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S1. Sample preparation 
The vertical deposition method1 makes it possible to obtain the photonic self-assembled nanostructures. High-quality opals 

with a large homogeneous fcc lattice and an appreciable thickness are obtained with this method. In order to grow the opals a 

colloidal suspension of 0.15 wt% in 10 mL is prepared and the evaporation rate is controlled in a climate chamber by 

adjusting the temperature and relative humidity to 45° C and 20 %, respectively, for 48 hours. The opals are built by mixing 

two different types of monodisperse dielectric spheres in the colloidal suspension which are Polymethyl Methacrylate 

(PMMA) and Polystyrene (PS). Statistical analysis of the images of the Scanning Electron Microscope (SEM) reveals a 

diameter of d = 334 nm and d = 313nm for PMMA and PS, respectively, with a 3% of polydispersity in both cases. The small 

difference in the size (~6% just above the polydispersity) does not have any negative effect on the growth. of opal as can be 

seen in Fig. S1a where the outer surface of a mixed opal prior to PS removal is shown. We assess the impact of such size 

mismatch on optical quality by comparing the reflectance of alloys with different concentration of PS spheres before 

selectively removing them and there were no significant changes. A much larger size mismatch was demonstrated to be 

tolerable for the fractions studied in this work.2 

 

The PS has been removed from the opal by a selective chemical etching. A typical SEM image of the structure’s outer surface 

after removing PS is shown in Fig. S1b. In particular, PS selective removal is performed by immersing the samples in 99% 

pure cyclohexane for 24 hours. This is a very simple procedure that completely removes PS spheres from their lattice 

positions, leaving the PMMA spheres undisturbed. 

S2. Optical Properties 
Optical spectra are collected with a Bruker FTIR coupled to an optical microscope using a 4× objective to keep the beam 

nearly collimated and with an aperture that limits the field to a circle of 180 μm diameter. Notice that for a 20-layer sample of 

300 nm diameter spheres this volume comprises 5.4 million spheres which warrants a good statistical average in the plane 

while the systems remain essentially finite in the perpendicular direction. Light is collected at normal incidence, coinciding 

with the ΓL direction of the reciprocal space, for different numbers of layers.  

  
Figure S1. SEM images of an opal with 18% of PS dopants before (a) and after (b) the selective removal. The chemical selective etching by cyclohexane 
does not affect the PMMA spheres providing an easy procedure to make vacancies (Scale bar 5 micrometres) 
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Regions of increasing thickness can be clearly distinguished as a colour code topographic map under the microscope; simply 

by counting the terraces on the VPhC from the edge of the sample, one can locate regions of the desired thickness because 

each terrace increases the number of layers by one.  

An alternative, equally easy, and independent method involves fitting the maxima of the Fabry-Perot fringes. A rough 

estimate of Bragg wavelength based on the average refractive index predicts a decreasing behaviour of the Bragg wavelength 

that is not observed in the experiments for concentration as high as 10% or more because, in the case presented, the slightly 

smaller size compensates for the larger refractive index. This method provides a fine control not only on the fraction of 

vacancies, but also on the thickness. 

 

 

By means of collecting the light at the normal incidence, reflectance and transmittance spectra are measured in the band 

gap direction. In Fig. S2, transmittance spectra of different VPhC for 20 layers are shown. As a result of adding vacancies, an 

increase in the diffusive light is seen agreeing with the description of the q parameter made in the main article. In order to 

obtain the q parameter from the transmittance spectra, we use the absorbance (– log T) obtained from samples with varying 

vacancies concentrations and thicknesses. The description of the q parameters obtained for the absorbance spectra shares the 

same view as in the reflectance spectra (Fig. S2, right). However, in this case, fitting of the spectra beyond ρ = 30% is not 

possible due to the large contribution of the diffusive scattering which masks the optical features of the spectra. 

 

S4. Finite size effects 
The photonic properties of the systems are strongly dependent on thickness due to finite size effects. It is therefore 

necessary to account for the behaviour of the q parameter versus sample thickness (Fig. S3). The build-up of a photonic band 

gap is hardly complete for thicknesses below or about the Bragg length ℓB, which is the distance over which light attenuates 

by a factor of e at the band gap. This corresponds to the light black shaded area in Fig. S3. It should be natural to expect that 

the importance of the discrete channel grows steadily only up to this value. 

 

For a few layers thicknesses, the band structure of the VPhC has a broad gap (much like quantum confinement broadens 

semiconductor gaps). By increasing the thickness, the band gap becomes narrower and extinction increases (and so does 

reflectance). In these circumstances, the broad background scattering is dominant and q, therefore, small. By increasing 

sample thickness, the gap acquires definition and Bragg scattering gains strength and the discrete channel outweighs 

background Mie scattering so that q grows. The q parameter reaches a maximum for the Bragg length (ℓB). In our case, we 

measure a ℓB = 1.9 μm that corresponds to 8 monolayers. This is the minimum thickness necessary to define the photonic 

bands and gap. For these thicknesses no proper bands are defined and scattering is dominated by single (Mie) scattering. The 

more layers are included the better the photonic band structure is defined and the less importance scattering acquires. 

Therefore, the q parameter increases with thickness. We speculate that beyond that point q decreases because the number of 

defects even for undoped samples (and naturally, for low percentage of vacancies) has been observed to increases with 

thickness.3 

 

 

 

 

 
Figure S2. Surface contour plot of the transmittance (absorbance) spectra at the normal incidence (left) and fit q parameter (right) of different VPhC 
between 0% and38% vacancies for 20 layers. The brown whiskers represent the maximum and minimum value obtained for the q parameter. The boxes 
are the standard deviation and the white lines are the mean from the values. At the percolation threshold the q parameter are in the shaded pink area 
which are values of the q parameter between -1 < q < 1, close to zero. 



 

 

 

 
 

 
Figure S1 | Schematic representation of a 10×10 cells (black boundaries) of the PhC including 20% of vacancies. Each cell can be either occupied by a sphere 
(deep yellow) leaving 26% void (light yellow) in the interstices or empty, in which case all 100% of the cell is empty (light yellow).  

 

 

Above ℓB (8 layers) the q parameter decays until it reaches a stationary value. This decay is due to the transition to an 

infinite crystal. The band gap and the diffusion scattering background change with the thickness of the crystal. As the 

background of diffusion is increased, a finite value for q parameter will be obtained. When we have an infinite crystal (beyond 

25 layers), the band gap and the scattering does not change anymore. In other words, the optical properties of an infinite 

photonic crystal do not depend on the thickness. As a result of this fact, the q parameter reaches a stationary value. 

 

The same behaviour in the transition to an infinite crystal can be observed for the VPhC above the percolation threshold. 

However, in this case the description for ℓB cannot be applied because crystal size is more and more restricted by the 

increasing amount of vacancies: notice that below 8 monolayers with over 20% vacancies leaves little chance to form sizable 

crystals and consequently only diffuse scattering can be expected. 

 

S5 Analytical modelling 
In the simplest approximation, for a plane wave travelling along the Z direction, assuming the string lies on the Z-axis, the 

reflected electromagnetic field at  =    is given by   ∑    
       

    with ι the imaginary unit, zi the positions of the i-th 

dipole and k = 2π/λ being the wave number in vacuum of the incoming radiation. The optical paths (refractive index 

multiplied by the effective geometrical path) across a scatterer and a dopant are given by their optical sizes, ds = D ns and 

dd = D nd respectively, where D is the lattice spacing resulting from the sphere size. Notice that, even if particles and defects 

cells are of the same size (required for a good crystalline quality) their optical size is different. If two random particles are 

nearest neighbours, the optical path form centre to centre is given by    with probability  1      (scatterer-scatterer),    

 
Figure S3 q parameter as a function of the thickness for different VPhC for reflectance (left) and absorbance (right) spectra. The shaded black area are the 
first layers in which the VPhC have neither a well-defined band gap nor the underestimated surface effects. Thus, a trustworthy q parameter is not obtained 
for these first layers and we can neglect it. When the volume of the VPhC can be considered infinite, the q parameter tends to a value depending on the 
number of vacancies. 



with probability    (dopant-dopant) and        /2 with probability 2  1     (scatterer-dopant or dopant-scatterer). A 

crude model is depicted in Fig. S4. 

The phase at   , the “i-th” element, depends on the optical path accumulated by the previous constituents and given by  

  = *
     

 
 ∑   

   
   + (1) 

The reflected intensity, I       , is given by  

  ∑ ⌈  ⌉
  2∑   

   co (2 (     ))   
 
    (2) 

Let us now consider the average over many different columns, with different random distributions of dopants all 

characterized by the same dopant density, incoherently contributing to the backscattering. That is, let’s assume that for each 

sample region the field is the vector sum form the stacked layers’ contributions  according to their phase  and that regions 

contribute to the intensity independently. Then, the reflected intensity will be given by averaging over many realisations of 

the summation in Eq. (2): 
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which, taking into account the definition of covariance between two random variables, cov  ,   = 〈  〉        , assigning 

X = {    }, and  = ,cos (2 (     ))- the total intensity can be separated into two terms 〈 〉            with designations 

(symmetric and covariance) justified below. 
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and 

    = 2∑ cov{  
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In order to estimate the averages involving cosines it is necessary to compute the distribution of optical paths. Let 

m = (j i  1 be the number of positions between i-th and j-th scatterers. Since the probability that m’ out of m (    ) are 

occupied by defects is given by the binomial distribution: 

   ,   = (
 
  )    

 1        
 (6) 

The optical path between two different cells will be          –      with probability P(m,m’ . Therefore, considering the 

three different possibilities for the values of   
    we obtain: 

〈cos  2         〉 =  1        
  

      
  

 2  1       
  

 (7) 

with Tij ≡ Ti–j since T’s only depend on the diference i–j 
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for cases where both i and j are spheres, 
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when both are defects, and  
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if i and j are different (one defect and one sphere). 



With this we can write analytical expressions for sym contribution to the reflected intensity as: 
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with  | ̃|  =  1    |  ̃ |
   | ̃ |  and |〈 ̃〉| =  1     |  ̃ |

    | ̃ |  2  1        ̃  ̃ 
   being   ̃ ,  ̃  the 

polarizabilities of scatter and dopant respectively and     ̃  ̃ 
   the real part of the product of effective polarizabilities 

 

For (dd/ds ∼ 1) and assuming both polarizabilities are real, the sym term can be approximated by the functional form: 
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with  =    =  1          the average optical size, and   
 = 〈| ̃| 〉  |  ̃ |  the polarizability variance.      contains a 

constant background intensity, proportional to the variance of the polarizability, plus the Bragg diffraction line-shape coming 

from a homogenous PhC with polarizability and particle optical size given by the averaged values. This is the typical spectrally 

symmetric response of a regular periodic structure hence the designation. 

The second term (    ) arises from the covariance between phases and polarizabilities’ products in the column hence the 

designation. Both quantities are correlated because the phase accumulated between two elements in the stack depends on 

how many constituents of each kind (scatterers or dopants) there are in between. Using the definition cov  ,   =

〈   〈 〉     〈 〉 〉 =     〈 〉       〈 〉  〈 〉  the i-j elements in the summation giving Icov from Eq. (5) can be 

written as: 

cov{  
   , cos[2 (     )]} = 〈[  

    〈  
   〉] cos[2 (     )]〉  〈[  

    〈  
   〉] 〈cos[2 (     )]〉〉 (13) 

Of the two terms, the second one can be cancelled since, 〈cos[(     )2 ]〉 can be taken out in the averaging process, leaving 

   
    〈  

   〉  which is identically zero.  

Then, from the first term, and considering that i-j corresponds to d-d (two defects) with probability ρ2, s-s (two spheres) 

with probability  1 ρ)2 and s-d (one defect and one sphere) with 2ρ 1 ρ), using the averages  | ̃|  =  1    | ̃ |
   | ̃ |  

and |  ̃ | =  1     | ̃ |
    | ̃ |  2  1       ̃ 

  ̃  , and performing the summation, we obtain: 
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This contribution to the reflectance is an asymmetric function that changes its asymmetry when |  ̃ |  has a minimum, 

similar to what a Fano function does with q, where it adopts an inverted Lorentzian line shape. Note how, for  ̃ =  ̃  

or   =   , the covariance term exactly vanishes (    = 0) 

 

S5 Graphical link between field enhancement and critical concentration 
It is interesting to plot the critical defect concentration vs. the field enhancement. The numerical expression of equation 

(18) in the main text is 

  =
 0.125  0.260 

0.615  1.480    
 (15) 

As this equations, for FCC PhC structure has not parameters, a simple curve links the critical density with field 

enhancement. 

 



 

The first important conclusion is that as the enhancement grows the critical concentration of vacancies drops to zero (Seen 

in Fig. S5.) As can be seen all dependence of the critical density is on the field enhancement, which, in turn, for a given lattice, 

will only depend on the refractive index contrast. Note how, when γ = 1 (no field enhancement) the critical density is equal to 

one. 

 

Numerical simulations 
The numerical simulations have been performed using a commercial Finite Difference Time Domain (FDTD) solver for 

Maxwell’s equations  Lumerical®). We use an impinging Gaussian beam wave with polarization along the X-axis and 

propagating along the Z-axis (perpendicular to the sphere (111) plane). It is launched at 8 μm from the substrate, and 

parametrized using the built-in scalar approximation: (Beam size and divergence angle: beam radius wz = 5 μm, divergence 

angle 4 degrees). The geometry of the cell  9.6 μm   8.59 μm   19.52 μm  and the size of the launching Gaussian beam makes 

it possible to consider an almost homogeneous field in the PC area. We use a refined mesh in the nanostructures and in near 

field region  3 μm   3 μm   6.1 μm  of 7.5 nm   7.5 nm   7.5 nm, dx-dy-dz, respectively. Outside this region the mesh is 

allow to grow uniformly up to a maximum of 27 nm close to the simulation boundaries, so that convergence (to the best of 

our numerical capabilities) is attained. The PC is modelled as a stack of layers 20 by 37 n=1.5 nanospheres with d=330nm 

(totalling 740 nanospheres), laying on top of a SiO2 substrate. 

We have used these simulations to compute the enhancement factors that can be extracted from representations like Fig. 6a 

in the main text and the following that correspond to λ = 680, 700, 745, and 760 nm. 

    
680 nm 700 nm 745 nm 760 nm 
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Figure S5 Critical density at which the Fano parameter changes sing as a function of electromagnetic field enhancement.  


