixel 1 in the 10Jan2020 dataset. The left column represents the baseline drift correction, while
the right column shows the jitter correction. Panel (a): Gain scale corrected data (small blue dots) and
baseline of the corresponding pulses (gray points), plotted as a function of a time index indicating the
arrival time of the pulses. Panel (b): Energy offsets derived by the cross-correlation method as illustrated
in Fig. 9. Panel (c): TIME-corrected data (orange) plotted on top of the original data (blue). Panel (d):
TIME-corrected data (SIGNAL_cTIME) from panel (c), plotted as a function of the phase in the range of
±0.5 samples (PHI05). Panel (e): Energy offsets computed by applying the cross-correlation method again.
Panel (f): TIME+JITTER-corrected data (green) shown on top of the only TIME-corrected data (orange).
The magenta lines in panels (c) and (f) represent the correction curves already displayed in the middle
panels (b) and (e), but at the same reconstructed energy scale. This illustration is used to demonstrate the
actual magnitude of the applied corrections

During the AstroPy fitting procedure, several weight options for the LevmarLSQ
Fitter call have been tested. These weights are defined as the inverse variance (σ 2)
of each data bin:

* iSig: histogram bins are weighted by the number of counts N within each bin
(σ 2 = N )

* SN: histogrambins areweighted by the Signal-to-Noise ratio in the bin (σ 2 = 1√
N
)

* None: no weight is applied (σ 2 = 1)

The iSig option adopts the iterative approach proposed by Fowler [25]. It represents
one of the alternatives for conducting a Poisson Maximum Likelihood fit (Cash C-
statistics) identified in that study as the least biased method.

Another crucial parameter in histogram fitting is the number of bins. A study was
conducted on the Gaussian FWHM values obtained for different numbers of bins and
it was found that using 3000 bins (for a total number of ∼ 8000 data points spread in
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the fitted energy range) yields stable results. This is illustrated in Fig. 12 for the case
of 10Jan2020 pixel 11. The dispersion shown in the FWHM values provided by the
different histogram fittings is consistent with the expected dispersion observed in the
simulations (as seen in Section 6.3).

6.2 Cumulative Distribution Function Fitting

In order to avoid the need for a priori binning of the data, we explored an alternative
approach based on fitting the Cumulative Distribution Function of the photon energies.
To test the consistency of thismethod,we conducted simulations using 8300 photons of
theMnKα complex energydistribution following the procedure described inSection3,
aiming to have a similar number of pulses as in the laboratory pixels typically analyzed.

The resulting energy histogram from the simulations displayed the expected double-
peak distribution for the Mn Kα complex at our spectral resolution, as shown in panel
(a) of Fig. 13. Interestingly, a small fraction of the simulated photons fell outside of the
displayed energy range, 96 photons below the lower 5860 eV limit and 121 photons
above the upper 5920 eV limit.

We demonstrated that the CDF fitting procedure could successfully recover the
original parameters used to generate the simulated data set. However, we faced the
challenge of having 4 free parameters (i.e., the energy of one reference line, the Gaus-
sian FWHM, and the number of photons below 5860 eV and above 5920 eV) due to
the constraints imposed by fixing the Lorentzian FWHM and relative intensity of the
eight individual lines, as well as their center-to-center distances.

To address this challenge we used the following approach: first, we provided an
initial guess for the solution, as shown in panel 13(b). Next, we compared the empirical
CDF of the simulated data (orange line) with the CDF of the temporary solution
(black line) in panel 13(c). Finally, we used the Levenberg-Marquardt minimization

Fig. 12 Dependency of energy resolution (Gaussian FWHM) on the number of histogram bins. Different
weighting options were considered: iSig in black, None in blue, and SN in green (as described in the text).
The results are shown for pixel 1 of the 10Jan2020 dataset
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(a) (b)

(c)

(e)

(d)

Fig. 13 Schematic of simultaneous fitting of 8 Voigt profiles to the Mn Kα line complex using CDF.
Panel (a): Initial histogram for the data set, consisting of 8300 simulated photons. Panel (b): Initial guess
for the 8 Voigt profiles (thin colored lines) and the expected total probability distribution (thick black line).
Panel (c): Comparison of the empirical CDF of the data to be fitted (orange line) and the temporary fit
(black line). Panel (d): Same as panel (c) after the iterative numerical fit has converged. Panel (e): Final fit
for the individual 8 Voigt profiles (colored lines) and the global fit (thick black line)

procedure, with the help of the Python package lmfit3 [32], to determine a better
fit to the empirical CDF, as illustrated in panel 13(d). The objective function to be
minimizedwas defined as theweighted difference between the empirical and simulated
CDF, using the product F(x) (1 − F(x)) as the weight, where F(x) is the empirical
CDF. Note that this weighting scheme favours data points nearer the center of the line
complex, diminishing the influence of the Mn Kα complex tails, which are prone to
systematicallymissing photonswhen correcting energies frompulses severely affected
by baseline drift effects. The result of this fitting process was the simultaneous fitting
of the eight sought Voigt profiles, as shown in panel 13(e).

3 https://lmfit.github.io/lmfit-py/
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6.3 Fitting procedures performance on simulated data

The simulations of the Mn Kα complex were extended to include various numbers
of photons, ranging from 4000 to 16000, to ensure the accuracy and reliability of the
fitting methods when analyzing real data. As previously mentioned, these simulations
utilized the eight Voigt profiles defined by the Lorentzian profiles with laboratory
parameters from Table 2, and a FWHM Gaussian broadening of 2.2 eV.

We analyzed these synthetic data using histogram fitting with the three different
weights described in Section 6.1, as well as the CDF fitting method explained in
Section 6.2. The obtained Gaussian FWHM values from the two fitting procedures
were compared with the simulated value to evaluate their performance in terms of
energy resolution. The distributions of fitted Gaussian FWHMs obtained from the
simulated data with varying numbers of photons are presented in Figs. 14 and 15.

The results indicate that the distributions are well centered around the simulated
resolution value FWHM = 2.2 eV, with no systematic deviations at the peak values.
Therefore, we can conclude that the fitting methods do not introduce any intrinsic
systematic errors to the determination of the Gaussian FWHM of simulated data.

As expected, the dispersion of the measured FWHM decreases as the number of
fitted photons in the Mn Kα complex increases, regardless of the adopted fitting
procedure. The histogram fitting method with weight iSig provides a slightly lower
dispersion, as visually evident in Fig. 15. In this figure, the histogram fitting method
with weight iSig (shaded cyan) appears narrower than histogram fitting with the other
weights, and the CDF method yields the widest distribution. This behavior is quanti-
tatively presented in Table 4, which lists the centroid offsets and standard deviations
of the histograms displayed in Fig. 15.

Fig. 14 Distribution of Gaussian FWHM values obtained from simulated data using histogram fitting with
three different weights: None (light blue), SN (dark blue), and iSig (cyan), as well as using CDF fitting
(orange). The simulations were performed with varying numbers of photons (ranging from 4000 to 16000,
as specified in the numeric labels). The dashed vertical lines separate sets of 1000 simulations performed
with a fixed number of photons. A histogram representation of these data is shown in Fig. 15
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Fig. 15 Histogram representation of data shown in Fig. 14, corresponding to the Gaussian FWHM values
obtained from simulated data using histogram fitting with different weights (None in light blue, SN in dark
blue, and iSig in shaded cyan) and using the CDF fitting method (in orange). Each panel shows the FWHM
distribution for a different number of simulated photons (as indicated at the top of each histogram). The
centroid offsets and standard deviations of these histograms are listed in Table 4

6.4 Fitting procedures performance on real data

Once we ensured the comparability of the fitting methods on simulated data, we
proceeded to analyze real data starting with the individual analysis of each pixel. To
do this, we reconstructed the photons from each pixel using the FULL optimal filter,
performed gain calibration, and corrected for baseline drifts and jitter. Afterward, we
applied both the histogram and the CDF methods to fit the data.

Note that in this comparative analysis, we are using the FULL filter for the fitting
methods, as it serves as the reference method in the literature, allowing us to iso-

Table 4 Centroid deviations (relative to the simulated FWHM=2.2 eV) and standard deviations of the
histograms displayed in Fig. 15

Centroid deviation (eV) Standard deviation (eV)
Nphotons CDF iSig None SN CDF iSig None SN

4000 0.010 0.003 −0.003 −0.006 0.197 0.147 0.165 0.185

6000 0.007 −0.002 −0.003 −0.005 0.161 0.117 0.133 0.148

8000 0.006 0.001 0.000 −0.001 0.144 0.098 0.114 0.129

10000 −0.003 −0.004 −0.003 −0.003 0.128 0.094 0.105 0.117

12000 0.005 0.004 0.003 0.002 0.116 0.085 0.097 0.107

14000 0.002 −0.002 −0.001 −0.001 0.107 0.075 0.085 0.096

16000 0.004 −0.002 −0.003 −0.003 0.103 0.070 0.080 0.089

Note: In each case, the different columns indicate the result corresponding to the four fitting methods: CDF,
and histogram with three different weights iSig, None and SN. The first column indicates the number of
photons in the simulated Mn Kα line complex
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Fig. 16 FWHM values for pixels in datasets 10Jan2020 (top), 30Sep2020 (middle), and LargeTdrift (bot-
tom), using histogram fitting with weights None (light blue circles), SN (dark blue squares), and iSig (cyan
×) as well as CDF fitting (orange symbols), all reconstructed using the FULL filter. The dashed lines
represent the FWHM obtained by each fitting procedure using the combined information from all pixels
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late and evaluate the performance of the fitting methods independently of the filters’
performances.

In contrast to the observations made with the earlier described simulations, we
noticed a consistent pattern across all datasets. Specifically, the CDF method consis-
tently yielded slightly lower Gaussian FWHM values (median=2.38 eV) compared
to those obtained from the histogram fittings (median=2.43 eV). A Wilcoxon signed-
rank test for paired data (non-parametric) was conducted under the null hypothesis that
the CDF method yields larger FWHM values than those provided by the histogram
fittings. The resulting p-values were 2.2 × 10−10, 9.5 × 10−5 and 2.8 × 10−7 for the
iSig, SN and None cases, effectively rejecting the null hypothesis and thus confirming
the statistical significance of the comparison. This trend is illustrated in Fig. 16.

To further investigate this discrepancy in the fitting procedures on real data and to
assess their performance with improved statistical significance, we conducted a global
fit of all the pixels in dataset 10Jan2020. Initially, we processed each pixel individually
and subsequently, we combined all the pixels for the global fit using the selected fitting
procedure. Figure 17 displays the resulting fits and residuals (model− data) obtained
for eachmethod. As expected, the FWHMvalue obtained from theCDFfitting is lower
than the values corresponding to the other histogram fitting methods. However, this
outcome does not corroborate the results obtained from the analysis of the simulations.

Upon conducting a detailed examination of the residuals in Fig. 17, it becomes
evident that the data on the left wing of the line complex consistently falls below the
global fit. As mentioned earlier, the baseline drift correction introduces energy shifts
that may cause a slight under-representation of photons at the edges of the energy
interval initially chosen for selecting the Mn Kα photons. Consequently, an imperfect
photon distribution in the wings of the complex is anticipated to result in variations in
the fitted resolution across different fitting methods. Indeed, we have confirmed that
eliminating the F(x) (1 − F(x)) weight in the CDF method (refer to Section 6.2),
thus giving more prominence to the complex wings in the CDF fit, increases the
discrepancy in resolution when comparing histogram fitting with CDF fitting.

After analyzing the results obtained from histogram fitting using three different
weights, all of which yielded similar resolution values, we observed that the CDF
method consistently produced slightly lower, yet still close results. Appendix A
explores the impact of two known systematic effects, the extended line spread func-
tion and the instrumental background, on the different performance of the methods.
However none of these factors account for the differences found when analysing real
data.

Additionally, we considered the dispersion of the FWHM estimates provided by
the iSig weight, and found it to be the lowest among the options.

Based on these considerations, we have chosen the histogram fitting method with
the iSig weight as our baseline approach for analyzing the various datasets.

7 Energy resolution analysis: the filters’ role

In Appendix B, we present a mathematical expression that quantifies the expected
uncertainty in the measured Gaussian FWHM. This expression depends on both the
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Fig. 17 Global fits to the combined data from all pixels in the 10Jan2020 dataset using different fitting
methods. The histogram fitting methods with iSig, None, and SN weights, as well as the fit with the CDF
fitting method, are shown. The associated residuals (model - data) are displayed below each particular fit.
The plots are arranged from left to right and top to bottom in the order of histogram with iSig weights,
histogram with Noneweights, histogram with SN weights, and CDF fitting. The line complex is fitted using
8 individual Voigt profiles (colored lines), with the black curve representing the co-added result. The fitted
Gaussian FWHM value is displayed in the inset text

number of photons in the Mn Kα line complex and the FWHM value itself. We will
use this derived uncertainty in the upcoming plots of the Gaussian FWHM values
measured for real data.

The comparison of the energy resolution values obtained for all the pixels in the
10Jan2020, LargeTdrift and 30Sep2020 datasets is presented in Fig. 18.

Based on the obtained results, the 0-padding filter demonstrates comparable per-
formance to the FULL length filter and outperforms the SHORT filter in terms of
energy resolution values for all datasets, even under varying instrumental stability
conditions and cross-talk levels. Notably, the most significant advantage is observed
in the LargeTdrift dataset, which can be attributed to the shorter length of the LargeT-
drift records and filters (see Table 3). As a result, the f = 0 Hz bin which is discarded
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Fig. 18 Comparison of energy resolution values for the FULL filter (blue) and SHORT filter (red) plotted on
the Y-axis versus those from the 0-padding filter reconstruction on the X-axis for datasets 10Jan2020 (left),
30Sep2020 (center), and LargeTdrift (right). The fitting technique applied in the minimization process is
the histogram fitting with iSig weight. The dashed lines represent the mean energy resolution values, with
red for SHORT, blue for FULL, and green for 0-padding filters

in the construction of the optimal filters contains more information, making its impact
more relevant.

Furthermore, the 0-padding filter not only excels in terms of energy resolution but
also provides the added advantage of reduced computational cost.

However, during simulated data tests [14], it was observed that the 0-padding filter
showed heightened sensitivity to baseline fluctuations during data acquisition. This
sensitivity can be attributed to the fact that the 0-padding filter, as explained in Sec-
tion 1, is essentially a truncation of the FULL filter in the time domain. Consequently,
it lacks perfect zero-summing when compared to the FULL filter, which leads to
increased sensitivity to baseline fluctuations.

To address this issue,we tested amodified0-padding technique (called00-padding).
In this modified approach, we enforced the filter to have a sum of zero in the time
domain using different expressions referred to as zsum1, zsum2 and zsum3 as
described in Eqs. (7)–(10). We assume Nfinal = 8192, Ncut = Nfinal/2 = 4096, and
define

S1 ≡
Nfinal∑
Ncut+1

õf FULL[ti ]. (7)

The three 00-padding optimal filters are built using the following prescriptions:

• 00-padding with zsum1:

õf 00PAD[ti ] = õf FULL[ti ] + S1

Ncut
, ∀i = 1, . . . , Ncut (8)

• 00-padding with zsum2:

õf 00PAD[ti ] = õf FULL[ti ] + õf FULL[ti+Ncut ], ∀i = 1, . . . , Ncut (9)
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• 00-padding with zsum3:

õf 00PAD[ti ] = õf FULL[ti ], ∀i = 1, . . . , Ncut/2

õf 00PAD[ti+Ncut/2] = õf FULL[ti+Ncut/2] + õf FULL[ti+Ncut ] +
+õf FULL[ti+3Ncut/2]

∀i = 1, . . . , Ncut/2 (10)

These modified 0-padding filters were then applied to the xifusim simulated
pulses in the Mn Kα complex (as described in Section 3). Subsequently, the recon-
structed energies were gain scale calibrated and fitted using the histogram iSig
technique. Figure 19 illustrates the comparison of the resolution values measured
with these zero-summed filters and the FULL, SHORT and 0-padding filters previ-
ously analyzed.

The results indicate that these modified filters lead to a degraded energy resolution
in all the zero-sum designed scenarios making their performance comparable to that
of the SHORT filter. As a result, any of these zero-summed 0-padding filters are
unsuitable as a viable option. Consequently, fully harnessing the advantages of the
0-padding filter will depend on successfully correcting the baseline drift within the
limits of the instrument resolution budget.

In the cases where the baseline drift cannot be properly accounted for, 0-padding
will cause a degradation of the energy resolution. For a simplistic approximationwhere
the variation of the baseline level frompulse to pulse follows a normal distributionwith
a dispersion σbaseline, the additional degradation in energy resolution, that should be
quadratically added to the expected FWHM of the calibrated energy, can be quantified
(following the same reasoning as in Section 2.2) as

FWHMbaseline = σbaseline g
′
Ncut∑
i=1

õf (ti ), (11)

where g′ is the first derivative of the gain scale correction evaluated at the energy of
the considered photons.

Fig. 19 Differential resolution values obtainedwith eachfilter in the analysis (FULL, blue symbols; SHORT,
red symbols and 0-padding, green symbols), and the zero-summed modified versions of 0-padding, labeled
as 00PAD on the X-axis (zsum1: left, zsum2: center and zsum3: right). Please refer to Eqs. (7)–(10) for
details on the modifications
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Table 5 Lorentzian coefficients
for Ti Kα complex

Kα E0[eV] FWHM [eV] Amplitude

11 4510.918 1.37 1

12 4509.954 2.22 0.137

13 4507.763 3.75 0.052

15 4514.002 1.7 0.031

21 4504.910 1.88 0.446

22 4503.088 4.49 0.012

Note: Given by Chantler et al. [13]. Columns as in Table 2

8 Other line complexes reconstruction

To address any potential bias in favor of the 0-padding filter resulting from using the
same photons for constructing the optimal filter and resolution analysis, we conducted
an additional test. In this test, we reconstructed pulses with energies significantly
different from the optimal filter’s energy of 5.9 keV. By doing so, we aimed to evaluate
whether the non-linearity of the detector response influenced the results obtained by
the 0-padding filter.

Specifically, we reconstructed the Ti Kα (4.9 keV), Cr Kα (5.4 keV), Cu Kα

(8.0 keV), and Br Kα (11.9 keV) complexes found in the 10Jan2020 dataset using the
optimal filters constructed from the Mn Kα photons.

The Lorentzian profiles for each complex are described in the following tables:
Table 5 (Ti Kα), [13], Table 6 (Cr Kα), [21], Table 7 (Cu Kα), [21], and Table 8 (Br
Kα).

The reconstruction process was performed using the FULL, SHORT and 0-padding
filters and the energieswere gain calibrated as explained inSection5.Baseline and jitter
corrections were conductedwithxwidth=101 (due to the poorer statistics compared
to with the Mn Kα case) and smooth=11, respectively. The histograms were fitted
using the iSig weight and are displayed in Fig. 20. Similar to the case of the Mn Kα

complex, the 0-padding reconstruction appears to offer resolution values comparable
to the FULL filter and better than the SHORT filter. However, it is important to note
that the larger resolution values and dispersion obtained for Cu Kα and Br Kα lines

Table 6 Lorentzian coefficients
for Cr Kα complex

Kα E0[eV] FWHM [eV] Amplitude

11 5414.874 1.457 0.822

12 5414.099 1.760 0.237

13 5412.745 3.138 0.085

14 5410.583 5.149 0.045

15 5418.304 1.988 0.015

21 5405.551 2.224 0.386

22 5403.986 4.740 0.036

Note: Given by Eckart et al. [21]. Columns as in Table 2
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Table 7 Lorentzian coefficients
for Cu Kα complex

Kα E0[eV] FWHM [eV] Amplitude

11 8047.837 2.285 0.957

12 8045.367 3.358 0.090

21 8027.993 2.666 0.334

22 8026.504 3.571 0.111

Note: Given by Eckart et al. [21]. Columns as in Table 2

may be attributed to the non-linearity of the detector, which results in degraded energy
resolution at energies far from the optimal filter template.

In the case of these line complexes, where fewer photons are detected, the distribu-
tion of pulses along a varying baseline can have a larger effect on the reconstruction.
For a few pixels with large variations in baseline during data acquisition, the ini-
tial automatic (no baseline-aware) gain scale calibration was not possible for the
0-padding reconstruction, as line peaks were double-peak shaped due to these dif-
ferent baseline values. Consequently, we removed these pixels from the analysis since
they would require a more sophisticated, baseline-accounting gain calibration of the
photon energy distribution. For the latest progress on demonstrating the gain scale
correction over time, please refer to Smith et al. [37].

Figure 21 illustrates the relationship between the gain in resolution and the energy
of the complex. The improvement in energy resolution offered by 0-padding versus
FULL and SHORT is statistically significant for all the line complexes, as revealed
by the Wilcoxon signed-rank test for paired data, whose p-values are provided in
Table 9. The only exception is the Ti Kα complex when comparing the 0-padding
and FULL filters. The most substantial improvement occurs for the largest energy
complex, Br Kα.

However, it is important to mention that the scatter also increases as we move to
higher energies. Therefore, a more extensive investigation with higher statistics would
be required to validate this trend.

9 Conclusions

In this study, we take an in-depth look at a variation of the classical optimal filter
algorithm to estimate the energy of photons detected by a Transition Edge Sensor
device, such as the one to be onboard the Athena mission. This approach, initially
proposed by Cobo et al. [14] and called 0-padding, involves truncating the classical
optimal filter in the time domain.

Table 8 Lorentzian coefficients
for Br Kα complex

Kα E0[eV] FWHM [eV] Amplitude

1 11877.600 3.73 0.375

2 11924.200 3.6 1.0

Note: NASA GSFC private communication. Columns as in Table 2
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Fig. 20 Comparison of resolution values for Ti Kα (top-left), Cr-Kα (top-right), Cu Kα (bottom-left) and
Br Kα (bottom-right) complexes obtained using FULL (blue) and SHORT filters (red) on the Y-axis plotted
against those from the 0-padding reconstruction (X-axis) for dataset 10Jan2020. The resolution values were
obtained using histogram fitting with iSigweight. Dashed lines represent the mean energy resolution values
(red for SHORT, blue for FULL and green for 0-padding filters)

Table 9 Statistical significance (p-values) of the comparison of the filters for the different line complexes

Line complex 0-padding vs. FULL 0-padding vs. SHORT

Ti Kα 2.3 × 10−1 0.

Cr Kα 1.9 × 10−8 0.

Mn Kα 2.9 × 10−10 0.

Cu Kα 3.3 × 10−23 0.

Br Kα 8.3 × 10−17 0.

Note: Wilcoxon signed-rank test for paired data where the alternative hypothesis is that 0-padding FWHM
is lower than FULL (or SHORT) FWHM
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Fig. 21 Boxplot diagrams showing the improvement in resolution achieved by the 0-padding filter recon-
struction for the analyzed line complexes of the 10Jan2020 data. Dashed central line in the boxes correspond
to the median values, the coloured boxes cover the IQR (inter quantile range Q1 − Q3 ≡ 25% − 75%),
error bars go from Q1−1.5× IQR to Q3+1.5× IQR and grey circles are the outliers. Left: Energy resolu-
tion values obtained with the 0-padding (green), FULL (blue) and SHORT (red) filters. Right: Differential
energy resolution values of FULL and SHORT filter with respect to 0-padding

The results of our analysis, based on both simulated and laboratory data, show that
truncating a long optimal filter (0-padding) yields better performance when compared
to using a filter constructed from a shorter template but with the same final length
as the truncated filter (SHORT). As the information loss resulting from setting the
f = 0 Hz bin to zero during the construction of the optimal filter diminishes as the
filter length increases (as indicated by [17]), the 0-padding technique experiences
less signal degradation as it begins its construction with a filter longer than the final
intended size. As a result this approach limits the loss of resolution from shortened
filters for high count rate cases.

What is even more relevant is that the resolution values obtained through our 0-
padding approach are comparable, and in somecases slightly better than those achieved
with a double-length optimal filter. Additionally our approach offers the advantage of
reduced computational cost. As FULLfilter and 0-padding only differ by the length the
filter (the latter being half length) in terms of on-board computation, we can say that the
energy estimation part of the event reconstruction would require half of the operations
to be made. It would also require half of the on-board non-volatile memory as only
half-length filters would be saved on-board. Onewould expect that computational time
should scale at first order with the number of operations required, although this can
very much be implementation dependent.

The enhanced performance of the 0-padding filter scales with the noise level in the
detector’s signal, which directly impacts the uncertainty in energy determination. For
filters constructed from the same template pulse, where the removal of the f =0Hz bin
has a similar effect (such as a longfilter and its corresponding truncated 0-paddingfilter
obtained by omitting the second half), longer data pulses result in greater uncertainties.

Making use of the second half of the long filter does introduce a small, albeit non
negligible, increase in the uncertainty of energy estimation. This is due to the inclusion
of time samples that convey not useful information. This holds true if the cutoff for
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producing the 0-padding filter does not disregard relevant time samples where pulses
register a signal statistically greater than the baseline.

To determine the energy resolution of data measured by a TES detector in the
laboratory, we compared two different fitting methods: histogram fitting with varying
weights andCumulativeDistribution Function fitting.Our analysis confirmed that both
methods yield similar results and demonstrated a better performance of the 0-padding
filter.

However, when analyzing the Mn Kα complex, we observed that the CDF method
consistently yielded lower resolution values than histogram fitting when applied to
laboratory data, but not when applied to simulations. We investigated possible expla-
nations, including the effect of the X-IFU detector’s extended line spread function
and instrumental background, but none of these factors accounted for the discrepancy.
Instead, we found that each fitting procedure responded differently to any discrepancy
between the data and the fitted model with the CDF method being more sensitive to
photons missed in the tail of the distribution by the line selection process.

One intrinsic characteristic of the 0-paddingfilter is that it is no longer zero-summed
due to the suppression of the last samples, which makes it more susceptible to baseline
and energy scale drifts during data acquisition. To address this issue, one potential
solution would be to ensure that the filter is zero-summed by subtracting the value
of its sum. However, despite exploring several zero-summed 0-padding filters, all of
them led to a degraded FWHM reaching only the performance of the SHORT filter,
which has already the same length and is initially zero-summed.

The non-linearity of the detector could potentially have a negative impact on the
effectiveness of the 0-padding reconstruction method, especially for photons whose
energies significantly differ from the energy of the pulses used to create the optimal
filter. To investigate this further, we analyzed distant line complexes (Ti, Cr, Cu, and
Br) and compared the energy resolution values obtained using the FULL, SHORT and
0-padding filters. The results reinforced our earlier findings with the Mn Kα com-
plex, indicating the slightly better performance of the 0-padding filter. Furthermore, it
appears that the degree of improvement in resolution tends to increase with the energy
of the complex although it is important to note that a more comprehensive study with
increased statistics would be necessary to fully confirm this observation.

It is important to emphasize that the effectiveness of the 0-padding filter depends
on the ability to correct for baseline drift and jitter within the limits set by the X-IFU
energy resolution budget. Under such circumstances, the 0-padding filter emerges as
the optimal choice for energy reconstruction of X-ray photons detected by the TES
detector. This finding holds great promise especially considering the shorter length of
the 0-padding filter which requires fewer computational resources, a critical advantage
for onboard processing. Furthermore, this filter would facilitate the analysis of sources
with higher count rates at high resolution, limiting the loss of resolution provided by
shortened filters.

While the comparative analysis of the energy reconstruction algorithms outlined
in this study was initially inspired by the case of the X-IFU instrument, the find-
ings obtained extend far beyond this initial context. They hold relevance for energy
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reconstruction across a spectrum of TES detectors, encompassing both present con-
figurations and those anticipated in the future.

Appendix A Impact of potential systematic effects

In addition to the higher sensitivity of the CDF method to the photons in the dis-
tribution’s tails, other factors may also contribute to the disparities observed in the
performance of fitting procedures between simulations (where no systematics were
noticed) and real data (where CDF resolutions consistently turned out to be lower than
histogram-fitting resolutions).

Among these factors, the presence of an instrumental extended Line Spread Func-
tion (eLSF) and the background in the detector could be considered. In the following
sub-sections, we will analyze how these factors impact the analysis of energy resolu-
tion.

Extended line spread function

In our previous analysis, we modeled the broadening in the energy distribution of
reconstructed events caused by the TES detector and the reconstruction process, as a
Gaussian function. The FWHM of this Gaussian function served as the figure of merit
for determining the energy resolution. However, it is important to note that the energy
dispersion in micro-calorimeters also involves low-level non-Gaussian broadening
terms influenced by both the incident photon energy and the physics of the detector
[19].

Recent studies conducted by HITOMI/SXS and XRISM teams [19, 20] have exten-
sively characterized the X-IFU Line Spread Function (LSF) [22, 23]. This LSF has
been incorporated into the Redistribution Matrix File (RMF) for science simulations.
The RMF includes a coreLSF featuring aGaussianmain peakwith a FWHMof 2.5 eV
from 0.05 keV to 7 keV, and a linearly increasing dispersion from 7 to 12 keV ranging
from 2.5 to 4.8 eV. Additionally, the RMF incorporates an extended LSF (eLSF)which
exhibits an exponential shoulder caused by long-lived surface state excitations and the
electron loss continuum [15].

To account for the eLSF, we conducted xspec [1] simulations using a unitary
Ancillary Response File (ARF), and the RMFfile specifically designed for the baseline
configuration4 of X-IFU5 at the time of writing. The adoption of a unitary ARF was
aimed at avoiding additional effects of the effective area. As the Mn Kα line complex
only spans a short interval of energies, any potential impact is negligible in any case.
For comparison, we also utilized the core LSF RMF.

In our xspec simulations, we employed the same Lorentzian line profiles as those
used in previous simulations. Additionally, the exposure time was adjusted to obtain
the required number of photons within the energy interval of the Mn Kα complex.

4
XIFU_CC_BASELINECONF_2018_10_10_EXTENDED_LSF_x33.rmf

5 http://x-ifu.irap.omp.eu/resources/for-the-community
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As shown in Fig. 22, the eLSF has a more noticeable impact on the CDF method
compared to the histogram fitting, slightly increasing the resolution values and thus,
contradicting the trend observed in real data.

A.2 Instrumental background

Next, we investigated the influence of instrumental particle background on the mea-
surements. In laboratory data, this background is expected to be present alongside the
Mn Kα photons. To simulate this, we randomly introduced a constant background
in xspec, which was uniformly distributed among the X-ray photons within the nar-
row energy range where the FWHM is measured. We explored two scenarios, adding
0.5% and 1% of the X-ray photons representing upper limits for the instrumental
background. These levels serve as a generous overestimation of the background level
established for X-IFU [16]. The results of these tests are depicted in Fig. 23.

Similar to the eLSF case, the influence of the instrumental background on the
FWHM derived from histogram fitting is negligible, with a slightly more noticeable
impact observed in the CDF method. However, the discrepancy in resolution values
obtained by the fitting techniques contradicts the behavior observed in the analysis of
real data. As a result, we cannot consider these two effects to be relevant contributors
to the relative discrepancy of the fitting methods.

Appendix B Uncertainty in iSig-weighted FWHM measurements of
Mn K˛ complexes

This appendix explores in more detail the behavior in the dispersion of the measured
FWHM values of the simulated Mn Kα line complexes when using the histogram

Fig. 22 Energy resolution results obtained from xspec simulations using both the core (dots) and the eLSF
RMFs (dashes), with photon counts ranging from4000 to 16000. The simulationswere fittedwith histogram
and CDF methods
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Fig. 23 Energy resolution results obtained from xspec simulations using the core RMF with two levels of
added instrumental background: 0.5% (down-triangles) and 1% (up-triangles). The fitting was performed
using histogram and CDF techniques with photon counts ranging from 4000 to 16000

fitting method with the iSig weight. We focus on this specific fitting method because
it yields the least dispersion and can be used as a reference to estimate the optimal
uncertainty attainable when measuring the FWHM of this line complex.

For that purpose, we simulated Mn Kα line complexes with varying number of
photons Nphoton: 100, 200, 400, 1000, 2000, 4000, 10000, 20000, 40000, 100000,
200000, 400000 and 1000000, which are approximately equidistant on a logarithmic
scale. These line complexes were generated using Gaussian FHWMsimulated ranging
from 1.20 to 5.00 eV, with a step size of 0.20 eV. For each value of Nphoton and
FWHMsimulated, 1000 simulations were conducted, and the line complex was fitted
using the histogram method with the iSig weight, providing FWHMmeasured.

The results are presented in Fig. 24, which displays the standard deviation in the
1000 estimates of the ratio FWHMmeasured/FWHMsimulated as a function of Nphoton.
Different symbols and colors represent distinct values of FWHMsimulated, as indicated
in the legend.

Using a log-log display reveals that the measured standard deviation behaves in a
similar manner to a simple single Gaussian (indicated by the dashed blue line), where
the fractional uncertainty in the standard deviation of a normally distributed dataset
constituted by N data points approximates 1/

√
2(N − 1) (see e.g.AppendixE in [39]).

For the Mn Kα line complex, the change in standard deviation follows the same trend
with the number of photons Nphoton, but with a vertical displacement depending on
the value of FWHMsimulated. In particular, for a fixed Nphoton, the represented standard
deviation decreases as the simulated FWHM increases. This behaviour aligns with
expectations since, in the limiting case where FWHMsimulated continually grows, all
the individual lines comprising the Mn Kα complex would merge into a single, very
broad Gaussian line.

The data points represented in Fig. 24 for each fixed FWHMsimulated have been
fitted to straight lines with a slope −1/2 (depicted as dotted lines matching the color
of the symbols) in this log-log representation. The resulting equation can be expressed
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Fig. 24 Standard deviation in 1000 estimates of the ratio FWHMmeasured/FWHMsimulated as a function
of the number of photons Nphoton in simulated Mn Kα line complexes. Different symbols and colors
represent distinct Gaussian FWHMsimulated values (in eV), as indicated in the legend. All measurements
were conducted using the histogram fitting method with the iSig weight. The blue dashed line corresponds
to the simple case of a single Gaussian

as

log10

[
std

(
FWHMmeasured

FWHMsimulated

)]
= c0 − 1

2
log10

(
Nphoton

)
, (B1)

where the c0 coefficient depends onFWHMsimulated, as illustrated in Fig. 25. In this log-
log figure, the variation of c0 fits well using the following second-order polynomial

log10 c0 = +0.01488989

−0.55470163 · FWHMsimulated

−0.28524671 · FWHM2
simulated . (B2)

Fig. 25 Variation of the c0 coefficient introduced in Eq. (B1), as a function of the FWHMsimulated value
employed in the simulated Mn Kα line complex. The orange line is the second-order polynomial fit given
in Eq. (B2)
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Fig. 26 Ratio between themeasured standard deviations plotted in Fig. 24 and the expected values predicted
by Eq. (B1) and (B2). We are using the same symbols and colors as in Fig. 24

The application of Eq. (B1), using the c0 value predicted by Eq. (B2), enables the
determination of the expected standard deviation in FWHMmeasured/FWHMsimulated.
Figure 26 depicts the ratio between the measured and expected standard deviation
across the entire simulated dataset. It is evident from this figure that for Nphoton >

200, the estimated uncertainties in the measured FWHM are well reproduced by the
aforementioned equations.

In practical terms, when working with real Mn Kα data and considering that
〈FWHMmeasured/FWHMsimulated〉 � 1 within the dispersion given by its standard
deviation, the expected uncertainty in FWHMmeasured can be approximated as

�FWHMmeasured � 10c0−
1
2 log10 Nphoton , (B3)

where c0 can be obtained from Eq. (B2) by substituting FWHMsimulated with
FWHMmeasured.
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