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Abstract: Introduction: In stable patients with pulmonary arterial hypertension (PAH), pulmonary
rehabilitation (PR) is an effective, safe and cost-effective non-pharmacological treatment. However,
the effects of PR on vascular function have been poorly explored. This study aimed to compare the
amounts of circulating progenitor cells (PCs) and endothelial microvesicles (EMVs) in patients with
PAH before and after 8 weeks of endurance exercise training as markers of vascular competence.
Methods: A prospective study of 10 consecutive patients with PAH that successfully finished a PR
program (8 weeks) was carried out before and after this intervention. Levels of circulating PCs
defined as CD34+CD45low progenitor cells and levels of EMVs (CD31+ CD42b-) were measured by
flow cytometry. The ratio of PCs to EMVs was taken as a measure of the balance between endothelial
damage and repair capacity. Results: All patients showed training-induced increases in endurance
time (mean change 287 s). After PR, the number of PCs (CD34+CD45low/total lymphocytes) was
increased (p < 0.05). In contrast, after training, the level of EMVs (CD31+ CD42b-/total EMVs) was
reduced. The ratio of PCs to EMVs was significantly higher after training (p < 0.05). Conclusion:
Our study shows, for the first time, that endurance exercise training in patients with stable PAH has
a positive effect, promoting potential mechanisms of damage/repair in favor of repair. This effect
could contribute to a positive hemodynamic and clinical response.
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1. Introduction

Pulmonary arterial hypertension (PAH) is a rare disease characterized by an abnormal
rise in pressure in the pulmonary arteries followed by right ventricle overload, which
can lead to death due to heart failure [1]. Despite the severity of this disease and the
fact that its diagnosis and treatment are now consolidated in specialized clinical practice,
the understanding of its pathogenesis still constitutes a challenge. Part of the complexity
resides in its heterogeneity, since PAH may present itself in a variety of forms ranging from
idiopathic to hereditary and to forms associated with other pathologies such as congenital
heart disease, connective tissue disease, liver disease and the use of certain drugs and
toxins. Current pharmacological treatments for PAH target altered signaling pathways in
endothelial cells, but the varied response to treatment has a significant impact on survival
and quality of life [1]. However, despite the long-standing lack of recommendations on
exercise training, rehabilitation programs appear nowadays to be an adequate intervention
in all stages of the disease [2].

Pulmonary rehabilitation (PR) is the most important non-pharmacological treatment for a
wide range of respiratory and cardiovascular diseases [2]. This safe and cost-effective interven-
tion is considered appropriate for patients with PAH according to the current guidelines [1].
In this line, several studies and clinical trials have demonstrated that PR improves aerobic ca-
pacity, decreases pulmonary vascular resistance and increases right ventricle function, leading
to an improvement in quality of life [3]. Although the underlying mechanisms through which
PR benefits PAH patients remains unclear, several effects on vascular [4] and right ventricular
remodeling [5], inflammatory response [6], muscle function [7] and oxidative stress [8] have
been identified as major improvements resulting from exercise-based interventions in PAH.
Surprisingly, in patients with PAH there are few published data about the impact of PR on
endothelial function [9–11], a recognized factor of vascular homeostasis [12]. Moreover, it has
been established that endothelial dysfunction plays a critical role in the pathogenesis of many
vascular diseases, including PAH [13]. Certainly, PR has been associated with improvements
in endothelial function in this vascular disease, but its contribution to enhancing PAH is
not entirely clear. In fact, the mechanisms by which exercise improves endothelial function
are still unknown, since the evaluation of the endothelium is quite complex in the clinical
scenario [14]. Circulating progenitor cells (PCs) and endothelial microvesicles (EMVs) are
two promising non-invasive biomarkers, which may reveal endothelial function status and
endogenous repair capacity [15].

PCs are bone-marrow-derived cells, mobilized into the circulation in response to vascular
injury with the aim of maintaining and restoring normal endothelial cell function [16]. Experi-
mental and clinical studies have shown an increase in the number of PCs after PR independently
of the training program, age of the subjects and the presence of comorbidities [17].

EMVs are small vesicles (0.1–1 µm diameter) that are released from endothelial cells in
response to inflammation, mechanical stress or oxidative stress at the endothelium level [15].
While healthy people preserve low levels of EMVs reflecting adequate endothelial balance,
high circulating levels of EMVs have been found in several cardiovascular disorders and
their levels are positively correlated with endothelial dysfunction. However, information
regarding the effects of PR on these vascular biomarkers is limited [18].

Until now, no study has investigated the effects of exercise training on PCs and
EMVs as non-invasive tools to evaluate the endothelium response in patients with PAH.
Therefore, the current experimental study aimed to compare the levels of PCs and EMVs in
patients with PAH before and after 8 weeks of endurance exercise training as markers of
vascular competence.

2. Methods
2.1. Patients

Ten patients with stable PAH were enrolled from outpatient clinics. The study was
approved by the local ethics committee (2013/5089/I) and informed consent was obtained.
All patients were stable (no hospitalization or change in medication, no unplanned visits
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to the hospital during the previous 2 months) on disease-targeted medication for at least
8 weeks prior to inclusion. Subjects with PH not classified in Group 1 according to the clas-
sification of the 6th World Symposium on PH, left heart disease and respiratory disorders
were excluded. Patients with any comorbid conditions that limited physical activity were
excluded. The study flow chart is summarized in Figure 1.
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Figure 1. Study flow-chart.

2.2. Exercise Capacity

Exercise capacity was assessed by a cardiopulmonary exercise test. Basal condition
was evaluated via breathing at rest for 3 min; after that, subjects pedaled on an electrically
braked cycloergometer (CardiO2 cycle Medical Graphics Corporation, St. Paul, MN, USA
and Ergoline Ergometrix 900, Uberprüfung, Germany). An integrated breath-by-breath
computer system recorded cardiorespiratory variables during the test. Patients were
stimulated to continue until they could no longer sustain the target pedaling frequency
(55–65 rpm). Workload was increased by 10 W/min [19]. Pulmonary gas exchange and
ventilatory data were obtained from calibrated signals derived from response gas analyzers
and a mass flow sensor. The recorded variables during each respiration were pulmonary
oxygen uptake (VO2), pulmonary carbon dioxide output (VCO2), respiratory exchange
ratio, minute ventilation (VE) and tidal volume and respiratory rate (RR). Heart rate (HR)
was evaluated using a three-lead online electrocardiogram and oxygen saturation by pulse
oximetry (SpO2). A ventilatory limitation was calculated as the ratio of peak VE to the
estimated maximal ventilatory capacity (MVC; (peak V’E/MVC) × 100). A constant work
rate exercise (CWRET) test involving pedaling at 75% of peak work rate (Wpeak) until
exhaustion was carried out before and after the exercise training program to evaluate
endurance time [20].

2.3. Endurance Exercise Training

All patients exercised on a cycle ergometer (Ergoline; Wüerzburg, Germany) for
24 sessions for 8 weeks (1 h per session, 3 days/week). After a 5 min warm-up of cycling
at 20% Wpeak, patients performed exercise consisting of 40 min of cycling as continuous
training at 60% Wpeak, followed by a recovery period of 5 min cycling at 20% Wpeak. The
rate of pedaling during these training sessions was kept at 60–70 rpm. The progress of the
work rate during each training period was also decided on an individual basis, according
to patients’ symptoms, thereby maximizing the training effect. In all cases, pulse oximetry
and heart rate were continuously monitored (Pulsox-300i, Konica Minolta, Osaka, Japan)
during the training sessions.

As recommended by the current statement, the primary outcome was the achievement
of at least a 100 s improvement from pre-exercise training in the endurance time (ET) obtained
during a constant work rate exercise test (CWRET) using the cycle ergometer [20,21].

2.4. Blood Sampling

Venous blood samples were obtained at rest before cardiopulmonary exercise and
before and after the 8-week endurance exercise training; they were obtained by peripheral
venipuncture and placed into two 4.5 mL sodium citrate tubes (Becton Dickinson, Plymouth,
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UK) to measure circulating EVs, and into two 4.5 mL tubes with EDTA (Becton Dickinson,
Plymouth, UK) to measure circulating PCs.

2.5. Assessment of Circulating Endothelial Microparticles

To assess circulating EMVs, flow cytometry was used to determine the expression
of the platelet endothelium adhesion molecule (PECAM-1, CD31) in the absence of the
platelet-specific glycoprotein marker CD42b, as previously described by our team [22]. First,
peripheral blood was collected and centrifuged for 10 min (800× g, 4 ◦C) within one hour of
collection to prepare platelet-rich plasma (PPP). The supernatant was then centrifuged for
10 min (300× g, 23 ◦C) within five minutes to obtain platelet-poor plasma (PPP) and discard
any cell debris. EMV phenotype analysis was conducted based on size and fluorescence,
identifying events less than 1 µm in forward (size) and side (density) light scatter plots
using size calibration microspheres (FluoSpherescarboxylate-modified microspheres 1.0
mm, yellow-green fluorescent (505/515), Invitrogen, Oregon, USA). EMV levels were
evaluated by comparing them with calibrator beads (Perfect Count Microspheres Cytognos,
Salamanca, Spain) with a known concentration, using 2000 event beads (PE) as a stop time.

To analyze different cell types, fluorescent labeling techniques were employed. For
the negative control, fluorescence-minus-one (FMO) tubes were used (100,000 MPs/mL),
as well as each phenotype (500,000 MPs/mL), and they were stained for 45 min at room
temperature with pre-conjugated anti-human monoclonal antibodies and isotype controls:
anti-CD31-FITC, anti-CD42b-PE and anti-IgG1k-PE isotype controls (BD PharmigenTM, San
Jose, CA, USA). To provide negative controls, the fluorescence-minus-one technique was
employed [23]. The samples were lysed using two- or three-color fluorescence histograms
and labeled as CD31+CD42b- microparticles. Compensation assessment was performed
using single-antibody conjugates and compensation fluorochrome beads. The samples
were acquired using LRSFortessa flow cytometrywith a bandpass filter of 530 nm (FITC)
and 585 nm (PE/PI). We acquired 100,000 MPs/events, and the data were analyzed using
FACSDIVA from Tree Star, OR. We show an example of how the analysis was performed
below (Figure 2).
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2.6. Assessment of Circulating Progenitor Cells

The number of circulating progenitor cells was evaluated by flow cytometry using antibod-
ies against CD45 (pan-leukocyte marker), CD133 (sub-population of hematopoietic stem cells)
and CD34 (mature and progenitor endothelial cells) as previously described [22]. In brief, circu-
lating PCs were isolated from fresh peripheral blood by Ficoll density gradient centrifugation,
washed once with phosphate-buffered saline (PBS) supplemented with 2% of fetal calf serum
(FCS) and resuspended at 2 × 106 cells for FMO tubes and at 4 × 106 cells for sample tubes.
Circulating PCs were stained and analyzed by flow cytometry for phenotypic expression
of surface markers using pre-conjugated anti-human monoclonal antibodies and isotype
controls anti-CD45-FITC (BD Pharmingen TM, San Jose, CA, USA), anti-CD34-PECy7 (eBio-
sciences, San Diego, CA, USA), anti-CD133-PE (MACS Miltenyi Biotec, Bergisch Gladbach,
Germany), anti-IgG1k-PECy7 isotype control (eBiosciences, San Diego, CA, USA), anti-
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IgG1k-FITC isotype control (BD PharmingenTM, San Jose, CA) and anti-IgG1k-PE isotype
control (BD PharmingenTM, San Jose, CA, USA). The fluorescence-minus-one technique
was employed to provide negative controls [24]. After 45 min of incubation, cells were
washed and resuspended in 500 µL of PBS + 2% FCS, and then we proceeded to flow
cytometry analysis. A total of 750,000 CD45+ events were run through the LRSFortessa (BD
Bioscience, San Jose, CA, USA). The data were analyzed using FACSDIVA (Tree Star, OR,
USA) following the ISHAGE (International Society of Hematotherapy and Graft Engineer-
ing) gating strategy previously published [25]. We show an example of how the analysis
was performed below (Figure 3).
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Figure 3. Gating strategy for progenitor cells (PCS). (A) Peripheral blood mononuclearcells (PBM C)
selection based on forward and side, (B) Singlet selection withno aggregates; (C) Sample analyzed by
two-color fluorescence histograms asCD34+CD45low cells.

2.7. Statistical Analysis

Data are shown as mean ± standard deviation (SD). The groups were compared
using t student test or one-way ANOVA and post hoc pairwise comparisons using the
Student–Newman–Keuls test for normally distributed variables, or Mann–Whitney Rank
Sum Test and Kruskal–Wallis one-way analysis of variance on ranks test for non-normally
distributed variables. Pre- and post-training comparisons were assessed by paired t-test
for normally distributed variables and Signed Test for non-normally distributed variables.
Statistical significance was considered at a p value < 0.05.

3. Results
3.1. Study Population

Ten consecutive patients with stable PAH under optimized medication therapy were
included. Patients were treated with calcium channel blockers (n = 1 with nifedipine),
phosphodiesterase-5 inhibitors (n = 10; 7 with tadalafil and 3 with sildenafil), endothelin
receptor antagonists (n = 9; 5 with ambrisentan, 3 with macitentan and 1 with bosentan) or
prostanoids (n = 1 with iloprost). The clinical, functional and hemodynamic characteristics
of patients are shown in Table 1. Patients had moderate to severe PAH and the majority
were in functional class II with combined therapy at the moment of inclusion.

Table 1. Basal characteristics of the study population.

Age (years) 54 (12.6)
Male (%) 20
Body Mass Index (kg/m2) 26.5 (10)

Mean Pulmonary Arterial Pressure (mmHg) 39.4 (8.6)
Pulmonary Vascular Resistance (Wood unit) 6.8 (3)
Cardiac Index (L/m2) 2.5 (0.6)
Pulmonary Arterial Wedge Pressure (mmHg) 9.5 (4)
Right Atrial Pressure (mmHg) 8 (3.8)

FEV1/FVC (% pred) 69.4 (7)
FEV1 (% pred) 68 (6.8)
FVC (% pred) 77 (9)
DLCO (% pred) 63 (20)
TLC (% pred) 98 (15)
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Table 1. Cont.

FC II (%) 90

Double therapy (%) 80

GROUP (n)
CHD 2
SS 2
HIV 2
Idiopathic 3
SLE 1

Data are presented as mean (SD) or number (percentage). FEV1: forced expiratory volume in 1 s; FVC: forced vital
capacity; TLC: total lung capacity; DLCO: diffusing capacity of the lung for carbon monoxide; TLC: total lung ca-
pacity; FC: functional class; CHD: congenital heart disease; SS: systemic sclerosis; HIV: human immunodeficiency
virus; SLE: systemic lupus erythematosus.

3.2. Baseline Profiles

Before exercise training, there was significant inverse correlation between the number of
circulating EMVs (CD31, CD42neg) and peak oxygen uptake (Figure 4a). Also, there was a
significant inverse correlation between the number of circulating EMVs and PCs (Figure 4b).
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3.3. Effects of Exercise Training

After 8 weeks of exercise training, all patients showed training-induced increases
in endurance time (mean increase relative to baseline +287 s). The complete data about
physiological effects due to exercise training are presented in Table 2.

Table 2. Basal characteristics in the incremental cardiopulmonary exercise testing (ICPET) and effects
of pulmonary rehabilitation on constant work rate exercise testing (CWRET).

Exercise Parameters Basal

ICPET

Workload (Watts) peak 59 (29)

Workload (% predicted) peak 55 (16)

VO2 (mL/kg/min) peak 13 (4)

VO2 (% predicted) peak 50 (14)

VO2 (% predicted) AT 28 (17)

VE (% max) peak 60 (16)

HR peak (beat per minute) 126 (19)

HR (% predicted) peak 76 (12)

O2 pulse peak 6.3 (2)

VE/VCO2 AT 35 (2)

Borg dyspnea final 6 (3)

Borg leg final 5 (2)

CWRET Before ET After ET p value

Endurance time (seconds) 260 (125) 527 (299) 0.004

VO2 (isotime) (L/min) 0.61 (0.1) 0.75 (0.2) 0.042

VE (isotime) 36 (11) 35 (11) 0.534

HR (isotime) 132 (15) 122 (13) 0.042

O2 pulse (isotime) 4 (0.5) 6 (1) 0.038
Data are presented as mean (SD) and number (percentage). Peak V’O2, peak oxygen uptake; V’E max, maximum
minute ventilation; HR, heart rate; V’E/V’CO2, ventilatory equivalent for carbon dioxide.

Changes in the mortality risk were observed in the group after applying the four-
stratum model [1] before and after the exercise training program (Figure 5).
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After exercise training, the number of PCs (CD34+CD45low/total lymphocytes) in-
creased (p < 0.05), whereas those of EMVs (CD31+ CD42b-/total MVs) decreased. The ratio
of PCs to EMVs was significantly higher after training (p < 0.05) (Figure 6).
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4. Discussion

The present study investigated the modifications in endothelial vascular biomarkers
in PAH patients induced by 8 weeks of endurance exercise training. Our major findings
were that, after this exercise program, the percentage of circulating PCs was markedly
increased with a significant reduction in the amount of circulating EMVs. Importantly, as a
consequence of exercise training, the ratio of PCs to EMVs was increased, contributing to
improved endothelial homeostasis.

Our result is in accordance with previous studies that have shown the beneficial
effect of exercise training with significant improvements in circulating PCs in chronic
complex diseases associated with endothelial dysfunction [26,27]. Although no studies
have assessed the effect of exercise training on circulating PCs in patients with PAH, a
favorable increase in circulating PCs has been related with positive effects in patients under
PAH treatment [3]. Therefore, we can postulate that an increase in circulating PCs is related
to a restoration of the endothelial balance at the pulmonary vascular level and contributes
to an improvement of vascular remodeling [28]. This hypothesis is supported by previous
animal [29] and clinical studies [30] that showed a significant increase in cardiac output
after a training program, demonstrating a direct influence on right ventricular function and
pulmonary vascular disease progression. In line with our results, further studies indicate
an inverse correlation between exercise capacity and PCs [24] before endurance training,
and this correlation may be modulated after the program with potential implications for
vascular remodeling mechanisms in these patients.

Regarding the angiogenic processes, EMVs play a key role as a marker of endothelial
health. EMVs [23] are complex vesicular structures shed from activated or apoptotic
endothelial cells. Although few studies have investigated EMVs after endurance exercise in
healthy subjects [31] or patients [18], present evidence suggests that exercise training may
reduce the pathophysiological potential of circulating EMVs. While low concentrations
of EMVs have been reported as proangiogenic [32], high concentrations of EMVs have
been described as anti-angiogenic, as they decrease the formation of capillary-like structure
through the production of reactive oxygen species [33]. Importantly, we found that a
reduction in the number of EMVs was associated with improved exercise capacity after
8 weeks of endurance training in patients with PAH. These findings are in accordance with
previous data, showing a decrease in EMVs, suggesting reduced vascular damage and
vesiculation at rest after the training period [34].
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In the current study, we did find a relationship between circulating EMVs and PCs only
before exercise training, which reflects the complex interactions between both biomarkers
of endothelial function modulated by chronic exercise [16].

The EMVs to PCs ratio is a measure of the balance between endothelial damage and
repair capacity [22]. In our patients, the PC to EMVs ratio was increased after exercise
training, indicating for the first time the impact of exercise training on restoring the balance
between endothelial damage and repair capacity in PAH patients, as previously demon-
strated in other diseases with endothelial dysfunction [28]. In this line, our work reinforces
the current recommendations regarding the need to include these patients in rehabilitation
programs and suggests an impact on four strata of risk stratification assessment (Figure 5).

The major limitation of the present study is the small sample size, limiting our ability to
draw solid conclusions; however, this is a first evaluation of the effects of exercise training
on specific endothelial vascular biomarkers, increasing our knowledge of underlying
mechanisms that may improve exercise tolerance in patients with PAH after rehabilitation
programs. Moreover, PR seemed to have a protective effect in these patients, considering
the observed increase in PCs. Another limitation is the fact that the patients had different
types of PAH; however, subgroups of patients within PAH are largely considered to share
pathophysiological mechanisms and molecular alterations, which may explain why they
would respond similarly to PR. Further studies will answer several unsolved questions,
such as the potential underlying molecular mechanisms in different subtypes of PAH and
the long-term benefits.

5. Conclusions

Our study shows that endurance exercise training in patients with stable PAH patients
has a positive effect, promoting potential mechanisms of damage/repair to favor repair.
This effect could contribute to the improvement of pulmonary hemodynamics and of
clinical response.
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Abbreviations

PAH Pulmonary arterial hypertension
PR Pulmonary rehabilitation
PC Circulating progenitor cells
EMV Endothelial microvesicles
VO2 Oxygen uptake pulmonary
VCO2 Carbon dioxide output
RER Respiratory exchange ratio
VE Minute ventilation respiratory rate
RR Respiratory rate
HR Heart rate
SpO2 Oxygen saturation by pulse oximetry
CWRET Constant work rate exercise testing
Wpeak Peak work rate
ET Endurance time
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