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Infectious wildlife diseases that circulate at the interface with domestic
animals pose significant threats worldwide and require early detection
and warning. Although animal tracking technologies are used to discern
behavioural changes, they are rarely used to monitor wildlife diseases.
Common disease-induced behavioural changes include reduced activity
and lethargy (‘sickness behaviour’). Here, we investigated whether acceler-
ometer sensors could detect the onset of African swine fever (ASF), a viral
infection that induces high mortality in suids for which no vaccine is cur-
rently available. Taking advantage of an experiment designed to test an
oral ASF vaccine, we equipped 12 wild boars with an accelerometer tag
and quantified how ASF affects their activity pattern and behavioural finger-
print, using overall dynamic body acceleration. Wild boars showed a daily
reduction in activity of 10–20% from the healthy to the viremia phase.
Using change point statistics and comparing healthy individuals living in
semi-free and free-ranging conditions, we show how the onset of disease-
induced sickness can be detected and how such early detection could
work in natural settings. Timely detection of infection in animals is crucial
for disease surveillance and control, and accelerometer technology on senti-
nel animals provides a viable complementary tool to existing disease
management approaches.
1. Introduction
Wildlife infectious diseases threaten livestock production, the global market and
human health [1]. To reduce the threat of a spillover to humans or livestock,
timely detection of diseases circulating in wildlife is required to take rapid
action. Current approaches to monitoring infectious wildlife diseases are largely
based on surveillance programmes that rely on the collection of animal carcasses
to detect pathogens in a particular area [2]. Depending on the trigger to take
samples, these surveillance programmes can take a passive (also known as gen-
eral or scanning) or active (also known as targeted) form (World Organization
for Animal Health). The effectiveness of passive and active surveillance depends
on (i) the ability to detect sick or dead wild animals and (ii) the ability to identify
the pathogens responsible for a particular disease [3]. Although the latter is often
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technically relatively easy to achieve, finding anddetecting sick
or dead animals in thewild remains a major challenge because
it necessitates a network of motivated field-based stakeholders
(e.g. hunters, wildlife rangers) and advanced technologies
[4,5]. Furthermore, surveillance programmes lack early detec-
tion capacity because a report of a disease outbreak can only
be made after carcasses are found and analysed. Therefore,
detection and identification processes can be lengthy and
slow.Minimizing the time until the first case is detected is criti-
cal for some infectious diseases with a rapid clinical course,
such as African swine fever (ASF). Early and rapid detection
and subsequent reporting of an outbreak are key to the success
and efficacy of containment and management measures and
for optimizing economic, social and animal welfare costs [6].

An alternative to traditional passive or active surveillance
programmes is the sentinel surveillance approach, which
relies on real-time monitoring of sentinel animals. Sentinel ani-
mals are living organisms that can act as early warning systems
by indicating the presence or emergence of specific diseases or
environmental hazards in a particular area [7]. Monitoring the
health status of sentinel animals can inform us in advance of
where and when the next infectious disease outbreak will
occur [7–10]. Recent advances and developments in biologging
technologies have opened new avenues for implementing
sentinel programmes and monitoring the health status of
wild animals. Biologgers are animal-attached devices (tags)
containing sensors (movement, accelerometers, proximity
sensors, magnetometers, gyroscopes, thermometers, salinity
sensors, hygrometers, etc.) that allow tracking of animals and
sensing of the state and condition of their surrounding environ-
ments [11,12]. In the context of early disease outbreaks,
accelerometer sensors are of particular interest for uncovering
the internal states of animals [13,14] and for detecting sickness
behaviour in animals [15–18]. Sickness behaviour marks the
transition to a heat- and energy-conserving posture when ani-
mals are sick. This behaviour is an evolved adaptation that
facilitates the immune response to combat infections [19]. Sick-
ness behaviour is further characterized by a reduction or even
loss of appetite and thirst, sleepiness, disorientation, lethargy,
depression and seeking an energy-conserving microenviron-
ment. Although accelerometers are widely used in precision
livestock farming to detect sickness behaviours and inform
herd health and welfare status [16,20–22], sentinel surveillance
and accelerometer sensors are rarely used to track and detect
wildlife diseases. This is mainly due to (i) a lack of exchanges
and interactions between disciplines (e.g. movement ecology,
disease ecology, veterinary sciences, and sensor engineering)
and (ii) missing inferences between accelerometer-derived
metrics and specific animal diseases [7,23].

In this study, we investigated how infectious pathogens
alter patterns of animal activity. Wild boar (Sus scrofa) was
used as the host model for ASF. In Africa, wild suids have
co-evolved with the disease and have developed resistance
mechanisms [24]. However, outside the African continent,
lethality among members of the Suidae family is very high,
reaching up to 90% in wild boar populations where the ASFv
genotype II is circulating [25]. Consequently, ASF places a
tremendous economic burden on developed and developing
countries [26,27] and poses a threat to food security and bio-
diversity in general. At the individual level, the clinical
course of ASF in wild boar and domestic pigs is rapid and dra-
matic with virulent strains. Animals exhibit symptoms such as
lethargy, fever, anorexia, and depression within 7–14 days
of infection, ultimately resulting in death [28,29]. This rapid
clinical course makes wild boar ASF an ideal host disease
model for inferring the relative change in animal activity (sick-
ness behaviour) after infection. ASF is on the priority list for
animal health diseases in the European Union and the OIE,
and there is currently no recognized vaccine.

During an experiment to assess the pathological evolution
and transmission of the ASF virus (ASFV) in wild boar, we
opportunistically outfitted individuals with accelerometer sen-
sors attached to their ears to measure their activity. Our aims
were threefold: (i) to quantify how the disease affects wild
boar activity, (ii) to test whether and when we can detect
changes in activity associated with disease onset, and (iii) to
validate our laboratory-based observations with semi-free
and free rangingwild boars.We showed that ASF infection sig-
nificantly reduced wild boar activity, allowing simple change
point statistical methods to be used for the detection of disease
onset. Furthermore, we demonstrated that the behavioural sig-
nature of an ASF infection appears to be comparable between
individuals living under experimental or natural conditions.
2. Methods
(a) Laboratory animals
Between June and July 2021, 14 wild boars three–five months old,
obtained from a commercial farm in Andalusia (Spain), were kept
in the biosecurity level 3 laboratory (BSL-3) at the Center for Veter-
inary Health Surveillance (VISAVET, Complutense University of
Madrid, Spain). They had ad libitum access to water and food,
and laboratory conditions (i.e. 45–60% humidity and temperature
between 21 and 23°C) were maintained constant throughout the
experiment. The experimental rooms were illuminated from 7.00
to 21.00 local time. The animals were checked daily by veterinar-
ians and technicians who monitored their internal temperature,
recorded clinical signs, kept the pen clean, and controlled the
feed supply [29]. After two weeks of acclimatization to the
experimental boxes, the wild boars were ear-tagged with an accel-
erometer sensor by authorized members of the VISAVET team.
After four weeks, four wild boars randomly selected (hereafter
referred to as ‘infected animals’) were challenged intramuscularly
with 10HAD∼50 (haemadsorbing dose) of a highly virulent ASFV
(Armenia07), and placed in contact with ten animals (hereafter
referred to as ‘contact animals’). They were equally distributed in
two boxes, one 15 m2 and one 11.4 m2 large (each box received
two infected animals and five contact animals).

The day of the first viremia (positive detection of ASF virus
in the blood) and the day of death was recorded for all animals.
During the viremia phase, the virus can easily access the targeted
organs and rapidly affect the host physiology with visible and
measurable signs of disease. Based on these days and the infec-
tion/contact day, we defined three phases: (i) healthy starting 8
days before the experimental infection with ASF virus to day 0;
(ii) infection from day 0 to the day of the first viremia for infected
animals or contact from day 0 to the day of first viremia detection
for contact animals; and (iii) viremia lasting from the day of the
first viremia until death (figure 1). Of the 14 individuals, one con-
tact (euthanized after being attacked by the rest of the group) and
one infected (eartag lost) were excluded from the analysis.

(b) Semi-free and free-ranging animals
To compare the activity levels of laboratory animals with those of
animals under natural conditions, we deployed similar eartag
sensors on semi-free and free-ranging wild boars. Semi-free indi-
viduals were captive in a 1 ha large fenced oak-beech forest park



day –8 day 0

infected animals (n = 4)

healthy infection and contact viremia death

contact animals (n = 10)

Figure 1. Design used for the original vaccine development experiment showing different phases and timings. Day 0 is the day on which four animals were
intramuscularly challenged with 10 HAD∼50 of ASFV Armenia07 and placed in two separate boxes with the contact animals (two infected animals + five contact
animals in each box). The healthy phase was considered as the phase between day 0 and day −8; for contact animals, the contact phase was between day 0 and
day of first viremia detection, whereas for infected animals, the infection phase was the phase between day 0 and day of first viremia detection. The viremia phase is
the phase between the day of the first viremia detection and the day of death for both contact and infected animals.
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in Bad Waldsee, Baden-Württemberg (southern Germany).
Ten individuals were tagged at the age of four months and
released into the enclosure in June–July 2021. The eartags were
recovered by the end of July, once the battery was empty. For
sensors deployed in the laboratory, accelerometers recorded a
10-second burst every 4 min at 16 Hz, from which overall
dynamic body acceleration (ODBA) was derived similarly
(electronic supplementary material, figure S3).

Data for free-ranging individuals were obtained from Donau-
Auen National Park, Lower Austria. The National Park is 9600 ha
large, containing 65% riparian forest, 15% meadows and 20%
water habitats. In autumn 2021, 20 individuals from different
groups (fifteen aged 4–12 months, four animals 12–24 months,
and one animal 24–36 months) and locations within the park were
trapped and marked with accelerometer eartags. Eleven tags were
recovered (three recaptured and eight hunted) and included in the
analysis (electronic supplementary material, figure S4).

(c) Accelerometer data
The prototype sensors developed by the Max Planck Institute
of Animal Behaviour recorded triaxial acceleration (X, Y and Z
axes) in bursts of 10 s every 4 min (range ± 2g; sampling fre-
quency 16 Hz). From the raw accelerometer data, we derived
the ODBA (in units of gravitational acceleration, g). ODBA was
calculated by removing the static acceleration (i.e. gravitational
acceleration) from the dynamic acceleration (due to animal move-
ment) and summing the dynamic acceleration over all three axes
[30]. Static acceleration was calculated using a 2-second running
mean applied to the raw acceleration in each axis. ODBA is a
valid proxy for animal energy expenditure due to movement
[30–32]. As ASF implies high energetic costs for infected animals
with marked lethargy [19], we hypothesized that ODBA consti-
tutes a good candidate metric to describe the effect and course
of this disease in wild boars.

Owing to battery constraints in the wild, the tags deployed in
natural conditions on semi-free and free-ranging wild boar had
different accelerometer settings, recording a 4-second burst at
1 Hz every 4 min. Therefore, for these animals, the ODBA was
derived at the burst level without applying a running mean.
To avoid bias due to animal handling in both captive and natural
settings, we only considered the data between one day after tag
deployment and one day before tag removal.

(d) Data analysis
First, we tested ODBA as a relevant metric for detecting the course
of ASF infection in wild boars by applying segmented models
over ODBA time series aggregated at various temporal scales
(30 min, 1 h, 2 h, 4 h, 6 h, 12 h and 24 h). Segmented models
are particular cases of regression models where the X–Y relation-
ship is piecewise linear, that is, regression with two or more
segments connected at change points. We used two techniques,
segmented [33] and mcp [34] (from the R packages of the same
name), to detect change points in the ODBA–time relation. Both
techniques are similar: iterating (generalized) linear models
over possible locations of the change point(s) and returning a fit
that minimizes the cost of the regression models. Segmented
and mcp differ in how they solve the cost minimization function
using a frequentist and Bayesian framework, respectively. While
this implies that mcp is more computationally demanding, mcp
presents the advantage of enabling hierarchical models with
specific random effects that can allow the change point to vary
within a group. We used a hierarchical model that included indi-
viduals in the experiment as a group. With both techniques, the
number of change points for each segmented relationship must
be specified a priori. We used one change point as we were inter-
ested in finding the most substantial change in activity, which
we expected to occur somewhere along the disease course,
between healthy and animal death. For both approaches, we
extracted the change point value, slope, and certainty of the
regression post-change-point.

Second, we derived the activity fingerprint along the ASF onset
in the infected and contact animals (i.e. healthy, infection, contact,
and viremia phases). We used the quartile classes of the ODBA fre-
quency distribution, which provide a quantitative measure of the
general activity of an animal over a defined period [30].

Third, to validate the observations obtained under laboratory
conditions, we compared acceleration data from laboratory
individuals with similar data obtained from semi-free and free
ranging wild boar individuals. Semi-free and free ranging
marked individuals were not infected with ASF, and based on
the body conditions assessment performed during capture
and recapture, these animals were considered healthy. Animals
living in natural conditions allowed us to test the unambiguity
of the signal observed in infected and contact animals. We
hypothesized that semi-free and free ranging individuals
would maintain a relatively constant level of activity, in contrast
to the infected and contact groups, whose activity is expected to
decrease after infection. We used the slope of the ODBA time
series to test for this hypothesis, predicting that the slopes
observed in the infected and contact groups are negative and
steeper compared to animals in semi-free and free-ranging
conditions. We tested this hypothesis for different observation
time windows (30 min, 1 h, 2 h, 4 h, 6 h, 12 h and 24 h). We
used the Bayes factor to assess evidence for our hypothesis
[35]. Based on the Bayes theorem, this factor represents the
ratio of the posterior probability of the tested hypothesis (i.e.
slope in the infection phase being lower and negative compared
to the healthy phase) to the posterior probability of the alterna-
tive hypothesis (i.e. slope in the infection phase being higher
and positive compared to the healthy phase). We used the
Savage–Dickey density ratio available in the mcp package [34]
to approximate the Bayes factor [36].

Finally, for all observed animals (i.e. laboratory, semi-free and
free ranging), we computed health curves, whichwe defined as the
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Figure 2. Detected change points for the infected and contact individuals in relation to the healthy (green area), infection or contact (yellow area) and viremia
(orange area) phase for different lengths of aggregation of the acceleration data from windows of 30 min to an entire day. The red area indicates the period when
animals died.
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cumulative daily ODBA values. We observed the health curves
of the animals under laboratory conditions 15 days before their
death. For animals in semi-free and free-ranging conditions, we
randomly selected 15 days during the entire tracking period. We
considered a 15-day time window because it fitted the known
course of ASF in wild boars, from infection to death [37,38]. We
tested the cumulative mean and median ODBA values as health
curve indicators. We predicted that the health curves of animals
under semi-free and free-ranging conditions would demonstrate
constant linear growth, and the health curves of infected animals
would depart from linearity starting in the viremia phase.
3. Results
All laboratory animals tested positive and died following
ASFV infection. The time of death for the infected animals
(n = 3) was 7 days post-challenge, and for the contact animals
(n = 9), the time of death ranged between 11 and 17 days after
contact with the infected animals.

(a) Segmentation analysis
In 96% (23 out of 24, 1 mcp and 1 segmented analysis × 12
laboratory individuals) of the cases, the segmentation
approach successfully detected and allocated a change
point to a time post-infection or post-contact with infected
animals (figure 2). In the case of contact animal ID 9124,
the segmented approach wrongly attributed the change point
to the healthy phase. For the change points that were ade-
quately detected post-infection, there was a good match (in
terms of detection timing) between the mcp and segmented
approaches, independent of the aggregation window
(figure 2). For five individuals, the change point was detected
during the infection/contact phase, and six others during
the viremia stage. For one individual, ID 9126, the two
approaches detected a behavioural change at different
phases (viremia phase for mcp and contact phase for the
segmented approach) (figure 2).
(b) Overall dynamic body acceleration and the
infection course

Among infected individuals (n = 3), the mean ODBA during
the healthy phase, calculated over 8 days pre-infection, was
1.081g (s.d. = 1.14, range = 0.002–7.371) and 0.964g (s.d. =
1.084, range = 0–6.661) in the infection phase, and decreased
to 0.754g (s.d. = 1.071, range = 0–6.156) after viremia was
first detected. Among contact individuals, the mean ODBA
during the healthy phase was 1.116g (s.d. = 1.171, range = 0–
7.38) and 1.056g (s.d. = 1.125, range = 0.002–8.74) in the con-
tact phase and decreased to 0.778g (s.d. = 1.06, range = 0–
7.642) after viremia was first detected (figure 3).

At the daily level, mcp and segmented approaches indicate
a relatively similar activity reduction after the change
points, with 11.4% daily reduction for mcp and 16.4% for
the segmented approaches (table 1).

(c) Fingerprint of the disease onset
When uninfected, we observed that laboratory wild boar
had relatively well-distributed activity patterns (as described
by the four quartile classes), with an increasing frequency
from low activity (21% of ODBA bursts belonging to class
Q1) to high activity (28% of ODBA bursts belonging
to class Q4) (figure 4). When entering the infection and
contact phases, wild boar activity patterns shifted to lower
ODBA activity classes. Once viremia was detected, the wild
boar mostly showed lower activity class behaviour (40% of
the ODBA bursts belonging to class Q1) and much less
high-class ODBA (18% of the ODBA bursts belonging to
class Q4).

(d) Comparison with semi-free and free-ranging
animals

Infected and contact animals showed a prominent response
due to disease onset and provided a clear signal of the presence
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Figure 3. Variation in the mean daily ODBA per animal groups (infected and contact) and phases.

Table 1. Summary statistic (as mean, lower and upper confidence intervals) of regression slopes after the changepoint detection for the two tested methods
and the different aggregation windows. Note: for the mcp method which is based on Bayesian statistics, the slope mean is the posterior mean, the lower value
is quantile of the highest-density interval (HDI) given in width, and the upper value is the upper quantile. Rhat is the Gelman–Rubin convergence diagnostic
(acceptable if less than 1.1) and n.eff is the effective sample size, i.e. the number of independent samples produced by the MCMC algorithm.

method period mean lower upper Rhat n.eff

mcp 30 min −0.0023 −0.0028 −0.0020 1.0132 327

1 h −0.0046 −0.0055 −0.0037 1.0051 354

2 h −0.0092 −0.0115 −0.0073 1.0089 387

4 h −0.0185 −0.0231 −0.0144 1.0042 359

6 h −0.0274 −0.0346 −0.0203 1.0016 400

12 h −0.0560 −0.0707 −0.0417 1.0086 399

1 day −0.1146 −0.1443 −0.0837 1.0029 368

segmented 30 min −0.0032 −0.0054 −0.0010
1 h −0.0057 −0.0101 −0.0014
2 h −0.0088 −0.0124 −0.0051
4 h −0.0234 −0.0398 −0.0070
6 h −0.0529 −0.0979 −0.0078
12 h −0.0787 −0.1246 −0.0328
1 day −0.1192 −0.1687 −0.0697

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

290:20231396

5

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

19
 F

eb
ru

ar
y 

20
24

 

of ASFV three to four days before death (figure 5). We found
that the cumulative daily ODBA provided a good indication
of the animal’s health status over time (figure 5).When the ani-
malswere healthy, the cumulative dailyODBA showed a linear
trend, and after infection, the linear trend tended toward an
inflection point around the onset of viremia. The curve with
the median values showed a clearer signal than that with the
mean values (electronic supplementary material, figure S5),
which was influenced by the occurrence of high ODBA
values even in the latest disease phase.

Slopes from semi-free, free-ranging individuals were dis-
similar to the slopes observed in infected and contact wild
boars ( p = 1, where p is the proportion of MCMC samples
where slopesemi-free and slopefree ranging conditions were
higher than slopeinfected+contact). This result was consistent
for both techniques (mcp and segmented) and across all the
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tested aggregation windows (electronic supplementary
material, table S1).
4. Discussion
We found that accelerometer sensors can detect sickness
behaviours, specifically changes in wild boar activity
patterns, associated with ASF infection. ASF infection caused
a reduction in the activity of individuals during the viremia
phase when the virus was first circulating in the blood.
Through a comparison of infected individuals under
laboratory conditions and those living under natural con-
ditions, we demonstrated an unambiguous response of wild
boars to ASF infection, as indicated by decreased activity
levels. Our findings confirm the reliability of accelerometer
technology in detecting such changes in activity levels, high-
lighting its potential for monitoring and controlling the
spread of ASF in wild boar populations.

For all individuals in the infected and contact groups, we
detected a clear decrease in activity associated with the onset
of ASF. After the drop in activity, which for most individuals
corresponded to the viremia phase, activity was reduced by
approximately 10–20% daily. This reduction in activity and
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energy expenditure is in line with ananimal’s metabolic rate
response to pathogens and is a common behavioural response
of animals as part of their sickness behaviour [19,39]. Our find-
ings clarify previous observations on the impact of ASF on the
activity of wild and domestic pigs. Using the same virulent
strain, Arm07, a previous study did not find statistically signifi-
cant differences in activity between infected and healthy
individuals, although a decreasing trend was observed [40].
This difference from the present study can be explained by
the use of different methods. Fernández-Carrión et al. [39]
used computer vision with algorithm-based motion detection
across frames. This approach primarily measures the animal
displacement in a confined laboratory setting. By contrast,
the accelerometer and ODBA metrics used in this study con-
sidered whole-body movement (specifically, head and ear
movements). Therefore, ODBA is more likely to detect an over-
all change in activity even when animals are restricted to a
small enclosure where large variations in displacement are
unlikely to be observed.

Using videomonitoring and accelerometers,Martínez-Aviles
et al. [41] found a slightly lower reduction in activity (approxi-
mately 10%) in domestic pigs, probably because they used an
attenuated strain of ASFV (Ken05/Tk1). Accelerometers are fre-
quently used in livestock science and production to assess the
health status and welfare of animals [16]. However, in wildlife
disease ecology, attempts to remotely detect disease onset have
been limited because of the challenge of working with free-
living animals. Nevertheless, it has been shown that acceler-
ometers have wide potential to detect sickness behaviour across
different animal classes, including insects [18], reptiles [42], and
large mammals [17]. Similarly, our results support the notion
that accelerometer sensors can detect health issues in captive
and free ranging animals.

Interestingly, we found a single case (animal ID 9124;
electronic supplementary material, figures S1–S2) in which
the segmentation technique did not associate a change point
with disease onset. Animal ID 9124 was a contact animal,
and as described in the Methods section, contact animals
were placed in boxes with challenged animals. The observed
reduction in the activity of animal ID 9124 prior to disease
onset might be explained by the adaptation required by the
individual to new housing and social environment. Hierarchi-
cal fights between individuals could also have triggered
changes in behaviour, such as isolation from the group,
which can result in lower activity levels over several days
[43]. Compared with the segmented technique, the Bayesian
mcp technique proved to be more robust in detecting the
change in activity due to the disease, and less robust to the
changes associated with the modification of the social environ-
ment. Thus, by accounting for random effects (i.e. individual
identity), themcpmethod commends itself with its superior per-
formance inmodelling anddetecting varying change points [34].
Animal 9124 is a good reminder that changes in behaviour and
states are context-dependent [18]; that is, an animal’s activity
level can simplybea response to otherdiseases orothernoninfec-
tious processes, such as hunger, trauma, injuries, manipulation,
and human disturbances, as well as the wide potential of the
mcp method to correctly detect signals in biotelemetry data
[44]. Thus, we advocate the use of this technique, particularly
in cases where groups of individuals are investigated.

Deploying sensors on an animal’s ear triggers acceler-
ometer data processing because the ear can move and
indicate acceleration even when the rest of the body is
immobile. This is often observed in suids, where individuals
may flap their ears or have themnibbled on during social inter-
actions [16]. However, the use of the ODBA as a composite
metric that considers all three axes avoids the issue of sensor
placement. Moreover, small changes in the sensor orientation
do not pose a problem, as the observed acceleration decreases
are mutually compensated between the axes [30]. Despite
being relatively decoupled from the animal’s locomotor body,
accelerometers attached to the ear are highly correlated with
the observed activity of the animal’s body [45], and have
demonstrated high accuracy in detecting changes in loco-
motion ability, such as lameness [46]. Future research should
also investigate the impact of sensor attachment sites (includ-
ing the ear and traditional GPS collars) on animal behaviour,
as this topic has not been investigated to date.

For broader applications of accelerometer sensors under
natural conditions in free-ranging populations, further
studies on behavioural changes induced by infection across
host disease systems are required. Characterization of the
different activity fingerprints that emerge is key to tracing
how diseases develop in an organism, such as peracute,
acute, subacute or chronic, and to understanding the different
symptomatology involved (figure 6). Pathogens alter host
movement not only by inducing energy loss but also by
manipulating the host for their purposes [39,47,48]. For
example, they can increase host movement to improve
contact and spread to conspecifics [49,50] (figure 6).

In general, establishing fingerprints of animal health status
across various taxa has considerable potential to enhance the
inference ability based on observed tracking data. Animals
face many challenges that compromise their health, and ulti-
mately, their survival. Understanding the typical movement
and activity pattern of an animal should move or be active
under a certain status (e.g. when healthy or sick) can enable
the retrospective analysis of large tracking databases to
determine animal health status at different life stages. More
empirical and quantitative evidence of activity changes after
infection isneededacrossotherhost–disease systemsto elucidate
the variety of possible activity responses of an animal to disease.
Therefore, assessing the specificity of animal responses in differ-
ent host–disease systems is a key step toward the broader
application of animal-attached sensors for sentinel surveillance
[7]. Onboard processing of raw data is the way forward, so
that only the relevant discrete processed information (e.g. daily
mean and median ODBA) is extracted, while memory space
and battery power can be optimized [51,52].
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The time of first case detection is key to successfully con-
trolling and eradicating emerging diseases. During the course
of ASF, wild boars are not infectious before the viremia phase
[53], suggesting that detecting and removing infected animals
shortly after viremia detection could significantly affect
disease dynamics. This shows the potential, and thus far
largely overlooked, importance of accelerometer sensors in
the management of emerging diseases. Novel surveillance
approaches using resources such as mobile phones [54] and
citizen science [55] have recently emerged to reduce the
detection time of the first cases. At a time when biologging
technologies have entered a golden age [11,56], providing us
with unprecedented details regarding the life and behaviour
of wild animals [13], it seems appropriate to further develop
sentinel programmes in which animals are fitted with tracking
devices. Recently, high-resolution biologgers deployed on sen-
tinel animals have shown promising results in detecting
poaching events [57] or earthquake risk in seismic zones [10].
Disease ecology could also benefit greatly from implementing
more tracking technologies to improve animal detectability
and to recover information on health status.

Following our experiment, it remains to be investigated
how many animals would need to be equipped with sensors
to provide a quantitatively reliable sentinel system suitable
for early warnings. The rapid spread of ASF disease within
social groups presents challenges in detecting individual infec-
tions. However, we believe that utilizing the methodology at
various scales can serve as effective sensors, ranging from a
coarse landscape level down to individual groups. Although
deploying the methodology on a very large scale, such as
nationwide, may be unlikely, we propose that accelerometer
sensors can be strategically deployed in more sensitive and
localized areas. For instance, they can be placed along the
border of known infected zones or in buffer zones surrounding
areas with a high pig farm density. The use of acceleration
sensor eartags should certainly be of interest in preventing spil-
lovers in domestic pigs and semi-wild farmed wild boars,
which can easily be equipped with sensors.

The next generation of eartags can achieve increased
energy efficiency, where eartag sensors would process data
on board and send position alerts only in cases of suspected
changes in acceleration profiles [51,58]. Thus, highly energeti-
cally efficient acceleration sensors can last for long periods. In
the future, tags with onboard processing can also include a
self-training algorithm that accounts for the idiosyncrasies
of individual and local differences and reduces false positive
alerts [52]. Finally, rolling out an animal-borne early warning
system is facilitated by the ease of applying an eartag, its very
low cost compared to collars, and to a larger extent, the econ-
omic losses incurred by an outbreak. Therefore, although it is
currently difficult to estimate the proportion of the wild boar
population that needs to be tagged, which certainly depends
on the level of accuracy and coverage aimed for, it is clear that
this technology is feasible.
5. Conclusion
We provide evidence that ASFV alters the activity of wild
boars in a manner that is quantifiable using accelerometer
sensors. These behavioural changes have profound impli-
cations because they can modify social and ecological
interactions, ultimately influencing the disease dynamics.
Therefore, understanding the impact of diseases on host be-
haviour will allow better forecasting of disease spread and
the implementation of ad hoc surveillance approaches and
thus rapid management actions in ASF disease. We argue
that tracking technologies are underused tools that can
greatly improve disease surveillance across multiple host–
pathogen systems. To accomplish this, we call for closer col-
laboration among the disciplines of movement ecology,
disease ecology, and veterinary science [47]. Our findings
open the door to remote surveillance systems using bio-
logging tools for the early detection and warning system
of infectious diseases across various wild host–disease
systems, particularly where the disease heavily impacts an
animal’s motion.
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