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One of the few firm predictions of string theory is the existence of a massless scalar field coupled
to gravity, the dilaton. In its presence, the value of the fundamental constants of the universe, such as the
fine-structure constant, will vary with the time-dependent vacuum expectation value of this field, in direct
violation of the Einstein equivalence principle. The runaway dilaton proposed by Damour, Piazza, and
Veneziano provides a physically motivated cosmological scenario which reconciles the existence of a
massless dilaton with observations, while still providing nonstandard and testable predictions. Further-
more, the field can provide a natural candidate for dynamical dark energy. While this model has been
previously constrained from local laboratory experiments and low-redshift observations, we provide here
the first full self-consistent constraints, also including high redshift data, in particular from the cosmic
microwave background. We consider various possible scenarios in which the field could act as
quintessence. Despite the wider parameter space, we make use of recent observational progress to
significantly improve constraints on the model, showing that order unity couplings (which would be natural
in string theory) are ruled out.
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I. INTRODUCTION

The discovery of the Higgs boson at the LHC [1,2],
confirmed that spin-0 scalar fields are part of the building
blocks of nature. As they are easy to couple to gravity
without breaking covariance, they are now commonly
invoked as a powerful tool to model cosmological para-
digms, including quintessence, early dark energy, inflation,
symmetry breaking phase transitions (with their associated
topological defects), and—last but not least—dynamical
varying couplings [3].
Moreover, they appear as a theoretical necessity in most

of grand unification scenarios and attempts of building a
quantum theory of gravity. This is the case of string theory,
one of the most promising paths connecting quantum field
theories and gravity (for a review see, e.g., [4]). Indeed,
many bridges have already been built between gravity and
quantum fields thanks to quantum strings, such as the
recent AdS–CFT correspondence and similar applications

of the holographic principle (see, e.g., [5]). Even though it
is still impossible to tell what the final form of the theory
should be, one of its uncircumventable predictions seems to
be the existence of a scalar partner to the graviton field,
called the dilaton. Its dynamics sets the intensity of the
various interactions between strings through the string
coupling, and therefore that of the fundamental forces of
the standard model. Among other things, the evolution of
the dilaton field implies a variation of all the fundamental
dimensionless couplings, such as the fine-structure con-
stant. In turn, this implies a violation of the Einstein
equivalence principle [6,7]).
Theory suggests that the dilaton should be massless,

which would be in violent contradiction with observations.
To overcome such an issue in a physically motivated
manner, it has been proposed that the dilaton coupling
to other matter fields is attracted toward finite smooth
limits [8–10]. This model is called the runaway dilaton and
has the advantage of providing clear predictions, that can be
confronted with observations. As such, it can be used as a
very compelling testbed model to implement and study
variations of fundamental constants on cosmological
scales. Moreover, with a suitable choice of potential
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VðϕÞ or extra couplings, the dilaton field can provide a
physically motivated source of dynamical dark energy [11].
The present work builds upon several previous phenom-

enological studies [11–14] while aiming to be more
accurate and more general. This is achieved by confronting
the full cosmological field evolution with the latest data-
sets, as done in [15] for Bekenstein models, while freeing
ourselves from assumptions made in previous studies. In
Sec. II we introduce the evolution equations of the coupled
dilaton field, as well as their impact on various observables.
In Sec. III we present the datasets we use in order to obtain
the constraints discussed in Sec. IV. Finally, we present our
conclusions in Sec. V.

II. PHENOMENOLOGY OF THE COUPLED
RUNAWAY DILATON

The dilaton field Φ appears in every string and super-
string theory as a massless scalar excitation of the bosonic
string. It comes as a massless scalar mode on the first exited
state of the closed string along with two rank-2 tensor
fields: the symmetric metric tensor g̃μν and the antisym-
metric Neveu-Schwarz B-field Bμν, which plays a role
comparable to an electromagnetic gauge field for extended
objects. As such, Φ is a partner of the graviton and
contributes to the behavior of gravity itself (for an elemen-
tary introduction see, e.g., [16]). At tree level, it is expected
to be coupled to the various sectors in the string-frame
Lagrangian through coupling functions BiðΦÞ with
i ¼ g̃; F;ψ ;Φ…. While string theory cannot predict the
exact form of these coupling functions, the assumption
underlying the runaway dilaton model is that they can
naturally be attracted toward a finite smooth limit [9] as

BiðΦÞ ¼ Ci þOðe−ΦÞ; ð1Þ

this can reconcile a massless dilaton with experimental
observations while still providing many nonstandard but
observable predictions.
The direct coupling of Φ to gravity is reabsorbed in a

conformal transformation of the metric g̃ → g and a
redefinition of the field Φ → ϕ [8], leading to an effective
low energy Lagrangian density in the Einstein frame

L ¼ R
16πG

þ 1

8πG
ðgμν∂μϕ∂νϕ − VðϕÞÞ

−
1

4
BF̂ðϕÞF̂a

μνF̂
aμν − BψðϕÞψ̄=Dψ þ…; ð2Þ

where R is the Ricci scalar and F̂ and ψ are respectively the
various gauge field strengths and fermion fields. D are the
covariant derivatives including the coupling between fer-
mions and gauge fields. In principle the sum extends
infinitely over all the massive modes of the string, and
they can potentially be coupled. Note that we adopt the
notation of previous literature, in which ϕ is measured in

units of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ · c=ð4πGÞp ¼ mpl=

ffiffiffiffiffiffi
4π

p
with the Planck mass

mpl ≈ 2.176 × 10−8 kg. In particular, the normalization is

not the usual mpl=
ffiffiffiffiffiffi
8π

p
used in many other contexts in

cosmology, leading to slightly unconventional kinetic
energy terms in the Lagrangian of Eq. (2) as well as in
Eqs. (3) and (4) below. We set ℏ ¼ c ¼ 1.
The field’s density and pressure are

ρϕ ¼ ρT þ ρV ¼ 1

8πG
½ _ϕ2 þ VðϕÞ�; ð3Þ

Pϕ ¼ PT þ PV ¼ 1

8πG
½ _ϕ2 − VðϕÞ�; ð4Þ

where T and V denote the kinetic and potential contribu-
tions respectively. To these densities, one can associate
their corresponding energy density parameters, and their
sum Ωϕ ¼ ΩT þ ΩV . The dotted quantities are derivatives

with respect to the cosmic time t, while ϕ0 ¼ dϕ
d ln a denotes

derivatives with respect to the logarithm of the scale factor,
and ∂τϕ ¼ ðaHÞϕ0 for derivatives with respect to conformal
time τ.
The model’s Friedmann and Klein-Gordon equations are

H2 ¼ 8πG
3

ρ; ð5aÞ

ϕ̈þ 3H _ϕ ¼ 4πGσ; ð5bÞ

where the ρ is the total density of all components of the
universe (including the dilaton) and H ¼ _a=a is the usual
Hubble parameter. Furthermore, the interaction of the field
is described by

σ ¼ σV þ σm ¼ −
1

8πG
∂VðϕÞ
∂ϕ

þ
X
i

αiðϕÞð3Pi − ρiÞ; ð6Þ

whose first term describes the self-interactions of the
dilaton from the potential, while the second term
describes the dilaton couplings to the other components
of the universe.1 The index i spans all components
(hadrons; darkmatter; radiation…) with corresponding
densities ρi and pressures Pi. The coupling strengths are
quantified by coefficients2 αi given by the logarithmic
gradients of their masses

1Note the perhaps surprising extra factor of 1=2 in front of the
potential derivative in the source term of the Klein-Gordon
equation (5b). This is due to the definition we choose for the
action of the field’s potential in Eq. (2) with an unconventional
ð8πGÞ−1 factor.

2Not to be confused with the fine-structure constant α and its
value at redshift zero αðz ¼ 0Þ ¼ α0.
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αiðϕÞ ¼
∂ lnmiðϕÞ

∂ϕ
: ð7Þ

This field induced mass variation is a direct signature of the
theory of gravity being nonmetric.
As discussed in [10], one can model the ϕ dependence of

the hadron coupling αh and dark matter coupling αm using

αhðϕÞ ¼ αh;0e−ðϕ−ϕ0Þ; ð8aÞ

αmðϕÞ ¼ αm;0e−ðϕ−ϕ0Þ; ð8bÞ

where we introduced the notations αi;0 ¼ αiðϕ0Þ and
ϕ0 ¼ ϕðz ¼ 0Þ. Doing so, the Klein-Gordon equation
can be entirely described in terms of the difference
ϕ − ϕ0. The couplings to hadrons/leptons/dark matter are
driving most of the late time cosmological evolution of the
field. Another important interaction, albeit more specula-
tive, is that to a model of dark energy (if not generated
through the dilaton itself), through a coupling term αDE. If
this component behaves as a cosmological constant, we
have σDE ¼ αDEð3PDE − ρDEÞ ∼ −4αΛρΛ. We will only
consider the case where αΛ is a constant, which was
assumed in most of the previous phenomenological stud-
ies [12–14] where αΛ was denoted αV . Note however that
this notation was misleading, as this behavior cannot be
simply created by some fine tuned potential of ϕ,
but requires some interaction between the dilaton and
dark-energy.
The coupling to radiation is always irrelevant, since in

that case ρr ¼ 3Pr and the term of Eq. (6) always vanishes.
The only other interaction of cosmological interest might be
that with massive neutrinos, which is left for future work.
It is convenient to treat the contribution from the

dilaton potential simply as another species in the σ sum,
with coupling3 αV ¼ 1

4
∂ lnV
∂ϕ . Note that any constant in the

potential VðϕÞ ¼ Λ adds a term to the Lagrangian equa-
tion (2) that is effectively equivalent to a cosmological
constant. As such, while being conceptually different, the
situation in which the runaway dilaton provides the source
for dark energy with a constant potential is phenomeno-
logically equivalent to a runaway dilaton field completely
decoupled from dark energy (V ¼ 0, αΛ ¼ 0) plus a
cosmological constant. However, for αΛ to be nonzero
requires that V ¼ 0 and Λ to be a different source of dark
energy. In addition to these two simple scenarios, we will
consider the exponential potential VðϕÞ ¼ Axecxðϕ−ϕ0Þ,
leading to αV ¼ cx=4 which represents a well motivated
potential from string theory [10,11].
The field equations with the couplings as presented thus

far display an attractor behavior, shown in Fig. 1. First, the
initial value of the field is irrelevant in the overall evolution.

This is naturally expected from the Eqs. (5b) and (8b)
(which only depend on field differences, not the overall
value). Second, there could be, in principle, a dependence
on the initial velocity. We observe in Fig. 1 that due to
Hubble friction the field velocity quickly decays from
whatever velocity is chosen at the beginning of the
evolution to the value that is forced by its interaction with
massive species (the “attractor”). This causes the field ϕ to
eventually reach a plateau. The overall displacement of the
field from its initial value (ϕ − ϕ∞) can take on different
values at the plateau, depending on the precise initial
condition. However, for a large range of initial velocities
the late time field velocity (and thus also the overall
displacement) is most significant around matter domina-
tion, where the acceleration from the coupling is strongest
compared to the Hubble friction. In this range the initial
velocity is irrelevant. The starting redshift (here 1014) is of
course set arbitrarily, but this choice does not significantly
impact our results.

A. Impact on observations

All the dimensionless coupling coefficients quantifying
fundamental interactions of the standard model are
expected to be dynamical quantities evolving with the
dilaton field itself. The fine-structure constant α, quantify-
ing the strength of the electromagnetic interaction, is for
this reason expected to exhibit a dynamical behavior and
will be directly proportional to the field’s coupling to the

FIG. 1. Evolution of the dilaton field and its speed with respect
to the scale factor for different values of its initial speed. Here
VðϕÞ ¼ 0, αm;0 ¼ −1 × 10−2, and αh;0 ¼ −1 × 10−5.

3The normalization is set to ensure consistency with the
definitions in the literature [10].
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kinetic term of the Maxwell field strength F, BFðϕÞ in the
Lagrangian [Eq. (2)]. This is particularly relevant due to the
extensive astrophysical and laboratory measurements of α.
One can show that the time evolution of α can be linked

to the dilaton coupling and field speed as [10,12]:

1

H
_α

α0
≈
αhðϕÞ
40

ϕ0; ð9Þ

where α0 is today’s value of the fine-structure constant.
This leads to the following redshift dependence

Δα
α0

ðzÞ ≔ αðzÞ − α0
α0

¼ αh;0
40

½1 − e−ðϕðzÞ−ϕ0Þ�: ð10Þ

An example of this evolution for various dilaton coupling
values to hadrons is given in Fig. 2.
A different value of α during big bang nucleosynthesis

(BBN) also impacts the values of primordial abundances.
The most significant of these is the Helium-4 fraction. One
can simply model that the induced variation of Y4He as

ΔY4He

Y4He
¼ κBBN

Δα
α0

: ð11Þ

For the runaway dilaton, the sensitivity coefficient κBBN is
expected to be of order unity [17]. We will hence set
κBBN ¼ 1 for the remainder of this work. However, we
stress that the impact of this parameter on the analysis is
negligibly small.
Furthermore, as discussed in [18,19], α appears in

various expressions quantifying the interactions between
baryons/leptons with the photons at recombination epoch.
Ultimately, the atomic energy levels of the hydrogen

atoms are shifted, leading to a delay or advance of

recombination. This will impact all the interaction rates
and thus, the behavior of the visibility function leading
ultimately to a shift of the sound horizon at the last
scattering surface, impacting the large l values of the
angular power spectrum of the cosmic microwave back-
ground [18,20] and the value of the Hubble parameter at
high redshift [19,21,22]. We self-consistently model this
variation of the α fine-structure parameter using Eq. (10).
A minor influence on the redshift of reionization is also

expected to be induced by a varying α. However, the
dynamics of reionization is much less known, and the
impact would be far less constrained by current data. For
this reason, we will ignore it in the present study.
Last but not least, string theory is not a metric theory of

gravity, implying that a violation of the Einstein equiv-
alence principle is not only expected but indeed unavoid-
able at some level [6]. It can be shown that the Eötvos
parameter η, quantifying deviations from the universality of
free fall (UFF) and the Eddington parameter γ (related to
light deviation by massive objects, and constrained by the
Cassini bound) are directly proportional to the square
of the dilaton coupling to hadrons [10,23]. At z ¼ 0,
one can derive bounds from general nuclear binding energy
formulas

η ≃ 5.2 × 10−5α2h;0; ð12aÞ

γ − 1 ≃ −2α2h;0: ð12bÞ

III. DATASETS

The runaway dilaton model can be constrained through-
out the cosmic evolution using a wide range of local,
astrophysical, and cosmological datasets, which we now
enumerate.
Local constraints come from experiments on

Earth laboratories or in low Earth orbit. Specifically,
MICROSCOPE [24] provides constraints4 on η at z ¼ 0

η ¼ ð−1.5� 2.7Þ × 10−15: ð13Þ

Furthermore, [25] provides laboratory constraints on the
drift rate _α=ðα0HÞ at z ¼ 0 using experiments based on
atomic clocks, constraining a variation of the fine-structure
constant at current times as

1

H0

�
_α

α0

�
z¼0

¼ ð0.014� 0.015Þ × 10−6: ð14Þ

Finally, the Oklo natural nuclear reactor [26] provides a
geophysical constraint on Δα=α

FIG. 2. Δα
α0

as a function of z and a for different values
of αh;0. The dark matter coupling is fixed to αm;0 ¼ 10−3 and
ϕini ¼ ϕ0

ini ¼ V ¼ 0.

4The standard deviation value is obtained by adding quadrati-
cally the statistical and systematic errors of [24].
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Δα
α0

ðz ¼ 0.14Þ ¼ ð0.005� 0.061Þ × 10−6: ð15Þ

Astrophysical constraints on α are provided by high-
resolution spectroscopy of low-density absorption clouds
along the line of sight of bright quasars, at low to
intermediate redshifts (z < 5). We used the measurement
described in [3] combined with recent measurements. All
of them can be found in [27,28] with an extra point coming
from the recent ESPResSO spectrograph measurement [29].
Finally, our cosmological data includes Planck constraints

on CMB power-spectra, lensing [30,31], large scale struc-
tures and baryon acoustic oscillation from the BOSS DR-12
galaxy survey [32]. In order to constrain the cosmological
background evolution, we will also use the supernovae of
type Ia (SNIa) likelihood associated to the Pantheon data-
set [33]. Finally, we also use HðzÞ measurements coming
from recent cosmic-clocks measurements [34].

IV. RESULTS

We aim to obtain constraints on the runaway dilaton
model free parameters over the whole cosmic history using
the datasets presented in Sec. III.
We use a modified version of the CLASS software [35]

including the runaway dilaton field. The scalar field impact
on background cosmology is computed by integrating the
model equations to obtainϕðzÞ. The code is also modified to
consider the various impacts of a redshift dependent value of
the fine-structure constant through the cosmic history. In
particular, the computed ΔαðzÞ=α0 is given by Eq. (10).
In this work, we derive the constraints on the dilaton field

simply for the case where the field is spatially homo-
geneous. However, we have also checked that for cases
where the overall energy fraction of the dilaton is sub-
dominant during most of the cosmic evolution, one does
not obtain a significant impact of the dilaton field pertur-
bations (when implementing the usual perturbed Klein
Gordon equation, for example). As such, in these cases our
results should generalize. Still, we leave a more detailed
investigation of the dilaton perturbations for future work.
The likelihood analysis is done by samplingMonte Carlo

Markov Chains (MCMC) with MontePython [36,37] directly
coupled to the modified CLASS code. We consider the
chains to be converged if, for all parameters, the Gelman-
Rubin criterion satisfies jR − 1j < 0.05. Plotting is done
using the GetDist software [38].
For every run, we sample over the standard cosmological

parameters fωb; lnAs; ns; zreio; H0g, the dilaton parameters,
and the nuisance parameters of the various likelihoods. The
priors in all of these parameters are flat and unbounded. In
order to remain concise, we will only display the contours
for the dilaton parameters most of the time. Note that the
values of ϕ0 and ϕ0

0 are derived parameters and not sampled
over. While not specified on the figures, their values are
always expressed in units of mpl=

ffiffiffiffiffiffi
4π

p
.

A. Runaway dilaton and a cosmological constant

In this section we consider the cosmic evolution of a
runaway dilaton model decoupled from the cosmological
constant, which in this case is the only form of dark energy
(V ¼ 0). This is equivalent to a runaway dilaton with a
constant potential V ¼ Λ and no cosmological constant. As
such, only the dilaton couplings to baryons and/or dark
matter are relevant here.
We display the 68% and 95% CL contours of the 2D

marginalized posteriors for all combinations of parameters
in Fig. 3 and the corresponding 68% CL are detailed in
Table I. One can witness a very strong correlation between
αm;0 and today’s value of the field ϕ0 and its derivative ϕ0

0,
while such a correlation is mostly absent with αh;0. This is
expected as the coupling to hadrons is highly constrained
by local data as MICROSCOPE while the dark matter
coupling, more loosely constrained by the cosmological
dataset, has more freedom to accelerate the field toward late
times. Compared to previous studies as [14] (which also
include αΛ ≠ 0), the field speed ϕ0

0 appears however to be
more sharply constrained by one order of magnitude,
indicating that αm;0 does not have an impact on the field
evolution as strong as αΛ (which here is fixed to 0).

B. Runaway dilaton and a constant coupling
to dark energy

The latest results found in the literature (see, e.g., [14])
consider the scenario in which ϕ can be coupled to Λwith a
constant coupling. In low redshift studies, an extra prior on
today’s field speed was given by jϕ0

0j ¼ 0.0� 0.1, obtained

FIG. 3. Posteriors of the dilaton parameters with αΛ ¼ 0 and a
constant/zero potential.
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from separate constraints in [39,40]. This prior enables the
simplification of the constraints coming from the probes of
the cosmological background expansion and therefore
provides the main (and effectively the only) constraint
on today’s field speed ϕ0

0. However, using such a prior
on today’s field speed is in principle unjustified for a
full cosmological study since it is derived from rough
assumptions (such as matter domination in the current
cosmological era), which can be superseded with our
likelihood sets.

We show the results without this prior as the red contours
in Fig. 4, and the results with the prior on ϕ0

0 as blue
contours. We further quantify the results in Table II. These
results provide for the first time a study of the full model
including αm;0 without making any simplifying assump-
tions (which were called dark, field, and matter coupling in
the previous studies [12–14]). We find an improvement of
the constraints on αh;0 by one order of magnitude compared
to [14], solely due to the latest MICROSCOPE constraint.

TABLE I. Best-fit values of the runaway dilaton parameters
with associated 68% confidence levels (CL) in the case V ¼ 0 (or
V ¼ Λ) and αΛ ¼ 0.

Parameter 68% CL

αh;0 ð0.24þ4.77
−4.57 Þ × 10−6

αm;0 ð−1.33þ1.92
−6.09 Þ × 10−2

ϕ0 ð1.5þ4.0
−2.4Þ × 10−1

ϕ0
0 ð5.49þ22.9

−7.82 Þ × 10−3

FIG. 4. Posteriors of the dilaton parameters with a constant coupling to dark energy αΛ with an extra prior on ϕ0
0 (blue) and without

it (red).

TABLE II. Best-fit values of the runaway dilaton parameters
with associated 68% confidence levels (CL) in the case V ¼ 0
and αΛ ≠ 0.

Parameter Prior on ϕ0
0 No prior on ϕ0

0

αh;0 ð−1.63þ4.33
−4.71 Þ × 10−6 ð0.21þ2.97

−2.80 Þ × 10−6

αm;0 ð−1.70þ2.08
−5.71 Þ × 10−2 ð−1.39þ2.65

−6.03 Þ × 10−2

αΛ ð0.50þ8.94
−9.39 Þ × 10−2 ð−0.16þ2.34

−3.65 Þ × 10−1

ϕ0 ð16.7þ3.68
−2.43 Þ × 10−1 ð17.5þ4.25

−3.23 Þ × 10−1

ϕ0
0 ð0.20þ9.97

−9.98 Þ × 10−2 ð3.7þ38.4
−31.0Þ × 10−2
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The constrains on the coupling to dark energy αΛ are
identical when using the prior, as they are an indirect
consequence of this restriction set on the field speed, due to
the strong degeneracy one can witness between the two
parameters.
While αm guides the field evolution in matter domination

(and thus has a strong impact on the overall field offset ϕ0)
the impact of the dark energy coupling αΛ is much stronger
at late times (around dark energy domination), leading to a
very tight degeneracy between αΛ and the current field
speed ϕ0

0.
When leaving the prior, the contours are even more non-

Gaussian, allowing for large values of αΛ and hence of the
field speed. Surprisingly, the coupling αh;0 appears to be ∼2
times more constrained without providing any prior on ϕ0

0,
below what the MICROSCOPE bound [Eq. (13)] can
constrain. This is a result from a Bayesian projection
effect: The larger space of ϕ0

0 allowed also allows for a
greater amount of models close to αh;0 ∼ 0 to be viable [due
to the atomic clock likelihood constraining only the product
αh;0ϕ

0
0, see Eqs. (9) and (14)]. This, in turn, explains the

specific shape of the contour in the ðϕ0
0; αh;0Þ space asking

for the two parameters to have the same sign for their
product to be positive, and tightens the posterior around
αh;0 from the Bayesian marginalization.
Since we do not have any potential in this case, the

overall energy density of the field [Eq. (3)] is solely given

by the kinetic energy of the field (Ωϕ ¼ ΩT). Given that a
large coupling to Λ is allowed (jαΛj ≫ 0), we find that the
field strongly accelerates at late times, leading to
dρϕ=d ln a > 0 (and large jϕ0

0j). This naturally allows for
a higher H0 due to the geometrical degeneracies in the
CMB (compare, e.g., with a model of dark energy equation
of state with w < −1).5 The contour plots relating the
dilaton parameters and H0 are displayed in Fig. 5. We can
observe that today’s value of the Hubble parameter H0, is
impacted quite strongly by high values of ϕ0

0. Releasing
the prior on ϕ0

0 naturally allows for higher H0 values:
H0 ¼ 68.2þ0.51

−0.65 km=s=Mpc instead of H0 ¼ 67.8�
0.43 km=s=Mpc with the prior. These conclusions could
be relevant in the context of the ∼4–5σ observational
tension on the value ofH0 and the theoretical limitations of
Λ as the standard source of dark energy (see, e.g., [41]). We
observe, however, that (due to the atomic clock bound) this
quintessencelike behavior of the dilaton field in this
configuration is only allowed for smaller values of αh;0
and hence smaller violations of general relativity. A
targeted and complete study on the role of the dilaton
field in this regard remains for future work.

C. Exponential potential

We will now consider the case of an exponential shape
for VðϕÞ. In this case the runaway dilaton potential can
explain all of the dark energy in the universe, providing that
we add a constant term to V. The contours are shown in
Fig. 7, and the corresponding constraints are displayed in
Table III. As expected, we obtain a high value for

FIG. 5. Contour plots ofH0 and the dilaton parameters in the cases of an exponential potential (black) and a constant coupling to dark
energy αΛ with an extra prior on ϕ0

0 (blue) and without it (red).

FIG. 6. Contour plot of Ωϕ andH0 for the exponential potential
scenario.

5The equation of state of the dilaton naturally always
obeyswϕ > −1 since 1þ wϕ ¼ 2 _ϕ2=½ _ϕ2 þ VðϕÞ� > 0. However,
since we have dρ=d ln a > 0 this is effectively equivalent to a
decoupled species with w < −1 since for such a species
dρ=d ln a ¼ −3ðρþ PÞ ¼ −3ρð1þ wÞ > 0. The point why
such a behavior is preferable can be explained by looking
at how late-time solutions to the Hubble tension manage to
keep the angular diameter distance (and thus the sound
horizon angle) constant. Since we can write DAðz�Þ ≈
1
H0

R z�
0 dz=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩϕðzÞ þΩΛ þ Ωmð1þ zÞ3

q
, if we increase H0 it is

important to decrease the integrand and thus ΩϕðzÞ in order to
keep DAðz�Þ constant. Since Ωϕðz ¼ 0Þ ¼ 1 − Ωm − ΩΛ is
fixed, this can only happen if dΩϕðzÞ=dz ∝ dρϕðzÞ=dz ∝
−dρϕðzÞ=d ln a < 0.
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Ωϕ ¼ 0.688� 0.006, showing a strong degeneracy with
H0 in Fig. 6. This is expected from the measurement of the
CMB sound horizon angle, which tightly constrains
Ωmh3 ≈ ð1 −ΩϕÞh3. We also observe that this additional
degree of freedom does not significantly impact the
constraints on αh;0 or αm;0. In this scenario we find that
H0 cannot be increased, only decreased. Since the total
field energy in this case is dominated by the potential, and
one naturally finds dV=d ln a < 0 (as long as jαV j ≫ 0).6

Including both a coupling to a non-negligible cosmo-
logical constant and a runaway dilaton potential at the same
time causes the parameter space to become extremely hard

to sample efficiently. This is because the limit of Λ → 0
(with the dilaton potential playing the role of dark energy)
naturally allows αΛ to diverge. At the same time, the limit
of small Ωϕ and correspondingly small VðϕÞ also allows
the dilaton potential parameters to diverge arbitrarily. As
such, instead of imposing arbitrary priors on either the
coupling parameters or the cosmological densities, we do
not treat this case.

FIG. 7. Contour plots for the dilaton parameters in the exponential potential scenario.

TABLE III. Best-fit values of the runaway dilaton parameters
with associated 68% confidence levels (CL) for the exponential
potential case.

Parameter 68% CL

αh;0 ð0.01þ4.22
−4.17 Þ × 10−6

αm;0 ð−1.68þ2.24
−5.78 Þ × 10−2

αV ð0.04þ1.12
−1.27 Þ × 10−1

ϕ0 ð1.64þ3.82
−2.53 Þ × 10−1

ϕ0
0 ð0.02þ1.36

−1.26 Þ × 10−1

6For a field rolling down its potential one naturally expects
dV=d ln a < 0, but this can also be confirmed by noticing that
dV=d ln a ¼ dV=dϕ · ϕ0 and noticing that due to Eq. (5b) the field
speed ϕ0 naturally evolves in the opposite direction of dV=dϕ,
i.e., ðϕ0Þ0 ∝ −dV=dϕ as long as the Hubble drag and the other
coupling terms are comparatively negligible, we also find in this
case dρ=d ln a < 0 which (comparably to a dark energy model
with w > −1) results in lower values of H0.
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V. DISCUSSION AND CONCLUSION

The runaway dilaton model provides a general and self-
consistent framework to study the stability of fundamental
constants, and the cosmological impact of their space-time
variations. It also allows us to probe credible models of
string theories with existing datasets. In this work, we
obtained the first constraints on the complete parameter
space of this model, considering its full cosmological
evolution with minimal assumptions on its couplings,
updating and refining previous studies. To do so, we
benefit from the synergy of multiple independent probes
as cosmological, astrophysical, and laboratory datasets. In
particular, a major lever arm is provided by the final data
release of the MICROSCOPE experiment [24]. We
explored three scenarios of increasing complexity, showing
that order unity couplings (which would be natural in string
theory) are ruled out in all cases.
While the possible field evolution is expected to be further

constrained by the data of incoming wide cosmological
surveys as Euclid [42], DESI [43], CMB Stage-4 [44], or
LiteBIRD [45], major restriction of its parameter space are
expected to be provided by future experiments allowing to
directly measure the value of the fine structure constant with
an extreme precision, either in laboratory with nuclear
clocks [46], in the nearby universe using spectroscopy [47],
or in the primeval universe with spectral distortions of
the CMB [48].
Runaway dilaton models (and, more widely, all scalar

field induced varying constant models) can additionally
play an important role in contemporary debates triggered
by the recent discovery of the accelerated expansion of the
universe [49,50] and the nature of dark energy. As shown
in [19,21,22,51], a redshift dependence of α—or possibly
of the electron mass me—can have a significant impact on

recombination processes that could partially ease or solve
the Hubble tension. Providing a suitable choice of cou-
plings or potential, we discussed how the runaway dilaton
field can act as dynamical dark energy and significantly
impact the value ofH0. Future studies will reveal if possible
extensions of this model can further ease cosmological
tensions or if the framework is too restrictive to feasibly
do so.
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