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Abstract: The root-colonizing endophytic fungus Piriformospora indica promotes the root and shoot
growth of its host plants. We show that the growth promotion of Arabidopsis thaliana leaves is
abolished when the seedlings are grown on media with nitrogen (N) limitation. The fungus neither
stimulated the total N content nor did it promote 15NO3

− uptake from agar plates to the leaves of the
host under N-sufficient or N-limiting conditions. However, when the roots were co-cultivated with
15N-labelled P. indica, more labels were detected in the leaves of N-starved host plants but not in plants
supplied with sufficient N. Amino acid and primary metabolite profiles, as well as the expression
analyses of N metabolite transporter genes suggest that the fungus alleviates the adaptation of its host
from the N limitation condition. P. indica alters the expression of transporter genes, which participate
in the relocation of NO3

−, NH4
+ and N metabolites from the roots to the leaves under N limitation.

We propose that P. indica participates in the plant’s metabolomic adaptation against N limitation by
delivering reduced N metabolites to the host, thus alleviating metabolic N starvation responses and
reprogramming the expression of N metabolism-related genes.

Keywords: Piriformospora indica; nitrogen starvation; nitrogen metabolism; nitrate transporter;
ammonium transporter; amino acid transporter; endophyte

1. Introduction

Nitrogen is a key mineral nutrient playing a crucial role in plant growth and develop-
ment [1–5]. The soil microbiome contributes to nitrogen acquisition, and among the best
studied endosymbiotic interactions are those with N-fixing rhizobia and arbuscular mycor-
rhizal (AM) fungi. Legumes gain access to N through symbiotic association with rhizobia,
which convert N2 gas into ammonia in nodules. Although several efforts have been made
to incorporate biological N fixation capacity into non-legume plants [6], agricultural crop
production without N fertilization is currently not conceivable. AM fungi help plants in
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nutrient acquisition and much progress has been made in understanding the molecular
basis of P and N transfer from the fungal partner to the host plant (cf. [7]). Less is known
about endophytes, although they show relatively little host specificity and have therefore a
great potential for agricultural applications [8,9].

A well-studied endophytic fungus is Piriformospora (Serendipita) indica, which interacts
with numerous host plants and promotes their growth and resistance against biotic and
abiotic stresses [10,11]. The stimulation of the growth of its hosts suggests that the fungus
promotes nutrient acquisition, including nitrogen. An effect of P. indica on nitrate uptake
and the nitrogen metabolism in the hosts has been reported repeatedly. On a full medium,
the fungus promotes nitrogen accumulation and the expression of nitrate reductase in
Arabidopsis thaliana [12]. In sunflower, P. indica increases the absorption of nitrogen by the
root [13]. Strehmel et al. [14] showed that the concentration of nitrogen-rich amino acids
decreased in inoculated A. thaliana plants. Ghaffari et al. [15] proposed that the nitrogen
metabolism plays an important role in systemic salt-tolerance in leaves of P. indica-colonized
barley. Furthermore, Lahrmann et al. [16] showed that the P. indica ammonium transporter
Amt1 functions as a nitrogen sensor mediating the signal that triggers the in planta activa-
tion of the saprotrophic program. In Chinese cabbage, the amino acid γ-amino butyrate in
particular is de novo synthesized in colonized roots [17]. Bandyopadhyay et al. [18] demon-
strated that P. indica, together with Azotobacter chroococcum, facilitates the higher acquisition
of N and P in rice. P. indica also improves chickpea productivity and N metabolism in a
tripartite combination with Mesorhizobium [19]. Finally, Serendipita williamsii does not
affect P status but C and N dynamics in AM tomato plants [20]. These examples highlight
the importance of the N metabolism on numerous beneficial effects of P. indica for different
plant species; however, how the fungus influences the host N metabolism is not clear. In
this study, we use the model plant A. thaliana to investigate how P. indica interferes with N
uptake and metabolism under N-limiting conditions.

2. Results
2.1. Shoot Growth Promotion by P. indica Requires External N Supply

P. indica colonizes A. thaliana roots and induces the visible growth promotion of
A. thaliana seedlings after 4–7 days in full medium [21]. After 5 days, the fresh weight of
the shoots was significantly increased (+41.9%) by the fungus, while barely any growth
promotion was detectable on N-limited medium (Figure 1A). Root growth was neither
affected by the fungus nor by N availability (Figure 1B). We conclude that under these
experimental conditions, the shoot growth but not the root growth of A. thaliana seedlings
is promoted by P. indica, and this requires N in the medium.

2.2. P. indica Colonisation Did Not Change the Total N Content in the Shoots and Transfer of 15N
from the Medium to the Shoots

To test whether P. indica interferes with N accumulation or uptake into the plant
under N-limiting conditions, the total N content in the shoots and the amount of 15N
from 15NO3

−-labelled growth medium in the shoots were compared for uncolonized and
colonized seedlings, grown on either full or N-limiting media. As expected, the total N
content in the shoots of seedlings that were exposed to N limitation was lower than in the
shoots of seedlings grown on full medium (Figure 2A). Furthermore, the accumulation
of 15N in the shoots was much higher on full medium than on medium with low N
(Figure 2B). However, we did not observe significant differences for uncolonized and
colonized seedlings. This suggests that the fungus does not stimulate nitrate uptake from
the medium under N-sufficient and N-limiting growth conditions.

N limitation might influence the colonisation of the roots. We observed that roots on
N-limiting conditions were around two times more colonized than roots on full medium
(Supplementary Figure S1), although the difference was not significant. This indicates that
in spite of a higher colonisation rate, the transport of 15N label from the 15NO3

−-containing
medium to the leaves was not stimulated by the fungus under N-limiting conditions.
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Figure 1. Shoot (A) and root (B) growth promotion of A. thaliana seedlings, which were either grown 
on full medium (+N) or N-limited medium (−N), in the presence of P. indica for 5 days. The % of growth 
promotion by the fungus was determined for 20 shoots and roots, the plant material grown on the 
respective media without the fungus was set as 100%. The percentage was determined for each repli-
cate separately since the starting weight of plants was slightly different for the three independent rep-
licates. All three replicates show the same trend of growth promotion. (C) shows representative pic-
tures of the co-cultures at harvesting time. Statistic significant differences were analysed using one-
way ANOVA (Holm–Sidak test). * significant, ns = not significant 
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15NO3−-labelled growth medium in the shoots were compared for uncolonized and colo-
nized seedlings, grown on either full or N-limiting media. As expected, the total N content 
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Figure 1. Shoot (A) and root (B) growth promotion of A. thaliana seedlings, which were either grown
on full medium (+N) or N-limited medium (−N), in the presence of P. indica for 5 days. The % of
growth promotion by the fungus was determined for 20 shoots and roots, the plant material grown
on the respective media without the fungus was set as 100%. The percentage was determined for each
replicate separately since the starting weight of plants was slightly different for the three independent
replicates. All three replicates show the same trend of growth promotion. (C) shows representative
pictures of the co-cultures at harvesting time. Statistic significant differences were analysed using
one-way ANOVA (Holm–Sidak test). * significant, ns = not significant.
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Figure 2. Total N in the shoots of uncolonized (circles) and colonized (squares) A. thaliana seedlings. 
(A) Total N in the shoots of seedlings grown with or without P. indica on either full or N-limiting 
conditions for 5 days. The % of N was determined in the dried material of 20 shoots. (B) 15N accu-
mulation in the shoots of seedlings grown with or without P. indica on either full or N-limiting con-
ditions. 15N was determined in dried material of 20 shoots. Based on three independent experiments. 
Statistic significant differences were analysed via one-way ANOVA (Holm–Sidak test). Different 
small letters indicate statistic significant differences. 
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Establishing contact between the two partners and the initiation of root colonisation 
started approximately 24 h later, after the growing hyphae have reached the roots (Figure 
3A). Since the label could be detected in the aerial parts of all analysed seedlings, which 
were in contact with P. indica, the fungus transfers N-containing metabolites to the roots 
of its host, and the label is further translocated to the aerial parts of the seedlings (Figure 
3B). Interestingly, more 15N accumulated in the aerial parts of the plants under N-limiting 
conditions although the data were not significantly different (Figure 3B). This suggests 
that the fungus helps the host with reduced N metabolites to compensate N limitation 
during growth on NO3−-limiting medium. 

(A)                                             (B)

Figure 2. Total N in the shoots of uncolonized (circles) and colonized (squares) A. thaliana seedlings.
(A) Total N in the shoots of seedlings grown with or without P. indica on either full or N-limiting
conditions for 5 days. The % of N was determined in the dried material of 20 shoots. (B) 15N accumu-
lation in the shoots of seedlings grown with or without P. indica on either full or N-limiting conditions.
15N was determined in dried material of 20 shoots. Based on three independent experiments. Statistic
significant differences were analysed via one-way ANOVA (Holm–Sidak test). Different small letters
indicate statistic significant differences.
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2.3. 15N Label Is Transferred from P. idica to the Host under N-Limiting Conditions

Since P. indica did not promote NO3
− uptake, we tested whether labelled 15N metabo-

lites are translocated from the fungus to the plant. As shown in Figure 3A, P. indica
was cultured on 15N-containing medium for 14 days before co-culturing with A. thaliana
seedlings on full or N-limited media.
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the shoots of seedlings that were exposed to the 15N-labelled hyphae on either full (white) or N-limited 
(grey) media. The accumulation of 15N was determined in the dried leaf material of 20 colonized shoots, 
14 days after the beginning of the co-culture. For experimental details, see the Section 4. Based on three 
independent experiments. Ns, not significant; analysed via ranked t-test (Mann–Whitney test). 
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Figure 3. (A) Experimental set-up of sterile A. thaliana seedlings co-cultivated with 15N-labelled
P. indica. To obtain labelled fungal material, fungal plugs grown on KM plate were transferred to a
modified liquid N-free KM medium supplemented with 10 g/L ISOGRO®-15N and incubated for
14 days in a well plate. The fungal material was separated from the medium, washed carefully with
PNM−N and cut into 25 mm2 pieces. The fungus was placed onto the nylon membranes with 1 cm
distance to the roots. The co-cultures were incubated for 14 days. For further details, see the Section 4.
(B) 15N label in the shoots of seedlings that were exposed to the 15N-labelled hyphae on either full
(white) or N-limited (grey) media. The accumulation of 15N was determined in the dried leaf material
of 20 colonized shoots, 14 days after the beginning of the co-culture. For experimental details, see the
Section 4. Based on three independent experiments. ns, not significant; analysed via ranked t-test
(Mann–Whitney test).

The 15N-labelled fungal mycelium was positioned about 1 cm away from the roots.
Establishing contact between the two partners and the initiation of root colonisation started
approximately 24 h later, after the growing hyphae have reached the roots (Figure 3A).
Since the label could be detected in the aerial parts of all analysed seedlings, which were
in contact with P. indica, the fungus transfers N-containing metabolites to the roots of its
host, and the label is further translocated to the aerial parts of the seedlings (Figure 3B).
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Interestingly, more 15N accumulated in the aerial parts of the plants under N-limiting
conditions although the data were not significantly different (Figure 3B). This suggests that
the fungus helps the host with reduced N metabolites to compensate N limitation during
growth on NO3

−-limiting medium.

2.4. Reprogramming of the Metabolite Profiles to N Limitation Conditions Is Alleviated by P. indica

Next, we tested whether the fungus affects a host’s N metabolism under sufficient
N and N-limitation conditions. We measured the levels of primary metabolites using
GC-MS in the rosettes after 2 days of transfer to N-limitation conditions compared to
N-sufficient conditions in the absence and presence of P. indica (Supplementary Table S1).
We then calculated the metabolite ratios for plants grown under limiting versus sufficient
N and compared these ratios for plants grown in the absence and the presence of the
fungus. Although the amino acid profiles were comparable in colonized and uncolonized
shoots, we observed slight differences for several amino acids (Table 1A). The content of
aspartate and alanine decreased under N-limiting conditions in both the absence and the
presence of the fungus, and these decreases were less pronounced in colonized shoots
(Supplementary Figure S2). Similar tendencies were observed for amino acid content that
increased under N-limitation conditions; these increases were less distinct in the presence of
the fungus in the case of isoleucine, lysine, tryptophan, phenylalanine, leucine, and arginine
(Supplementary Figure S2). The alterations in serin contents that were triggered by N
limitation varied strongly in colonized plants in comparison to uncolonized plants. We then
analysed the effect of N-limitation on soluble sugars (Table 1B). In the presence of P. indica,
N-limitation triggered stronger increases in monosaccharides—in particular in glucose
and fructose. The stress-related sugars trehalose and raffinose showed strong variations
between the three independent replicates. However, raffinose tended to accumulate at
higher levels under N limitation when the roots were colonized (see the Section 3). Overall,
the slight alteration of the metabolite profiles in response to N-limitation by the colonisation
with P. indica suggest a lessening of the effects of N limitation on several steps of the
central metabolism.

Table 1. Differentially accumulated metabolites (DAMs) in A. thaliana shoots. DAMs regulated
by N limitation in A. thaliana rosettes without or with P. indica colonization. (A) amino acids;
(B) soluble carbohydrates.

(A)
Metabolite Ratio

Limiting vs. Sufficient N Supply

without P. indica with P. indica

Compound Mean SE Mean SE
Aspartate 0.36 0.07 0.44 0.17
Alanine 0.50 0.06 0.66 0.14

Homoserine 0.69 0.17 0.55 0.10
Glutamine 0.89 0.24 0.64 0.19
Glutamate 0.98 0.21 0.76 0.07

Glycine 1.10 0.46 0.72 0.12
Asparagine 1.22 0.39 0.67 0.11

Proline 1.45 0.19 1.42 0.05
Cystein 1.45 0.30 1.20 0.04

Methionine 1.51 0.71 0.72 0.04
Agmatine(-NH3) 1.64 0.27 1.40 0.52

beta-Alanine 1.67 0.46 1.25 0.12
Threonine 1.86 0.57 2.64 0.73

Valine 2.05 0.59 1.55 0.22
Arginine 2.08 0.86 0.98 0.33
Leucine 2.31 0.50 1.82 0.41

Histidine 2.46 0.88 2.13 0.97
Tyrosine 2.64 0.38 2.46 0.65

Phenylalanine 2.65 0.99 1.46 0.22
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Table 1. Cont.

(A)
Metabolite Ratio

Limiting vs. Sufficient N Supply

without P. indica with P. indica

Compound Mean SE Mean SE
Tryptophan 2.70 0.99 2.02 0.48

Lysine 2.78 0.76 2.03 0.65
Isoleucine 3.24 1.10 2.04 0.45

Serine 4.40 0.42 6.00 2.75

(B)
Metabolite Ratio

Limiting vs. Sufficient N Supply

without P.indica with P. indica

Compound Mean SE Mean SE
Rhamnose 1.22 0.08 1.20 0.09
Arabinose 1.24 0.19 1.56 0.32

Gentiobiose 1.29 0.17 1.41 0.13
Ribose 1.32 0.07 1.61 0.24
Xylose 1.42 0.32 2.21 0.58

Mannose 1.43 0.28 1.89 0.15
Galactose 1.44 0.34 2.02 0.22
Sucrose 1.55 0.37 2.30 0.77
Glucose 1.59 0.67 3.34 0.73
Fructose 1.72 0.63 3.32 0.75
Maltose 2.22 1.20 1.45 0.29

Trehalose 2.88 2.21 2.02 0.54
Raffinose 3.46 1.55 10.21 3.77
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2.5. P. indica Stimulates Expression of Specific Host´s Transporter Genes under N Limitation

The incorporation of 15N from the agar plate into the aerial parts of colonized seedlings
is lower under N starvation when compared to seedlings grown on full medium (Figure 2),
while a stimulation is observed for the translocation of labelled 15N from P. indica to the
leaves under N limitation (Figure 3). To test whether genes for N metabolite transporters
are regulated by P. indica, we performed expression profiles with RNA from the roots and
shoots of seedlings, which were either grown on full or N-limited medium in the presence
or absence of P. indica (Table 2).

Of the 56 investigated genes, which code for NO3
−, NH4

+, amino acid or peptide
transporters, 33 genes were differentially expressed in either the roots and shoots or both
of colonized and uncolonized seedlings grown on full or N-limited media (Table 2). In
the shoots, this included genes for two NH4 transporters (AMT1-3 and AMT1-5), three
NO3

− transporters (NRT2.2, NRT2.4 and NRT2.5), five members of the NITRATE TRANS-
PORTER 1/PEPTIDE TRANSPORTERs gene family (NPF2.6, NPF2.13, NPF5.3, NPF5.12
and NPF5.14) as well as the urea transporter DUR3. Furthermore, 21 amino acid trans-
porters, including members of the LHT and AAP families, as well as 12 UmamiT putative
amino acid transporters responded to the fungus. In contrast, seven transporter genes
were downregulated by P. indica in the shoots of N-starved seedlings (Table 2). In the roots,
six of these genes showed the same regulation (Table 2). This clearly demonstrates that
the expression of genes for NO3

−, NH4
+, amino acid and peptide transporters are major

targets of the fungus under N-limited conditions (see the Section 3).



Int. J. Mol. Sci. 2023, 24, 15372 7 of 16

Table 2. Differentially regulated transporters in A. thaliana. DEGs regulated by nitrogen limitation
(−N) in A. thaliana tissues without (w/o) or with (w) P. indica colonization.

DEGs Shoot Root

Category Gene Atg Number −N vs. +N −N vs. +N −N vs. +N −N vs. +N
w/o P. indica w P. indica w/o P. indica w P. indica

Nitrate (NRT2 family) AtNRT2.2 At1g08100 x 3.68 x x
Nitrate (NRT2 family) AtNRT2.3 At5G60780 −1.55 −5.8 x −5.22
Nitrate (NRT2 family) AtNRT2.4 At5g60770 x 3.61 2.9 2.58
Nitrate (NRT2 family) AtNRT2.5 At1g12940 2.17 3.85 5.63 3.61
Nitrate (NRT2 family) AtNRT2.6 At3g45060 x x −3.85 −5.14
Nitrate (NPF family) NPF2.6 At3g45660 x 3.34 x x
Nitrate (NPF family) NPF2.8/NRT1.9 At5g28470 x −4.49 x x
Nitrate (NPF family) NPF2.13/NRT1.7 At1g69870 x 2.48 x x
Nitrate (NPF family) NPF4.1/AIT3 At3g25260 x x x 2.3
Nitrate (NPF family) NPF5.3/NRT1.8 At5g46040 x 4.1 x x
Nitrate (NPF family) NPF5.6 At2g37900 x x −3.57 x
Nitrate (NPF family) NPF5.12 At1g72140 −2.03 x x x
Nitrate (NPF family) NPF5.14/NRT1.15 At1g72120 x 1.83 x x
Nitrate (NPF family) NPF6.2/NRT1.4 At2g26690 x x −2.11 −1.61
Ammonium (AMT family) AMT1−3 At3g24300 x 2.42 x X
Ammonium (AMT family) AMT1−4 At4g28700 x x x 2.51
Ammonium (AMT family) AMT1−5 At3g24290 x 4.18 4.12 2.51
Urea DUR3 At5g45380 x 2.46 2.87 2.04
Amino acid (GDU family) GDU1 At4g31730 x x −2.1 x
Amino acid (GDU family) GDU4 At2g24762 −1.77 −1.99 −2.54 −1.96
Amino acid (GDU family) GDU5 At5g24920 x x −1.8 x
Amino acid (GDU family) GDU6 At3g30725 x x −2.89 −2.03
Amino acid (GDU family) GDU7 At5g38770 x x −1.81 x
Amino acid (LHT family) LHT1 At5g40780 x 2.16 x x
Amino acid (LHT family) LHT2/AATL2 At1g24400 x x x −2.06
Amino acid (LHT family) LHT3 At1g61270 x x x 1.53
Amino acid (LHT family) LHT7 At4g35180 2.09 2.52 x X
Amino acid (AAP family) AAP3 At1g77380 x 1.84 x X
Amino acid (AAP family) AAP4 At5g63850 x 2.15 x X
Amino acid (AAP family) AAP6 At5g49630 x 1.9 x X
Amino acid (AAP family) AAP7 At5g23810 x x x 1.53
Amino acid (AVT family) AVT1E At5g02170 x −4.51 −1.77 X
Amino acid (AVT family) AVT1H At5g16740 6.41 7.5 2.25 2.72
Amino acid (AVT family) AVT3B At2g42005 −2.89 −1.65 x X
Amino acid (CAT family) GAT1/BAT1 At1g08230 x 2.02 x X
Amino acid (CAT family) CAT1/AAT1 At4g21120 1.65 3.39 x X
Amino acid (CAT family) CAT5 At2g34960 x 2.18 x X
Amino acid (UmamiT family) UmamiT 4 At3G18200 x 4.31 x X
Amino acid (UmamiT family) UmamiT 8 At4G16620 x 1.99 −1.69 X
Amino acid (UmamiT family) UmamiT 10 At3G56620 x 1.89 x X
Amino acid (UmamiT family) UmamiT 13 At2G37450 x −2.07 x −1.74
Amino acid (UmamiT family) UmamiT 14 At2G39510 x x −1.54 X
Amino acid (UmamiT family) UmamiT 17 At4G08300 x 1.76 x X
Amino acid (UmamiT family) UmamiT 19 At1G21890 x 2.27 x 3.02
Amino acid (UmamiT family) UmamiT 20 At4G08290 x 2 −2.01 −1.57
Amino acid (UmamiT family) UmamiT 25 At1G09380 x 2.4 x X
Amino acid (UmamiT family) UmamiT 26 At1G11460 x −1.9 x X
Amino acid (UmamiT family) UmamiT 29 At4G01430 x 1.57 x X
Amino acid (UmamiT family) UmamiT 35 At1G60050 x 1.75 −2.5 X
Amino acid (UmamiT family) UmamiT 36 At1G70260 x x x 1.95
Amino acid (UmamiT family) UmamiT 40 At5G40240 x 2.14 x X
Amino acid (UmamiT family) UmamiT 42 At5G40210 x 1.84 x X
Amino acid (UmamiT family) UmamiT 43 At3G28060 x −2.34 x X
Amino acid (UmamiT family) UmamiT 45 At3G28100 x 1.85 x X
Amino acid (UmamiT family) UmamiT 46 At3G28070 x x −5.76 X
Amino acid (UmamiT family) UmamiT 47 At3G28080 x x −2.94 X

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 8 of 17 
 

Nitrate (NPF family) NPF5.12 At1g72140 −2.03 x x x 
Nitrate (NPF family) NPF5.14/NRT1.15 At1g72120 x 1.83 x x 
Nitrate (NPF family) NPF6.2/NRT1.4 At2g26690 x x −2.11 −1.61 
Ammonium (AMT family) AMT1−3 At3g24300 x 2.42 x X 
Ammonium (AMT family) AMT1−4 At4g28700 x x x 2.51 
Ammonium (AMT family) AMT1−5 At3g24290 x  4.18 4.12 2.51 
Urea DUR3 At5g45380 x 2.46 2.87 2.04 
Amino acid (GDU family)  GDU1 At4g31730 x x −2.1 x 
Amino acid (GDU family)  GDU4 At2g24762 −1.77 −1.99 −2.54 −1.96 
Amino acid (GDU family)  GDU5 At5g24920 x x −1.8 x 
Amino acid (GDU family)  GDU6 At3g30725 x x −2.89 −2.03 
Amino acid (GDU family)  GDU7 At5g38770 x x −1.81 x 
Amino acid (LHT family) LHT1 At5g40780 x 2.16 x x 
Amino acid (LHT family) LHT2/AATL2 At1g24400 x x x −2.06 
Amino acid (LHT family) LHT3 At1g61270 x x x 1.53 
Amino acid (LHT family) LHT7 At4g35180 2.09 2.52 x X 
Amino acid (AAP family) AAP3 At1g77380 x 1.84 x X 
Amino acid (AAP family) AAP4 At5g63850 x 2.15 x X 
Amino acid (AAP family) AAP6 At5g49630 x 1.9 x X 
Amino acid (AAP family) AAP7 At5g23810 x x x 1.53 
Amino acid (AVT family) AVT1E At5g02170 x −4.51 −1.77 X 
Amino acid (AVT family) AVT1H At5g16740 6.41 7.5 2.25 2.72 
Amino acid (AVT family) AVT3B At2g42005 −2.89 −1.65 x X 
Amino acid (CAT family) GAT1/BAT1 At1g08230 x 2.02 x X 
Amino acid (CAT family) CAT1/AAT1 At4g21120 1.65 3.39 x X 
Amino acid (CAT family) CAT5 At2g34960 x 2.18 x X 
Amino acid (UmamiT family) UmamiT 4 At3G18200 x 4.31 x X 
Amino acid (UmamiT family) UmamiT 8 At4G16620 x 1.99 −1.69 X 
Amino acid (UmamiT family) UmamiT 10 At3G56620 x 1.89 x X 
Amino acid (UmamiT family) UmamiT 13 At2G37450 x −2.07 x −1.74 
Amino acid (UmamiT family) UmamiT 14 At2G39510 x x −1.54 X 
Amino acid (UmamiT family) UmamiT 17 At4G08300 x 1.76 x X 
Amino acid (UmamiT family) UmamiT 19 At1G21890 x 2.27 x 3.02 
Amino acid (UmamiT family) UmamiT 20 At4G08290 x 2 −2.01 −1.57 
Amino acid (UmamiT family) UmamiT 25 At1G09380 x 2.4 x X 
Amino acid (UmamiT family) UmamiT 26 At1G11460 x −1.9 x X 
Amino acid (UmamiT family) UmamiT 29 At4G01430 x 1.57 x X 
Amino acid (UmamiT family) UmamiT 35 At1G60050 x 1.75 −2.5 X 
Amino acid (UmamiT family) UmamiT 36 At1G70260 x x x 1.95 
Amino acid (UmamiT family) UmamiT 40 At5G40240 x 2.14 x X 
Amino acid (UmamiT family) UmamiT 42 At5G40210 x 1.84 x X 
Amino acid (UmamiT family) UmamiT 43 At3G28060 x −2.34 x X 
Amino acid (UmamiT family) UmamiT 45 At3G28100 x 1.85 x X 
Amino acid (UmamiT family) UmamiT 46 At3G28070 x x −5.76 X 
Amino acid (UmamiT family) UmamiT 47 At3G28080 x x −2.94 X 

  
Values are given as log2-fold differential expression identified by RNAseq analysis, p < 0.05. x = not dif-
ferentially expressed compared to full N (+N). The gradual colour scale from red to blue is indicated (red, 
transcript level decreased under limited N; blue, transcript level increased under limited N supply). 

Values are given as log2-fold differential expression identified by RNAseq analysis, p < 0.05. x = not differentially
expressed compared to full N (+N). The gradual colour scale from red to blue is indicated (red, transcript level
decreased under limited N; blue, transcript level increased under limited N supply).



Int. J. Mol. Sci. 2023, 24, 15372 8 of 16

3. Discussion

N limitation has severe consequences for plant performance [22], and endophytes
may help plants to better adapt to the shortage. We used the well-investigated symbiotic
interaction between the model plant A. thaliana and P. indica to address this question. We
demonstrate that under severe N limitation, the fungus does not stimulate the uptake of
nitrate into the host plant but rather the N-label from fungal metabolites appears in the
leaves of the host. Since our N-limiting medium contains barely any nitrate, the absence of
a detectable stimulatory effect of the fungus on nitrate uptake into the host is not surprising.
The N metabolites that are translocated from the hyphae to the plants under N limitation
conditions did not results in fungus-induced growth promotion (Figure 1), suggesting
that the N supply to the host by the fungus might only compensate deficits. Furthermore,
N-translocation from the fungus to the host occurs only under N limitation conditions,
suggesting the involvement of an N-sensing system (cf. [16]). The successful transfer of
15N by arbuscular mycorrhizal fungi to host plants has been shown previously [23–25].
More recently, Hoysted et al. [26] investigated clover (Trifolium repens) colonized by Mu-
coromycotina fungi and showed that the host gained both 15N and 33P tracers directly from
the fungus in exchange for plant-fixed C. Whether the N supply to the host in our study
system has comparable symbiotic features with profit for both partners or whether it is just
the stress-related withdrawal of N from the fungus by the plant without any profit for the
microbe remains to be investigated. However, since the fungus can grow and propagate on
the host under our –N conditions, the N translocation to the host does not restrict hyphal
growth. It appears that the conditions are not strong enough to induce changes in the
symbiotic interaction [16]. It is also not clear which metabolites are transported from the
microbe to the plant or how this occurs. In Medicago truncatula, three AMT2 family ammo-
nium transporters (AMT2;3, AMT2;4, and AMT2;5) are involved in the uptake of N in form
of ammonium from the periarbuscular space between the fungal plasma membrane and
the plant-derived periarbuscular membrane [27]. In exchange, host plants transfer reduced
carbon to the fungi [28–30]. Additionally, Cope et al. [31] showed that the colonization of
M. truncatula with R. irregularis led to the elevated expression of the mycorrhiza-induced
AMT2;3 and the nitrate transporter NPF4.12 as well as the putative ammonium transporter
NIP1;5 in the roots. A dipeptide transporter from the arbuscular mycorrhizal fungus
Rhizophagus irregularis is upregulated in the intraradical phase [32]. To investigate how the
fungus manipulates the host N metabolism, we performed a comprehensive metabolome
and transcriptome analysis for N-related metabolites and genes (Tables 1 and 2).

No major impact of the colonization by P. indica on the changes of shoot metabolite lev-
els in response to N limitation has been observed in this study. Liu et al. [33] demonstrated
that raffinose positively regulates maize drought tolerance by reducing leaf transpiration.
The raffinose family oligosaccharides are associated with various abiotic and biotic stress
responses in different plant species (e.g., [34–38]). It is conceivable that the stimulatory
effect of P. indica on the raffinose level in N-limited leaves reduces stress.

Nitrate transporter genes are often upregulated under N starvation; however, the role
of endophytic microorganisms in nitrate acquisition is not fully understood. In rice, the ar-
buscular mycorrhizal fungus R. irregularis remarkably promoted growth and N acquisition,
and about 42% of the overall N could be delivered via the symbiotic route under nitrate-
limiting conditions [39]. Nitrate uptake occurs via NITRATE TRANSPORTER1/PEPTIDE
TRANSPORTER FAMILY (NPF)4.5, a member of the low affinity nitrate transporter fam-
ily, which is exclusively expressed in the arbuscles of the Gramineous species [39]. A
comparable mechanism does not exist in our endophyte/A. thaliana model, and the pu-
tative A. thaliana NPF4.5 homolog is not upregulated in colonized roots under N-limited
conditions. However, we observed a highly specific response of several NPF/NRT1 and
NRT2 family members to P. indica colonisation, which suggest conclusions regarding how
the fungus interferes with the plant N metabolism. The nitrate transporters NRT2.2 and
NRT2.4 [40] are only upregulated in the rosettes when the roots are colonized by P. indica,
while their expression in the roots does not respond to the fungus. This suggests that the
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fungus promotes nitrate scavenging, which is released from the vacuole in response to N
starvation. In fact, NRT2.4 has been shown to be expressed close to the phloem in rosettes
and to contribute to nitrate homeostasis in the phloem under limiting nitrate supply, since in
nitrate-starved nrt2.4 mutants, nitrate content in shoot phloem exudates was decreased [40].
Likewise, NRT1.7 (NPF2.13) and NRT1.8 (NPF5.3) are upregulated by P. indica in leaves, but
not in roots. NRT1.7 loads excess nitrate stored in source leaves into phloem and facilitates
nitrate allocation to sink leaves. Under N starvation, the nrt1.7 mutant exhibits growth
retardation, indicating that the NRT1.7-mediated source-to-sink remobilization of stored
nitrate is important for sustaining growth in plants [41]. NRT1.8 is expressed predominantly
in xylem parenchyma cells within the vasculature and functional disruption of NRT1.8
significantly increased the nitrate concentration in xylem sap [42]. In contrast, NRT2.3 and
-2.6 are downregulated under N-limiting conditions and this is further promoted by the
fungus. NRT2.6 has been linked to biotic and abiotic stress responses [43], and it appears
that the downregulation of NRT2.6 expression by P. indica alleviates the stress responses
in the roots. Finally, NRT1.9 (NPF2.9) is strongly downregulated by P. indica in the leaves.
NRT1.9 is expressed in the companion cells of phloem. In NRT1.9 mutants, downward
nitrate transport was reduced, suggesting that NRT1.9 facilitates the loading of nitrate
into the phloem and enhances downward nitrate transport to the roots [44], apparently
a process that is restricted by the fungus. Taken together, the analysis of the regulation
of the A. thaliana nitrate transporter genes by P. indica suggests that the root-colonizing
fungus supports nitrate transport to and availability in the aerial parts of the host under
our nitrate-limiting conditions. This is further supported by the upregulation of NRT1.15
(NPF5.14) by P. indica in the leaves. NRT1.15 is a tonoplast-localized low-affinity nitrate
transport [45] and the overexpression of the gene significantly decreased vacuolar nitrate
contents and nitrate accumulation in A. thaliana shoots. NRT1.15 regulates vacuolar nitrate
efflux, and the reallocation might also contribute to osmotic stress responses other than
mineral nutrition [45].

Since the medium does not contain NH4
+, the plant can only receive NH4

+ from the
fungus via ammonium transporters (AMTs) [41,46–48]. AMT1-4 expression is upregulated
by P. indica in roots under N-limited conditions. Since AMT1-4 is root-specific [47], this
suggests that the plant tries to compensate its N limitation by stimulating NH4

+ uptake.
NH4

+ might also originate from the fungus, and it is conceivable that withdrawal of
this ion from the fungus might ultimately result in a change of the symbiotic interaction
towards saprophytism (cf. [16]). Furthermore, the expression of AMT1-3 and AMT1-5 as
well as DUR3-coding for a urea transporter [49,50] is stimulated by P. indica in the shoots.
Root colonization might create a metabolite environment in the host that requires these
transporters for the proper distribution of the N metabolites in the aerial parts.

Seven amino acid transporters are regulated >log2-fold by P. indica colonisation in
nitrate-deprived A. thaliana seedlings. In roots, the fungus prevents the downregulation
of the gene for glutamine secreting GLUTAMINE DUMPER (GDU)1 [51], suggesting that
the microbe wants to access to the plant glutamine. Furthermore, the broad-specificity
high affinity amino acid transporter LYSINE HISTIDINE TRANSPORTER (LHT)1 [52],
AMINO ACID PERMEASE (AAP)4, γ-AMINOBUTYRIC ACID TRANSPORTER (GAT)1,
and CATIONIC AMINO ACID TRANSPORTER (CAT)5 are upregulated in the leaves of
P. indica-colonized seedlings. These transporters have been proposed to be involved in ni-
trogen recycling in plants [53]. Apparently, a better or different N metabolism management
is required for the plant when the roots are associated with the endophyte. LHT1 and -2
are also involved in the transport of 1-aminocyclopropane carboxylic acid, a biosynthetic
precursor of ethylene [54], which might indicate an increased stress caused by the interac-
tion with the fungus under N-limiting conditions. An involvement in nitrogen recycling
has also been proposed for 5 of the 10 USUALLY MULTIPLE ACIDS MOVE IN AND
OUT TRANSPORTERS (UMANIT13, −20, −40, −45 and −47) [53], which are regulated
>log2-fold in either the roots or shoots of P. indica-colonized seedlings under N-limitations.
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4. Materials and Methods
4.1. Plant and Fungus Material and Corresponding Growth Conditions

A. thaliana seeds (Col-0) were surface-sterilized and sown on N-free MGRL medium
supplemented with 2.5 mM NH4NO3 and 3 g/L gelrite [55]. The KNO3 and Ca(NO3)2 in
the MGRL medium were replaced by KCl and CaCl2 to ensure ion equilibrium. After 48 h
of stratification at 4 ◦C in the dark, the seeds were transferred to long-day conditions with
22 ◦C, 16 h light/8 h dark, 80 µmol m−2 s−1 for 10 days.

Piriformospora indica was cultured on Kaefer’s medium as described previously [56,57].
As described previously, plugs of a 4-week-old fungal culture were used for co-cultures
with the seedlings. The fungus was pre-grown for 7 days on PNM medium (PNM+N) with
a nylon membrane in the dark at 22 ◦C. For N-limiting conditions (0 mM total N, PNM−N),
KNO3 and Ca(NO3)2 were replaced by KCl and CaCl2. For control plates without fungus,
only empty KM plugs were placed on top of the membrane.

4.2. Plant-Fungus Co-Cultures and the Determination of Growth Promotion

For plant-fungus co-cultures for 5 days, 4 plants (per Petri dish) were placed on top of
the pre-grown fungal lawn, as described previously [57], with some adaptations. Plates
were sealed with 3MTM Micropore tape to reduce the condensation and 10-day-old plants
were used for co-cultivation to reduce the amount of N, which accumulated in the plants
on MGRL medium before the co-culture. In pilot experiments, we showed that the reduced
age did not affect the establishment of the symbiosis with the fungus. The co-cultures were
incubated at 22 ◦C, 16 h light/8 h dark and 80 µmol m−2 s−1 with light from the top.

After 5 days, the roots and shoots of the plants were harvested separately. For that,
5 plates (=20 plants) were harvested as 1 sample. Both roots and shoots were washed in
sterile distilled water and carefully dried before weighing and direct freezing in liquid
nitrogen. Samples were stored in −80 ◦C until further use. These experiments were
repeated 3–4 times independently.

To determine growth promotion by the fungus, the weight of the sample with fungus
was normalized (divided) to the weight without fungus. This was performed for the
total weights sampled from the full medium (PNM+N) as well as from the N-limited
medium (PNM−N). Final growth promotion values presented in the figures are averages
of 3 replicates from independent cultures.

4.3. 15N Labelling Experiments in the Medium

To analyse the uptake of nitrogen by the plant, 2.5% of the total KNO3 (which equals
0.125 mM KNO3) of the PNM medium was replaced by K15NO3 (Eurisotop, Saint-Aubin,
France) dissolved in distilled water. For proper comparison, the 2.5% of K15NO3 was also
added to the N-free medium (PNM−N) resulting in a final concentration of 0.125 mM
nitrate. Finally, PNM−N control plates without 15N were used and contained 0.125 mM
unlabelled KNO3. Plants grown on these plates were compared to those grown on PNM+N
plates to analyse the natural abundance of 15N in the plant tissue. As described before, the
fungus or control plug was pre-incubated on the PNM with nylon membrane for 1 week
before plants were placed on the plates. The co-cultures were incubated for 5 days to ensure
that enough 15N was taken up by the plant.

4.4. 15N Fungus-Labelling Experiments

To analyse whether the fungus can directly transfer N or N-containing metabolites
to the plant, it was labelled with 15N before the co-culture. A modified KM medium
without the N-containing components (20 g/L dextrose, 50 mL/L macronutrients, 10 mL/L
micronutrients and 1 mL/L Fe-EDTA, 1 mL/L vitamin mix, pH 6.5) was prepared and
supplemented with 10 g/L ISOGRO®-15N (CortecNet, Les Ulis, France) according to
the manufacturers protocol. P. indica plugs of 2 mm diameter were incubated (23 ◦C,
50 rpm, dark) in 2 mL of KMISOGRO in Greiner CELLSTAR® 12-well plates (Greiner Bio-One,
Frickenhausen, Germany) sealed with 3MTM Micropore tape. After 14 days of growth, the
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fungal tissue was separated from the remaining medium and carefully washed 3 times with
N-free liquid PNM to remove the 15N bound to the hyphal surface. A 76.66% enrichment in
15N was achieved using this protocol. The fungus was carefully cut in 5 × 5 mm pieces and
placed on PNM−N and PNM+N plates to start the co-cultures. To minimize 15N uptake
by the plant from dead fungal material during the washing and handling procedure, the
fungal plugs were placed in minimum 1 cm distance from the roots. Under these conditions,
contact between the two symbionts requires the active growth of the hyphae towards the
roots. Co-cultivation was performed with 3 plants per plate for 14 days to ensure that
enough 15N was taken up by the plant.

4.5. Isolation and Clean-Up of RNA

RNA was isolated from the roots or shoots of 10-day-old seedlings, which were either
co-cultured with the fungus for additional 5 days (root colonization results), or for an
additional 4 days for expression profiling. Samples of root or shoot material were stored
in −80 ◦C. For homogenization, the samples were ground with mortar and pistil in liquid
nitrogen. A maximum of 100 mg material was used for RNA extraction. RNA was extracted
with TrizolTM (ThermoFisher Scientific, Waltham, MA, USA) and chloroform according to
the manufacturers protocol. Briefly, the plant material was mixed with 1 mL of TrizolTM

and incubated on a shaker at room temperature for 15 min. After the addition of 250 µL
chloroform and a second incubation phase, the sample was centrifuged (30 min, 4 ◦C). The
supernatant was mixed with isopropanol and incubated on ice, followed by centrifugation.
The pellet was washed twice with 80% ethanol, dried and resuspended in RNAse-free
water. The RNA isolation was followed by an additional cleaning step to remove access
salts originating from the fungus tissue. For this, the sample was mixed with 3 M sodium
acetate (1/10 (v/v) in RNAse-free water, pH = 5.2) and 600 µL of ice-cold 100% ethanol and
incubated at −20 ◦C for at least 1 hr. After centrifugation and 2 cleaning steps with 80%
ethanol, the sample was resuspended in RNAse-free water. The quality and concentration
of the extracted RNA was tested via absorbance analysis using a NanoVue (GE Healthcare,
Uppsala, Sweden).

4.6. RNAseq and Data Analysis

After the transfer of samples to Novogene Genomics Service (Cambridge, UK), the
RNA sample integrity was checked with a Bioanalyzer 2100 (Agilent). After samples passed
the quality check, the service laboratory proceeded with the library construction and RNA
sequencing (PE150) on Illumina NovaSeq™ 6000 platforms, as described in a previous
study [58].

The RNAseq libraries were filtered and quality-trimmed with fastp (v0.23.2) [59],
i.e., read ends were truncated to achieve a Phred quality score of 30 or more. Reads below
15 nt length or those comprising at least 2 ambiguous N bases were removed from the
dataset. Read qualities were monitored by FastQC (v0.11.3; https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/, accessed on 15 December 2022). Hisat2 (v2.2.1) [60]
was used with default parameters to map the quality-trimmed RNAseq libraries to the
A. thaliana reference genome (TAIR10, Ensembl release 51). The mapping allowed spliced
reads and single-read mapping to multiple best-fitting locations. FeatureCounts (v1.5.3) [61]
was applied to perform read-counting based on the A. thaliana reference annotation (TAIR10,
Ensembl release 51). The Bioconductor DESeq2 (v1.10.0) package [62] was utilized to
identify DEGs in the different pairwise mutant and wild type comparisons. Benjamini and
Hochberg’s false discovery rate (FDR) approach [63] was employed to adjust the calculated
p-values for multiple testing.

To identify DEGs of transporters predicted to transport major N compounds, the
obtained results were initially filtered according to their p-value (p < 0.05). Next, DEGs
were sorted according to their log2-fold change—here only changes with numbers ≥ +1.5
and ≤ −1.5 were further analysed. This list was cross-checked with targets identified from

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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a search in the UniProt database (https://www.uniprot.org, accessed on 15 December 2022)
using keywords like “NH4 transport”.

4.7. Analysis of Fungal Colonization via qPCR

A total of 1 mg of RNA was used for the synthesis of cDNA. The Omniscript RT
Kit (Qiagen, Hilden, Germany) was used according to the manufacturers protocol with
the oligo(dT)18 primer (ThermoFisher Scientific, Waltham, USA). qPCR was performed
with fifty nanograms of the synthesized cDNA as template in a Bio-Rad CFX96 Real-Time
PCR Detection System (Feldkirchen, Germany) via DreamTaq Polymerase (ThermoFisher
Scientific, Waltham, USA) and Evagreen (Biotium, Fremont, CA, USA). The data were
normalized with respect to the A. thaliana RPS18B (At1g34030) gene using the 2−∆∆CT

method [64]. To quantify the P. indica colonization level of A. thaliana roots, the expression
of PiTEF1 [65] was analysed in comparison to the plant´s housekeeping gene RPS18B (At1g
34030). The following primers were used: PiTEF1: CGCAGAATACAAGGAGGCC and
CGTATCGTAGCTCGCCTGC; RPS18B: GTCTCCAATGCCCTTGACAT and TCTTTCCTCT-
GCGACCAGTT [66]. The colonization was compared between plants grown on PNM−N
and PNM+N media (set as 1.0) using the 2−∆∆CT method.

4.8. Determination of Total Nitrogen and 15N Enrichment

Total N and 15N contents were quantified on 1–2 mg aliquots of dry tissue, after drying
a ground tissue aliquot at 65–70 ◦C for at least 48 h. N elements were detected using gas
chromatography on a FLASH 2000 Organic Elemental Analyzer (Thermo Fisher Scientific,
Villebon, France). The 15N/14N isotopic ratio was subsequently quantified using a coupled
mass spectroscope (Delta V advantage IRMS; Thermo Fisher Scientific, Villebon, France).
The total N content was only determined in plant shoots because the discrimination of N
from plant or fungus was not possible in colonized root material.

4.9. Metabolomic Analysis

For GC-MS-based quantifications, 25 mg of finely ground plant material was resus-
pended in 1 mL of frozen (−20 ◦C) water:acetonitrile:isopropanol (2:3:3, v/v/v) containing
Ribitol at 4 ug/mL and analysed as described in [67].

5. Conclusions

We observed an unexpected complexity in the plant N metabolism when N-deprived
A. thaliana seedlings were colonized by P. indica. Our data suggest that the fungus neither
stimulated the total N content nor promoted 15NO3

− uptake from agar plates to the host.
Rather, reduced N metabolites were transported from the fungus to the plant. Further-
more, gene expression and metabolite profiles suggest that N-containing metabolites were
redistributed by P. indica in A. thaliana seedlings exposed to N-limitation.

Our initial observations highlight a few aspects that need to be investigated in greater
detail. (1) Which N metabolites are transported from the fungus to a plant suffering under
N limitation? (2) The plant appears to adapt its N metabolism under N limitation by
transporting N metabolites shootwards, a process that is supported by the fungus. Is the
fungal support for the plant specific for the symbiotic phase of the interaction? (3) Are our
observations P. indica-specific or do they occur also in other endophyte/plant interactions?
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