Supplementary Data

Transgene-free, virus-based gene silencing in plants by artificial microRNAs derived from minimal precursors.

Adriana E. Cisneros, Tamara Martín-García, Anamarija Primc, Wojtek Kuziuta, Javier Sánchez-Vicente, Verónica Aragonés, José-Antonio Daròs, **Alberto Carbonell** (2023).

Nucleic Acids Research 51 (19): 10719–10736. doi: 10.1093/nar/gkad747

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

Figure S1. Spraying of crude extracts obtained from virus infected plants.

Figure S2. Functional analysis of artificial microRNAs (amiRNAs) against *N. benthamiana 1-DEOXY-D-XYLULOSE-5-PHOSPHATE SYNTHASE (NbDXS)* in agroinfiltrated leaves.

Figure S3. *BS-AtMIR390a-B/c*-based vectors for direct cloning of amiRNAs. Top, diagram of the Gateway-compatible *pENTR-BS-AtMIR390a-B/c* entry vector.

Figure S4. Direct cloning of amiRNAs in vectors containing a modified version of *BS-AtMIR390a* that includes a *ccd*B cassette flanked by two *Bsa*I sites (<u>*Bsa*I/ccd</u>B or 'B/c' vectors).

Figure S5. Mapping of 19-24 nucleotide small RNA reads to *pri* and *shc* precursors expressing amiR-NbSu or NbDXS amiRNAs.

Figure S6. Antiviral effects of constructs expressing amiR-TSWV, an amiRNA against *Tomato spotted wilt virus* (TSWV), from *pri* and *shc* precursors.

Figure S7. Mapping of 19-24 nucleotide small RNA reads to *pri* and *shc* precursors expressing amiR-AtFT or AtCH42 amiRNAs.

Figure S8. Mapping of 19-24 nucleotide small RNA reads to PVX-derived sequences expressing amiR-NbSu.

Figure S9. Sequencing analysis of sRNA reads from *35S:shc-amiR-NbSu* agroinfiltrated leaves and from PVX-sch-amiR-NbSu infected tissues.'

Figure S10. Genetic analysis in wild-type (WT) and in *DCL1i* and *DCL4i* knockdown plants of *NbSu* silencing triggered by a *Potato virus X* (PVX) construct expressing amiR-NbSu from the *shc* precursor.

Figure S11. Phasing analysis of amiRNA target RNA-derived 21 nucleotide small RNAs.

Figure S12. Comparative analysis of *Potato virus X* (PVX) constructs expressing amiR-NbSu from the *shc* precursor and a 89-nt long fragment of the *NbSu* gene.

Figure S13. Analysis of the length of *MIRNA* foldbacks and amiRNA precursors used for gene silencing in plants.

Table S1. Name, sequence and use of DNA oligonucleotides used in this study.

Table S2. Phenotypic penetrance of amiRNAs expressed in A. thaliana Col-0 T1 transgenic plants.

Appendix S1. Protocol to design and clone amiRNAs downstream the BS region in *BS-AtMIR390a-BsaI/ccd*B-based ('B/c') vectors.

Appendix S2. Protocol to generate PVX-based amiRNA constructs (*shc* precursor)

Appendix S3. FASTA sequences of amiRNA-producing precursors.

Appendix S4. DNA sequence of *BsaI-ccd*B-based (B/c) vectors used for direct cloning of amiRNAs in *MIR390*-based *shc* precursors.

Data S1. Complete list of optimal results generated by P-SAMS amiRNA Designer for the design of amiRNAs against *NbDXS* with no off-targets in *N. benthamiana*.

Data S2. sRNA reads from amiRNA-expressing tissues.

Data S3. sRNA (+) reads of target RNAs and species-specific tasiRNA-generating controls (*AtTAS1c* in *A. thaliana* and *AtTAS3* in *N. benthamiana*).

Figure S1. Spraying of crude extracts obtained from virus infected plants. Leaves 3 and 4 (counting form the bottom) of 3 weeks-old *Nicotiana benthamiana* plants (upper photograph) are consecutively sprayed at a 5-10 cm distance (middle photographs) using a high-density polyethylene vaporizer. Bottom photographs show leaves after the spraying.

Figure S2. Functional analysis of artificial microRNAs (amiRNAs) against *N. benthamiana 1-DEOXY-D-XYLULOSE-5-PHOSPHATE SYNTHASE (NbDXS)* in agroinfiltrated leaves. (a) Base-pairing of amiRNAs and NbDXS target mRNAs. Coordinates of the complete target site in NbDXS mRNAs are given. The arrows indicate the amiRNA-predicted cleavage site. (b) Photographs at 7 days post-agroinfiltration (dpa) of leaves agroinfiltrated with the different amiRNA constructs. Photobleaching appearance or absence is labeled with a "Yes" or a "No". (c) Bar graph showing the relative content of chlorophyll *a* in agroinfiltrated areas ($35S:pri-amiR-GUS_{Nb} = 1.0$). Bars with the letter 'a' are significantly different from that of sample $35S:pri-amiR-GUS_{Nb}$ (P < 0.01 in pairwise Student's t-test comparisons). (d) Northern blot detection of amiR-NbDXS amiRNAs in RNA preparations from agroinfiltrated leaves at 2 dpa. (e) Accumulation of *NbDXS* mRNA. Mean mean + SE relative level (n = 3) of *NbDXS* mRNAs after normalization to *PROTEIN PHOSPHATASE 2A (PP2A)*, as determined by quantitative RT-PCR (qPCR) ($35S:pri-amiR-GUS_{Nb} = 1.0$ in all comparisons). Other details are as shown in (b).

pMDC32B-BS-AtMIR390a-B/c

Figure S3. *BS-AtMIR390a-B/c*-based vectors for direct cloning of amiRNAs. Top, diagram of the Gateway-compatible *pENTR-BS-AtMIR390a-B/c* entry vector. Bottom, diagram of the *pMDC32B-BS-AtMIR390a-B/c* binary vector for in plant expression of amiRNAs. RB: right border; 35S: Cauliflower mosaic virus promoter; *BsaI: BsaI* recognition site, *ccd*B: gene encoding the gyrase toxin; LB: left border; attL1 and attL2: GATEWAY recombination sites. *Kan^R*: kanamycin resistance gene; *Hyg^R*: hygromycin resistance gene.

Figure S4. Direct cloning of amiRNAs in vectors containing a modified version of *BS-AtMIR390a* that includes a *ccd*B cassette flanked by two *Bsa*I sites (*Bsa*I/*ccd*B or 'B/c' vectors). A, Design of two overlapping oligonucleotides for amiRNA cloning in *BS-AtMIR390a*-based "B/c" vectors including *OsMIR390* DSL sequences. Sequences covered by the forward and the reverse oligonucleotides are represented with continuous or dotted lines, respectively. Nucleotides of *BS-AtMIR390a* precursor, *OsMIR390*-derived distal stem loop (DSL), amiRNA guide strand and amiRNA* strand are in black, grey, blue and green, respectively. Other nucleotides that may be modified for preserving authentic *OsMIR390a* foldback secondary structure are in red. Rules for assigning identity to position 9 of the amiRNA* are indicated. B, Diagram of the steps for amiRNA cloning in *pre-AtMIR390a-B/c* vectors. The amiRNA insert obtained after annealing the two overlapping oligonucleotides has 5'-TGTA and 5'-AATG overhangs and is directly inserted in a directional manner into a *BS-AtMIR390a-B/c* vector previously linearized with *Bsa*I. Nucleotides of the *Bsa*I sites and those arbitrarily chosen and used as spacers between the *Bsa*I recognition sites and the *BS-AtMIR390a* sequence are in purple and light brown, respectively. Other details are as described in panel A. C, Flowchart of steps for amiRNA construct generation to plant transformation.

Figure S5. Mapping of 19-24 nucleotide small RNA reads to *pri* and *shc* precursors expressing amiR-NbSu or NbDXS amiRNAs. The *x*-axis indicates the position on the precursor in nucleotides of the 5' end of the sequence plotted. The *y*-axis is the small RNA coverage in total number of reads for each nucleotidic position.

Figure S6. Antiviral effects of constructs expressing amiR-TSWV, an amiRNA against *Tomato spotted wilt virus* (TSWV), from *pri* and *shc* precursors. **A**, Diagram of amiR-TSWV constructs expressing amiR-TSWV directed against TSWV segment L, with amiRNA and star strand positions in the precursor indicated with red and green color, respectively. Basepairing between amiR-TSWV and its target site is shown, with the predicted cleavage position indicated by an arrow. **B**, Photos at 7 days post-agroinfiltration (dpa) of leaves agroinfiltrated with the different constructs, some of which were further inoculated with TSWV. **C**, Bar graph showing the relative accumulation of amiR-TSWV in agroinfiltrated leaves at 2 dpa [mean relative level (n = 3) + standard deviation amiRNA relative accumulation, *pri-amiR-TSWV* + TSWV= 1.0] and of TSWV RNA in apical leaves at 21 dpa [mean relative level (n = 3) + standard error of TSWV RNAs after normalization to *PROTEIN PHOSPHATASE 2A* (*PP2A*), as determined by quantitative RT-qPCR, *pri-amiR-GUS_{Nb}* + TSWV= 1].

Figure S7. Mapping of 19-24 nucleotide small RNA reads to *pri* and *shc* precursors expressing amiR-AtFT or AtCH42 amiRNAs. The *x*-axis indicates the position on the precursor in nucleotides of the 5' end of the sequence plotted. The *y*-axis is the small RNA coverage in total number of reads for each nucleotidic position.

Figure S8. Mapping of 19-24 nucleotide small RNA reads to PVX-derived sequences expressing amiR-NbSu. Top, mapping of reads to the whole subgenomic RNA sequence including PVX coat protein (CP). Bottom, mapping of reads exclusively to the *shc* precursor. The *x*-axis indicates the position on the corresponding RNA sequence (subgenomic RNA or *shc* precursor in top and bottom graphs, respectively) in nucleotides of the 5' end of the sequence plotted. The *y*-axis is the small RNA coverage in total number of reads for each nucleotidic position.

Figure S9. Sequencing analysis of sRNA reads from 35S:shc-amiR-NbSu agroinfiltrated leaves and from PVX-sch-amiR-NbSu infected tissues. Pie charts showing percentages of reads corresponding to 19-24 nt sRNAs of (+) or (-) polarity (blue and orange sections, respectively).

Figure S10. Genetic analysis in wild-type (WT) and in DCL1i and DCL4i knockdown plants of NbSu silencing triggered by a Potato virus X (PVX) construct expressing amiR-NbSu from the shc precursor. A, NbDCL1 and NbDCL4 mRNA accumulation in RNA preparations from leaves of WT, DCL1i and DCL4i N. benthamiana plants. Mean relative level (n = 3) + standard error of mRNAs after normalization to PROTEIN PHOSPHATASE 2A (PP2A), as determined by RT-qPCR (WT = 1.0 in all comparisons). Bar with the letter "a" is significantly different from that of the corresponding WT samples (P < 0.05 in pairwise Student's t-test comparison). **B**, Photos at 14 days post-agroinfiltration (dpa) of sets of three plants mock inoculated or agroinfiltrated with the 35S:PVX-shc-amiR-NbSu construct. C, Bar graph showing the relative content of chlorophyll a in apical leaves from plants mock inoculated or agroinfiltrated with the 35S:PVX-shc-amiR-NbSu construct (Mock = 1.0). Bar with the letter "a" is significantly different from that of the corresponding Mock control samples (P < P0.05 in pairwise Student's t-test comparison). D, Northern blot detection of amiR-NbSu in RNA preparations from apical leaves collected at 14 dpa. The graph at top shows the mean (n = 3) + standard deviation amiRNA relative accumulation (WT = 1.0). Bar with a letter "a" is significantly different from that of the WT sample agroinfiltrated with the 35S:PVXshc-amiR-NbSu construct. One blot from three biological replicates is shown. E, Target NbSu mRNA and PVX RNA accumulation in RNA preparations from apical leaves collected at 7 dpa and analyzed individually. Mean relative level (n = 3) + standard error of NbSu mRNAs and PVX RNAs after normalization to PROTEIN PHOSPHATASE 2A (PP2A), as determined by RT-qPCR (WT + mock = 1.0 in NbSu dataset, WT + 35S:PVX-shc-amiR-NbSu = 1.0 in PVX dataset). Bar with the letter "a" is significantly different from that of the corresponding WT + 35S:PVX-shc-amiR-NbSu samples (P < 0.05 in pairwise Student's t-test comparison).

Arabidopsis transgenic plants

N. benthamiana agroinfiltrated leaves

N. benthamiana upper leaves

Figure S11. Phasing analysis of amiRNA target RNA-derived 21 nucleotide small RNAs. Radar plots show proportions of 21-nucleotide reads corresponding to each of the 21 registers from *AtFT*, *AtCH42*, *NbSu* and *NbDXS*, with position 1 designated as immediately after the amiRNA guided cleavage site. Control plots for *AtTAS1c* and *NbTAS3* are shown for *A*. *thaliana* and *N. benthamiana* datasets, respectively. The percentage of 21-nucleotide reads corresponding to phasing register 1 is indicated.

Figure S12. Comparative analysis of *Potato virus X* (PVX) constructs expressing amiR-NbSu from the *shc* precursor and a 89-nt long fragment of the *NbSu* gene. **A**, Diagram of PVX-based constructs. *shc-amiR-NbSu* and *NbSu(89)* cassettes are shown in light blue and orange boxes, respectively. PVX genes RdRp, TGB and CP are represented in white boxes, and CP promoter from *Bamboo mosaic virus* (BaMV) with a white arrow. **B**, Photos at 14 days post-agroinfiltration (dpa) of sets of three plants agroinfiltrated with the different constructs. **C**, Bar graph showing the relative content of chlorophyll *a* in apical leaves from plants agroinfiltrated with different constructs (Mock = 1.0). Bar with the letter "a" is significantly different from that of the corresponding *35S:PVX-shc-amiR-NbSu* samples (P < 0.05 in pairwise Student's t-test comparison). **D**, Target *NbSu* mRNA and PVX RNA accumulation in RNA preparations from apical leaves collected at 7 dpa and analyzed individually. Mean relative level (n = 3) + standard error of *NbSu* mRNAs and PVX RNAs after normalization to *PROTEIN PHOSPHATASE 2A* (*PP2A*), as determined by RT-qPCR (mock = 1.0 in *NbSu* dataset and *35S:PVX-shc-amiR-NbSu* = 1.0 in PVX dataset). Bar with the letter "a" is significantly different from that of the corresponding *35S:PVX-shc-amiR-NbSu* = 1.0 in PVX dataset). Bar with the letter "a" is significantly different from that of the corresponding *35S:PVX-shc-amiR-NbSu* = 1.0 in PVX dataset). Bar with the letter "a" is significantly different from that of the corresponding *35S:PVX-shc-amiR-NbSu* = 1.0 in PVX dataset). Bar with the letter "a" is significantly different from that of the corresponding *35S:PVX-shc-amiR-NbSu* = 1.0 in PVX dataset). Bar with the letter "a" is significantly different from that of the corresponding *35S:PVX-shc-amiR-NbSu* samples (P < 0.05 in pairwise Student's t-test comparison).

Figure S13. Analysis of the length of MIRNA foldbacks and amiRNA precursors used for gene silencing in plants.

Oligonu- cleotide	Sequence	Construct/Aim			
AC-55	AGGGGCCATGCTAATCTTCTC	DNA probe for U6 detection			
AC-157	GGCCTCTTCCTTTATAACCAA	DNA probe for amiR- AtFT detection			
AC-158	AGGGATTTCCGTGACACTTAA	DNA probe for amiR- AtCH42 detection			
AC-159	AAAAATGGCTGAGGCTGATGA	qPCR amplification of			
AC-160	GAAAAACAGCCCTGGGAGC	AtACT2 mRNA			
AC-163	CATGCACAAGTAGGGACGGTT	qPCR amplification of			
AC-164	GTCACGGAAATCCTTTGGGTT	AtCH42 mRNA			
AC-169	TGGAACAACCTTTGGCAATG	qPCR amplification of			
AC-170	CGACACGATGAATTCCTGCA	AtFT mRNA			
AC-251	TGTATAAACCGCGGGTTCCTAACAGATGATGATCACATTCGTT ATCTATTTTTTCTGTTAGGAAACCGCGGTTTA	35S:pri-amiR-NbDXS-1			
AC-252	AATGTAAACCGCGGTTTCCTAACAGAAAAAATAGATAACGAAT GTGATCATCATCTGTTAGGAACCCGCGGTTTA	(35S:pri-amiR-NbDXS)			
AC-253	TGTATCATAACCTCTAGAGCTTCTGATGATGATCACATTCGTT ATCTATTTTTTCAGAAGCTCTCGAGGTTATGA	35S:pri-amiR-NbDXS-2			
AC-254	GTGATCATCATCAGAAGCTTCTGAAAAAATAGATAACGAAT GTGATCATCATCAGAAGCTCTAGAGGTTATGA	· ·			
AC-255	TGTATTCTGCAATTAAAGCCTCCGGATGATGATCACATTCGTT ATCTATTTTTTCCGGAGGCTTGAATTGCAGAA	- 35S:pri-amiR-NbDXS-3			
AC-256	AATGTTCTGCAATTCAAGCCTCCGGAAAAAATAGATAACGAAT GTGATCATCCTCCGGAGGCTTTAATTGCAGAA				
AC-270	CTGTTAGGAACCCGCGGTTTA	DNA probe to detect amiR-NbDXS-1			
AC-271	CAGAAGCTCTAGAGGTTATGA	DNA probe to detect amiR-NbDXS-2			
AC-272	CCGGAGGCTTTAATTGCAGAA	DNA probe to detect amiR-NbDXS-3			
AC-335	CACCAGTAGAGAAGAATCTGTA	pENTR-BS-amiR- NbSu/pMDC32B-BS- amiR-NbSu/			
AC-336	AGTAAGAAGAGCCAATGT	pENTR-BS-amiR- NbDXS/pMDC32B-BS- amiR-NbDXS			
AC-355	GACCCTGATGTTGATGTTCGCT	qPCR amplification of			
AC-356	GAGGGATTTGAAGAGAGATTTC	<i>NbSu</i> mRNA			
AC-359	GGTGGTGGGACTGGTATGAA	qPCR amplification of			
AC-360	GCAAATCTCACTGGCAGCTT	NbDXS mRNA			
AC-365	GACCCTGATGTTGATGTTCGCT	PCR&qPCR amplification of <i>NbPP2A</i>			
AC-366	GAGGGATTTGAAGAGAGATTTC	mRNA			
AC-416	A+GGA+CAC+AAT+CAC+GTC+TTA+CA	LNA probe for amiR- TSWV detection			
AC-417	G+CGG+GAA+GTC+CAC+CAC+GGT+TA	LNA probe for amiR- NbSu detection			
AC-418	C+TGT+TAG+GAA+CCC+GCG+GTT+TA	LNA probe for amiR- NbDXS detection			
AC-484	TGTATAACCGTGGTGGACTTCCCGCTCGAAATCAAACTAGCGG GAAGTCAACCACGGTTA	255.0 0.051			
AC-485	AATGTAACCGTGGTTGACTTCCCGCTAGTTTGATTTCGAGCGG GAAGTCCACCACGGTTA	- 35S:OsDSL-amiR-NbSu			

Table S1. Name, sequence and use of DNA oligonucleotides used in this study.

AC-486	TGTATAACCGTGGTGGACTTCCCGCCGAAATCAAACTGCGGGA	35S:OsDSL-A2-amiR-				
110 100	AGTCAACCACGGTTA	NhSu/				
AC-487	AATGTAACCGTGGTTGACTTCCCGCAGTTTGATTTCGGCGGGA	35S:shc-amiR-NbSu				
AC-488		255 O DSL 44				
		555:OSD5L-∆4-amik-				
AC-489	TCCACCACGGTTA	INDSU				
	TGTATAACCGTGGTGGACTTCCCGCAAATCAAAGCGGGAAGTC					
AC-490	AACCACGGTTA	35S:OsDSL-∆6-amiR-				
A C 401	AATGTAACCGTGGTTGACTTCCCGCTTTGATTTGCGGGAAGTC	NbSu				
AC-491	CACCACGGTTA					
AC-492	TGTATAACCGTGGTGGACTTCCCGCTCGATTCCTAGCGGGAAG					
	TCAACCACGGTTA	35S:OsDS-AtL-amiR-				
AC-493	AATGTAACCGTGGTTGACTTCCCGCTAGGAATCGAGCGGGAAG	NbSu				
AC-494		255.44DSL 46				
		NILSU				
AC-495	TCATCGCGGGAAGTCCACCACGGTTA	<i>wosu</i>				
	TGTATAACCGTGGTGGACTTCCCGCGATCACATTCGTTATCGC					
AC-496	GGGAAGTCAACCACGGTTA	35S:AtDSL-∆13-amiR-				
A.C. 407	AATGTAACCGTGGTTGACTTCCCGCGATAACGAATGTGATCGC	NbSu				
AC-497	GGGAAGTCCACCACGGTTA					
AC-498	TGTATAACCGTGGTGGACTTCCCGCACATTCGTGCGGGAAGTC					
AC-490	AACCACGGTTA	35S:AtDSL-∆21-amiR-				
AC-499	AATGTAACCGTGGTTGACTTCCCGCACGAATGTGCGGGAAGTC	NbSu				
AC-500		250 A (DGL 425)D				
		35S:AtDSL-A25-amiK-				
	AAIGIAACCGIGGIIGACIICCCGCGAAIGCGGGAAGICCACC	///////////////////////////////////////				
AC-501	АСССТТА	1.0.50				
AC-501	ACGGTTA GCACTTAACTACAGAGAAATGCAATG	aPCR amplification of				
AC-501 AC-539 AC-540	ACGGTTA GCACTTAACTACAGAGAAATGCAATG ACAATGTTTGAGCGCCTTCT	qPCR amplification of <i>NbDCL4</i> mRNA				
AC-501 AC-539 AC-540	ACGGTTA GCACTTAACTACAGAGAAATGCAATG ACAATGTTTGAGCGCCTTCT CACCGAGAAGAATCTGTATAACCGTGGTGGACTTCCCGCATGA	qPCR amplification of <i>NbDCL4</i> mRNA				
AC-501 AC-539 AC-540	ACGGTTA GCACTTAACTACAGAGAAATGCAATG ACAATGTTTGAGCGCCTTCT CACCGAGAAGAATCTGTATAACCGTGGTGGACTTCCCGCATGA TGATCACATTCGTTATCTATTTTTTGCGGGAAGTCAACCACGG	qPCR amplification of <i>NbDCL4</i> mRNA				
AC-501 AC-539 AC-540	ACGGTTA GCACTTAACTACAGAGAAATGCAATG ACAATGTTTGAGCGCCTTCT CACCGAGAAGAATCTGTATAACCGTGGTGGACTTCCCGCATGA TGATCACATTCGTTATCTATTTTTTGCGGGAAGTCAACCACGG TTACATTGGCTCTTCT	qPCR amplification of NbDCL4 mRNA pENTR-BS-Δ7-amiR-				
AC-501 AC-539 AC-540 AC-558	ACGGTTA GCACTTAACTACAGAGAAATGCAATG ACAATGTTTGAGCGCCTTCT CACCGAGAAGAATCTGTATAACCGTGGTGGACTTCCCGCATGA TGATCACATTCGTTATCTATTTTTGCGGGAAGTCAACCACGG TTACATTGGCTCTTCTT AAGAAGAGCCAATGTAACCGTGGTTGACTTCCCGCAAAAAATA	qPCR amplification of NbDCL4 mRNA pENTR-BS-Δ7-amiR- NbSu/ 35S-RS_47 amiR_NbSu				
AC-501 AC-539 AC-540 AC-558	ACGGTTA GCACTTAACTACAGAGAAATGCAATG ACAATGTTTGAGCGCCTTCT CACCGAGAAGAATCTGTATAACCGTGGTGGACTTCCCGCATGA TGATCACATTCGTTATCTATTTTTTGCGGGAAGTCAACCACGG TTACATTGGCTCTTCT AAGAAGAGCCAATGTAACCGTGGTTGACTTCCCGCAAAAAATA GATAACGAATGTGATCATCATGCGGGAAGTCCACCACGGTTAT	qPCR amplification of NbDCL4 mRNA pENTR-BS-Δ7-amiR- NbSu/ 35S:BS-Δ7-amiR-NbSu				
AC-501 AC-539 AC-540 AC-558	ACGGTTA GCACTTAACTACAGAGAAATGCAATG ACAATGTTTGAGCGCCTTCT CACCGAGAAGAATCTGTATAACCGTGGTGGACTTCCCGCATGA TGATCACATTCGTTATCTATTTTTTGCGGGGAAGTCAACCACGG TTACATTGGCTCTTCTT AAGAAGAGCCAATGTAACCGTGGTTGACTTCCCGCAAAAAATA GATAACGAATGTGATCATCATGCGGGAAGTCCACCACGGTTAT ACAGATTCTTCTCGGTG	qPCR amplification of NbDCL4 mRNA pENTR-BS-Δ7-amiR- NbSu/ 35S:BS-Δ7-amiR-NbSu				
AC-501 AC-539 AC-540 AC-558	ACGGTTA GCACTTAACTACAGAGAAATGCAATG ACAATGTTTGAGCGCCTTCT CACCGAGAAGAATCTGTATAACCGTGGTGGACTTCCCGCATGA TGATCACATTCGTTATCTATTTTTTGCGGGGAAGTCCAACCACGG TTACATTGGCTCTTCT AAGAAGAGCCAATGTAACCGTGGTTGACTTCCCGCAAAAAATA GATAACGAATGTGATCATCATGCGGGAAGTCCACCACGGTTAT ACAGATTCTTCTCGGTG CACCGAATCTGTATAACCGTGGTGGACTTCCCGCATGATGATC	qPCR amplification of NbDCL4 mRNA pENTR-BS-Δ7-amiR- NbSu/ 35S:BS-Δ7-amiR-NbSu				
AC-501 AC-539 AC-540 AC-558	ACGGTTA GCACTTAACTACAGAGAAATGCAATG ACAATGTTTGAGCGCCTTCT CACCGAGAAGAATCTGTATAACCGTGGTGGACTTCCCGCATGA TGATCACATTCGTTATCTATTTTTTGCGGGAAGTCAACCACGG TTACATTGGCTCTTCT AAGAAGAGCCAATGTAACCGTGGTTGACTTCCCGCAAAAAATA GATAACGAATGTGATCATCATGCGGGAAGTCCACCACGGTTAT ACAGATTCTTCTCGGTG CACCGAATCTGTATAACCGTGGTGGACTTCCCGCATGATGATC ACATTCGTTATCTATTTTTGCGGGAAGTCAACCACGGTTACA TTGGCTC	qPCR amplification of NbDCL4 mRNA pENTR-BS-Δ7-amiR- NbSu/ 35S:BS-Δ7-amiR-NbSu pENTR-BS-Δ17-amiR-				
AC-501 AC-539 AC-540 AC-558	ACGGTTA GCACTTAACTACAGAGAAATGCAATG ACAATGTTTGAGCGCCTTCT CACCGAGAAGAATCTGTATAACCGTGGTGGACTTCCCGCATGA TGATCACATTCGTTATCTATTTTTTGCGGGAAGTCAACCACGG TTACATTGGCTCTTCT AAGAAGAGCCAATGTAACCGTGGTTGACTTCCCGCAAAAAATA GATAACGAATGTGATCATCATGCGGGAAGTCCACCACGGTTAT ACAGATTCTTCTCGGTG CACCGAATCTGTATAACCGTGGTGGACTTCCCGCATGATGATC ACATTCGTTATCTATTTTTTGCGGGAAGTCAACCACGGTTACA TTGGCTC CACCCAATGTAACCGTGGTTGACTTCCCCCCAAAAAATA	qPCR amplification of NbDCL4 mRNA pENTR-BS-Δ7-amiR- NbSu/ 35S:BS-Δ7-amiR-NbSu pENTR-BS-Δ17-amiR- NbSu/				
AC-501 AC-539 AC-540 AC-558	ACGGTTA GCACTTAACTACAGAGAAATGCAATG ACAATGTTTGAGCGCCTTCT CACCGAGAAGAATCTGTATAACCGTGGTGGACTTCCCGCATGA TGATCACATTCGTTATCTATTTTTTGCGGGAAGTCAACCACGG TTACATTGGCTCTTCT AAGAAGAGCCAATGTAACCGTGGTTGACTTCCCGCAAAAAATA GATAACGAATGTGATCATCATGCGGGAAGTCCACCACGGTTAT ACAGATTCTTCTCGGTG CACCGAATCTGTATAACCGTGGTGGACTTCCCGCATGATGATC ACATTCGTTATCTATTTTTGCGGGAAGTCCAACCACGGTTACA TTGGCTC GAGCCAATGTAACCGTGGTTGACTTCCCGCAAAAAATAGATAA CGAATGTGATCATCATGCGGGAAGTCCACCACGGTTATACAGA	qPCR amplification of NbDCL4 mRNA pENTR-BS-Δ7-amiR- NbSu/ 35S:BS-Δ7-amiR-NbSu pENTR-BS-Δ17-amiR- NbSu/ 35S:BS-Δ17-amiR-NbSu				
AC-501 AC-539 AC-540 AC-558	ACGGTTA GCACTTAACTACAGAGAAATGCAATG ACAATGTTTGAGCGCCTTCT CACCGAGAAGAATCTGTATAACCGTGGTGGACTTCCCGCATGA TGATCACATTCGTTATCTATTTTTTGCGGGGAAGTCAACCACGG TTACATTGGCTCTTCT AAGAAGAGCCAATGTAACCGTGGTTGACTTCCCGCAAAAAATA GATAACGAATGTGATCATCATGCGGGGAAGTCCACCACGGTTAT ACAGATTCTTCTCGGTG CACCGAATCTGTATAACCGTGGTGGACTTCCCGCATGATGATC ACATTCGTTATCTATTTTTGCGGGGAAGTCCAACCACGGTTACA TTGGCTC GAGCCAATGTAACCGTGGTTGACTTCCCGCAAAAAATAGATAA CGAATGTGATCATCATGCGGGAAGTCCACCACGGTTATACAGA TTCGGTG	qPCR amplification of NbDCL4 mRNA pENTR-BS-Δ7-amiR- NbSu/ 35S:BS-Δ7-amiR-NbSu pENTR-BS-Δ17-amiR- NbSu/ 35S:BS-Δ17-amiR-NbSu				
AC-501 AC-539 AC-540 AC-558 AC-559	ACGGTTAGCACTTAACTACAGAGAAATGCAATGACAATGTTTGAGCGCCTTCTCACCGAGAAGAATCTGTATAACCGTGGTGGACTTCCCGCATGATGATCACATTCGTTATCTATTTTTTGCGGGGAAGTCAACCACGGTTACATTGGCTCTTCTAAGAAGAGCCAATGTAACCGTGGTTGACTTCCCGCAAAAAATAGATAACGAATGTGATCATCATGCGGGGAAGTCCACCACGGTTATACAGATTCTTCTCGGTGCACCGAATCTGTATAACCGTGGTGGACTTCCCGCATGATGATCACATTCGTTATCTATTTTTGCGGGGAAGTCCACCACGGTTACATTGGCTCGAGCCAATGTAACCGTGGTTGACTTCCCGCAAAAAATAGATAACGAATGTGATCATCATGCGGGAAGTCCACCACGGTTATACAGATTCGGTGCACCTCTGTATAACCGTGGTGGACTTCCCGCATGATGATCACA	qPCR amplification of NbDCL4 mRNA pENTR-BS-Δ7-amiR- NbSu/ 35S:BS-Δ7-amiR-NbSu pENTR-BS-Δ17-amiR- NbSu/ 35S:BS-Δ17-amiR-NbSu				
AC-501 AC-539 AC-540 AC-558 AC-559	ACGGTTAGCACTTAACTACAGAGAAATGCAATGACAATGTTTGAGCGCCTTCTCACCGAGAAGAATCTGTATAACCGTGGTGGACTTCCCGCATGATGATCACATTCGTTATCTATTTTTTGCGGGAAGTCAACCACGGTTACATTGGCTCTTCTAAGAAGAGCCAATGTAACCGTGGTTGACTTCCCGCAAAAAATAGATAACGAATGTGATCATCATGCGGGGAAGTCCACCACGGTTATACAGATTCTTCTCGGTGCACCGAATCTGTATAACCGTGGTGGACTTCCCGCATGATGATCACATTCGTTATCTATTTTTGCGGGAAGTCCAACACGGTTACATTGGCTCGAGCCAATGTAACCGTGGTGACTTCCCGCAAAAAATAGATAACGAATGTGATCATCATGCGGGAAGTCCACCACGGTTACAACGATGGTGCACCTCTGTATAACCGTGGTGGACTTCCCGCATGATGATCACATTCGGTGCACCTCTGTATAACCGTGGTGGACTTCCCGCATGATGATCACATTCGTTATCTATTTTTGCGGGAAGTCAACCACGGTTACAACA	qPCR amplification of NbDCL4 mRNA pENTR-BS-Δ7-amiR- NbSu/ 35S:BS-Δ7-amiR-NbSu pENTR-BS-Δ17-amiR- NbSu/ 35S:BS-Δ17-amiR-NbSu				
AC-501 AC-539 AC-540 AC-558 AC-558	ACGGTTA GCACTTAACTACAGAGAAATGCAATG ACAATGTTTGAGCGCCTTCT CACCGAGAAGAATCTGTATAACCGTGGTGGACTTCCCGCATGA TGATCACATTCGTTATCTATTTTTTGCGGGGAAGTCAACCACGG TTACATTGGCTCTTCT AAGAAGAGCCAATGTAACCGTGGTTGACTTCCCGCAAAAAATA GATAACGAATGTGATCATCATGCGGGAAGTCCACCACGGTTAT ACAGATTCTTCTCGGTG CACCGAATCTGTATAACCGTGGTGGACTTCCCGCATGATGATC ACATTCGTTATCTATTTTTGCGGGAAGTCCAACCACGGTTACA TTGGCTC GAGCCAATGTAACCGTGGTGGACTTCCCGCAAAAAATAGATAA CGAATGTGATCATCATGCGGGAAGTCCACCACGGTTATACAGA TTCGGTG CACCTCTGTATAACCGTGGTGGACTTCCCGCATGATGATCACA TTCGGTG CACCTCTGTATAACCGTGGTGGACTTCCCGCATGATGATCACA TTCGTTATCTATTTTTGCGGGAAGTCCACCACGGTTACATG G	qPCR amplification of <i>NbDCL4</i> mRNA <i>pENTR-BS-Δ7-amiR-</i> <i>NbSu/</i> <i>35S:BS-Δ7-amiR-NbSu</i> <i>pENTR-BS-Δ17-amiR-</i> <i>NbSu/</i> <i>35S:BS-Δ17-amiR-NbSu</i> <i>pENTR-BS-Δ23-amiR-</i> <i>NbSu/</i>				
AC-501 AC-539 AC-540 AC-558 AC-559 AC-559	ACGGTTAGCACTTAACTACAGAGAAATGCAATGACAATGTTTGAGCGCCTTCTCACCGAGAAGAATCTGTATAACCGTGGTGGACTTCCCGCATGATGATCACATTCGTTATCTATTTTTTGCGGGGAAGTCAACCACGGTTACATTGGCTCTTCTTAAGAAGAGCCAATGTAACCGTGGTTGACTTCCCGCAAAAAATAGATAACGAATGTGATCATCATGCGGGGAAGTCCACCACGGTTATACAGATTCTTCTCGGTGCACCGAATCTGTATAACCGTGGTGGACTTCCCGCATGATGATCACATTCGTTATCTATTTTTTGCGGGGAAGTCCACCACGGTTACATTGGCTCGAGCCAATGTAACCGTGGTTGACTTCCCGCAAAAAATAGATAACGAATGTGATCATCATGCGGGAAGTCCACCACGGTTATACAGATTCGGTGCACCTCTGTATAACCGTGGTGGACTTCCCGCATGATGATCACATTCGTTATCTATTTTTGCGGGAAGTCCACCACGGTTACAATGGCCAATGTAACCGTGGTTGACTTCCCGCAAAAAATAGATAACGA	qPCR amplification of NbDCL4 mRNA pENTR-BS-Δ7-amiR- NbSu/ 35S:BS-Δ7-amiR-NbSu pENTR-BS-Δ17-amiR- NbSu/ 35S:BS-Δ17-amiR-NbSu pENTR-BS-Δ23-amiR- NbSu/ 35S:BS-Δ23-amiR-NbSu				
AC-501 AC-539 AC-540 AC-558 AC-559 AC-559	ACGGTTA GCACTTAACTACAGAGAAATGCAATG ACAATGTTTGAGCGCCTTCT CACCGAGAAGAATCTGTATAACCGTGGTGGACTTCCCGCATGA TGATCACATTCGTTATCTATTTTTTGCGGGGAAGTCAACCACGG TTACATTGGCTCTTCT AAGAAGAGCCAATGTAACCGTGGTTGACTTCCCGCAAAAAATA GATAACGAATGTGATCATCATGCGGGGAAGTCCACCACGGTTAT ACAGATTCTTCTCGGTG CACCGAATCTGTATAACCGTGGTGGACTTCCCGCATGATGATC ACATTCGTTATCTATTTTTGCGGGGAAGTCCACCACGGTTACA TTGGCTC GAGCCAATGTAACCGTGGTTGACTTCCCGCAAAAAATAGATAA CGAATGTGATCATCATGCGGGGAAGTCCACCACGGTTATCAGA TTCGGTG CACCTCTGTATAACCGTGGTGGACTTCCCGCATGATGATCACA TTCGGTG CACCTCTGTATAACCGTGGTGGACTTCCCGCATGATGATCACA TTCGTTATCTATTTTTGCGGGAAGTCCACCACGGTTACACATG G CCAATGTAACCGTGGTTGACTTCCCGCAAAAAATAGATAACGA ATGTGATCATCATGCGGGAAGTCCACCACGGTTATACAGAGT	qPCR amplification of NbDCL4 mRNA pENTR-BS-Δ7-amiR- NbSu/ 35S:BS-Δ7-amiR-NbSu pENTR-BS-Δ17-amiR- NbSu/ 35S:BS-Δ17-amiR-NbSu pENTR-BS-Δ23-amiR- NbSu/ 35S:BS-Δ23-amiR-NbSu				
AC-501 AC-539 AC-540 AC-558 AC-559 AC-559	ACGGTTA GCACTTAACTACAGAGAAATGCAATG ACAATGTTTGAGCGCCTTCT CACCGAGAAGAATCTGTATAACCGTGGTGGACTTCCCGCATGA TGATCACATTCGTTATCTATTTTTTGCGGGAAGTCAACCACGG TTACATTGGCTCTTCT AAGAAGAGCCAATGTAACCGTGGTTGACTTCCCGCAAAAAATA GATAACGAATGTGATCATCATGCGGGGAAGTCCACCACGGTTAT ACAGATTCTTCTCGGTG CACCGAATCTGTATAACCGTGGTGGACTTCCCGCATGATGATC ACATTCGTTATCTATTTTTGCGGGAAGTCCAACCACGGTTACA TTGGCTC GAGCCAATGTAACCGTGGTTGACTTCCCGCAAAAAATAGATAA CGAATGTGATCATCATGCGGGAAGTCCACCACGGTTACAATTCGGTG CACCTCTGTATAACCGTGGTGGACTTCCCGCATGATGATCACA TTCGGTG CACCTCTGTATAACCGTGGTGGACTTCCCGCATGATGATCACA TTCGGTG CCAATGTAACCGTGGTTGACTTCCCGCAAAAAATAGATAACGA ATGTGATCATCATGCGGGAAGTCCACCACGGTTACACTTG G CCAATGTAACCGTGGTTGACTTCCCGCCAAAAAATAGATAACGA ATGTGATCATCATGCGGGAAGTCCACCACGGTTATACAGAGT G	qPCR amplification of NbDCL4 mRNA pENTR-BS-Δ7-amiR- NbSu/ 35S:BS-Δ7-amiR-NbSu pENTR-BS-Δ17-amiR- NbSu/ 35S:BS-Δ17-amiR-NbSu pENTR-BS-Δ23-amiR- NbSu/ 35S:BS-Δ23-amiR-NbSu				
AC-501 AC-539 AC-540 AC-558 AC-559 AC-559	ACGGTTAGCACTTAACTACAGAGAAATGCAATGACAATGTTTGAGCGCCTTCTCACCGAGAAGAATCTGTATAACCGTGGTGGACTTCCCGCATGATGATCACATTCGTTATCTATTTTTTGCGGGGAAGTCAACCACGGTTACATTGGCTCTTCTAAGAAGAGCCAATGTAACCGTGGTTGACTTCCCGCAAAAAATAGATAACGAATGTGATCATCATGCGGGGAAGTCCACCACGGTTATACAGATTCTTCTCGGTGCACCGAATCTGTATAACCGTGGTGGACTTCCCGCATGATGATCACATTCGTTATCTATTTTTGCGGGAAGTCCAACCACGGTTACATTGGCTCGAGCCAATGTAACCGTGGTGGACTTCCCGCAAAAAATAGATAACGAATGTGATCATCATGCGGGAAGTCCACCACGGTTATACAGATTCGGTGCACCTCTGTATAACCGTGGTGGACTTCCCGCATGATGATCACATTCGTTATCTATTTTTGCGGGAAGTCAACCACGGTTACACATGGCCAATGTAACCGTGGTTGACTTCCCGCAAAAAATAGATAACGAATGTGATCATCATGCGGGAAGTCCACCACGGTTACACAGGTGCACCTATAACCGTGGTTGACTTCCCGCAAAAAATAGATAACGAATGTGATCATCATGCGGGAAGTCCACCACGGTTATACAGAGGTGCACCTATAACCGTGGTGGACTTCCCGCCAAGATGATCACATTCGGCACCTATAACCGTGGTGGACTTCCCGCCAAAAAATAGATAACGAATGTGATCATCATGCGGGGACTTCCCGCCAAGATGATCACATTCGGCACCTATAACCGTGGTGGACTTCCCGCCATGATGATCACATTCGGCACCTATAACCGTGGTGGACTTCCCGCCATGATGATCACATTCGGCACCTATAACCGTGGTGGACTTCCCGCCATGATGATCACATTCGG	qPCR amplification of NbDCL4 mRNA pENTR-BS-Δ7-amiR- NbSu/ 35S:BS-Δ7-amiR-NbSu pENTR-BS-Δ17-amiR- NbSu/ 35S:BS-Δ17-amiR-NbSu pENTR-BS-Δ23-amiR- NbSu/ 35S:BS-Δ23-amiR-NbSu pENTR-BS-Δ31-amiR-				
AC-501 AC-539 AC-540 AC-558 AC-558 AC-559 AC-560	ACGGTTAGCACTTAACTACAGAGAAATGCAATGACAATGTTTGAGCGCCTTCTCACCGAGAAGAATCTGTATAACCGTGGTGGACTTCCCGCATGATGATCACATTCGTTATCTATTTTTTGCGGGGAAGTCAACCACGGTTACATTGGCTCTTCTTAAGAAGAGCCAATGTAACCGTGGTTGACTTCCCGCAAAAAATAGATAACGAATGTGATCATCATGCGGGGAAGTCCACCACGGTTATACAGATTCTTCTCGGTGCACCGAATCTGTATAACCGTGGTGGACTTCCCGCATGATGATCACATTCGTTATCTATTTTTTGCGGGGAAGTCCACCACGGTTACATTGGCTCGAGCCAATGTAACCGTGGTTGACTTCCCGCAAAAAATAGATAACGAATGTGATCATCATGCGGGGAAGTCCACCACGGTTACAATCGGTGCACCTCTGTATAACCGTGGTGGACTTCCCGCATGATGATCACATTCGGTGCCAATGTAACCGTGGTTGACTTCCCGCAAAAAATAGATAACGAATGTGATCATCATGCGGGAAGTCCACCACGGTTACACATTGGCACCTATAACCGTGGTGGACTTCCCGCAAAAAATAGATAACGAATGTGATCATCATGCGGGAAGTCCACCACGGTTATACAGAGGTGCACCTATAACCGTGGTGGACTTCCCGCATGATGATCACATTCGTATCTATTTTTGCGGGAAGTCCACCACGGTTATACAGAGGTGCACCTATAACCGTGGTGGACTTCCCGCATGATGATCACATTCGTATCTATTTTTGCGGGAAGTCAACCACGGTTACACATTCGTATCTATTTTTGCGGGAAGTCAACCACGGTTACACATTCGTATCTATTTTTGCGGGAAGTCAACCACGGTTACA	qPCR amplification of NbDCL4 mRNA pENTR-BS-Δ7-amiR- NbSu/ 35S:BS-Δ7-amiR-NbSu pENTR-BS-Δ17-amiR- NbSu/ 35S:BS-Δ17-amiR-NbSu pENTR-BS-Δ23-amiR- NbSu/ 35S:BS-Δ23-amiR-NbSu pENTR-BS-Δ23-amiR-NbSu pENTR-BS-Δ31-amiR- NbSu/				
AC-501 AC-539 AC-540 AC-558 AC-559 AC-559 AC-560	ACGGTTAGCACTTAACTACAGAGAAATGCAATGACAATGTTTGAGCGCCTTCTCACCGAGAAGAATCTGTATAAACCGTGGTGGACTTCCCGCATGATGATCACATTCGTTATCTATTTTTTGCGGGAAGTCAACCACGGTTACATTGGCTCTTCTTAAGAAGAGCCAATGTAACCGTGGTGGACTTCCCGCAAAAAATAGATAACGAATGTGATCATCATGCGGGAAGTCCACCACGGTTATACAGATTCTTCTCGGTGCACCGAATCTGTATAACCGTGGTGGACTTCCCGCATGATGATCACATTCGTTATCTATTTTTTGCGGGAAGTCAACCACGGTTACATTGGCTCGAGCCAATGTAACCGTGGTTGACTTCCCGCAAAAAATAGATAACGAATGTGATCATCATGCGGGAAGTCCACCACGGTTATACAGATTCGGTGCACCTCTGTATAACCGTGGTGGACTTCCCGCAAAAAATAGATAACGATTCGGTGCCAATGTAACCGTGGTTGACTTCCCGCAAAAAATAGATAACGAATGTGATCATCATGCGGGAAGTCCACCACGGTTATACAGAGGTGCACCTATAACCGTGGTGGACTTCCCGCAAAAAATAGATAACGAATGTGATCATCATGCGGGAAGTCCACCACGGTTATACAGAGGTGCACCTATAACCGTGGTGGACTTCCCGCATGATGATCACATTCGTATCTATTTTTGCGGGAAGTCCACCACGGTTATACAGAGGTGCACCTATAACCGTGGTGGACTTCCCGCATGATGATCACATTCGTATCTATTTTTGCGGGAAGTCAACCACGGTTACATGTAACCGTGGTTGACTTCCCGCAAAAAATAGATAACGAATGTGATCATCATGCGGGAAGTCCACCACGGTTACA	qPCR amplification of NbDCL4 mRNA pENTR-BS-Δ7-amiR- NbSu/ 35S:BS-Δ7-amiR-NbSu pENTR-BS-Δ17-amiR- NbSu/ 35S:BS-Δ17-amiR-NbSu pENTR-BS-Δ23-amiR- NbSu/ 35S:BS-Δ23-amiR-NbSu pENTR-BS-Δ31-amiR- NbSu/ 35S:BS-Δ31-amiR-NbSu				
AC-501 AC-539 AC-540 AC-558 AC-559 AC-559 AC-560 AC-561	ACGGTTAGCACTTAACTACAGAGAAATGCAATGACAATGTTTGAGCGCCTTCTCACCGAGAAGAATCTGTATAACCGTGGTGGACTTCCCGCATGATGATCACATTCGTTATCTATTTTTTGCGGGAAGTCAACCACGGTTACATTGGCTCTTCTTAAGAAGAGCCAATGTAACCGTGGTTGACTTCCCGCAAAAAATAGATAACGAATGTGATCATCATGCGGGGAAGTCCACCACGGTTATACAGATTCTTCTCGGTGCACCGAATCTGTATAACCGTGGTGGACTTCCCGCATGATGATCACAGATTCTGTATAACCGTGGTGGACTTCCCGCATGATGATCAACAGCTCGAGCCAATGTAACCGTGGTTGACTTCCCGCAAAAAATAGATAACGAATGTGATCATCATGCGGGAAGTCCACCACGGTTACACATTCGGTGCACCTCTGTATAACCGTGGTGGACTTCCCGCATGATGATCACATTCGGTGCCCAATGTAACCGTGGTTGACTTCCCGCAAAAAATAGATAACGAATGTGATCATCATGCGGGAAGTCCACCACGGTTACACATTGGCACCTATAACCGTGGTTGACTTCCCGCAAAAAATAGATAACGAATGTGATCATCATGCGGGAAGTCCACCACGGTTATACAGAGGTGCACCTATAACCGTGGTGGACTTCCCGCATGATGATCACATTCGTTATCTATTTTTGCGGGAAGTCCACCACGGTTATACAGAGGTGCACCTATAACCGTGGTTGACTTCCCGCAAAAAATAGATAACGAATGTGTAACCGTGGTTGACTTCCCGCAAAAAATAGATAACGAATGTGTATAAACCGCGGGAAGTCCACCACGGTTATACGAGTG	qPCR amplification of NbDCL4 mRNA pENTR-BS-Δ7-amiR- NbSu/ 35S:BS-Δ7-amiR-NbSu pENTR-BS-Δ17-amiR- NbSu/ 35S:BS-Δ17-amiR-NbSu pENTR-BS-Δ23-amiR- NbSu/ 35S:BS-Δ23-amiR-NbSu pENTR-BS-Δ31-amiR- NbSu/ 35S:BS-Δ31-amiR-NbSu				
AC-501 AC-539 AC-540 AC-558 AC-558 AC-559 AC-560 AC-561 AC-593	ACGGTTA GCACTTAACTACAGAGAAATGCAATG ACAATGTTTGAGCGCCTTCT CACCGAGAAGAATCTGTATAACCGTGGTGGACTTCCCGCATGA TGATCACATTCGTTATCTATTTTTTGCGGGAAGTCAACCACGG TTACATTGGCTCTTCTT AAGAAGAGCCAATGTAACCGTGGTTGACTTCCCGCAAAAAATA GATAACGAATGTGATCATCATGCGGGAAGTCCACCACGGTTAT ACAGATCTTCTCGGTG CACCGAATCTGTATAACCGTGGTGGACTTCCCGCATGATGATC ACATTCGTTATCTATTTTTGCGGGAAGTCAACCACGGTTACA TTGGCTC GAGCCAATGTAACCGTGGTTGACTTCCCGCATGATGATAA CGAATGTGATCATCATGCGGGAAGTCCACCACGGTTACAA TTCGGTG CACCTCTGTATAACCGTGGTGGACTTCCCGCATGATGATCACAA TTCGTGT CCAATGTAACCGTGGTGGACTTCCCGCATGATGATCACAT G CCAATGTAACCGTGGTTGACTTCCCGCAAAAAATAGATAACGA ATGTGATCATCATGCGGGAAGTCCACCACGGTTATACAGAG G CACCTATAACCGTGGTTGACTTCCCGCAAAAAATAGATAACGA ATGTGATCATCATGCGGGAAGTCCACCACGGTTATACAGAGT G CACCTATAACCGTGGTGGACTTCCCGCATGATGATCACATTCG TTATCTATTTTTTGCGGGAAGTCCACCACGGTTACA TGTAACCGTGGTTGACTTCCCGCAAAAAATAGATAACGAA ATGTAACCGTGGTTGACTTCCCGCAAAAAATAGATAACGAA TGTAACCGTGGTTGACTTCCCGCAAAAAATAGATAACGAATGT GATCATCATGCGGGAAGTCCACCACGGTTACA TGTAAACCGTGGTTGACTTCCCGCAAAAAATAGATAACGAATGT GATCATCATGCGGGAAGTCCACCACGGTTATACGAATGT GATCATCATGCGGGAAGTCCACCACGGTTATACGAATGT GATCATCATGCGGGAAGTCCACCACGGTTATACGAATGT GATCATCATGCGGGAAGTCCACCACGGTTATACGAATGT GATCATCATGCGGGAAGTCCACCACGGTTATACGAATGT GATCATCATGCGGGAAGTCCACCACGGTTATACGTG	qPCR amplification of NbDCL4 mRNA pENTR-BS-Δ7-amiR- NbSu/ 35S:BS-Δ7-amiR-NbSu pENTR-BS-Δ17-amiR- NbSu/ 35S:BS-Δ17-amiR-NbSu pENTR-BS-Δ23-amiR- NbSu/ 35S:BS-Δ23-amiR-NbSu pENTR-BS-Δ31-amiR- NbSu/ 35S:BS-Δ31-amiR-NbSu 35S:AtDSL-Δ6-amiR-				
AC-501 AC-539 AC-540 AC-558 AC-558 AC-559 AC-560 AC-561 AC-593	ACGGTTA GCACTTAACTACAGAGAAATGCAATG ACAATGTTTGAGCGCCTTCT CACCGAGAAGAATCTGTATAACCGTGGTGGACTTCCCGCATGA TGATCACATTCGTTATCTATTTTTGCGGGAAGTCAACCACGG TTACATTGGCTCTTCTT AAGAAGAGCCAATGTAACCGTGGTTGACTTCCCGCAAAAAATA GATAACGAATGTGATCATCATGCGGGAAGTCCACCACGGTTAT ACAGATCTTCTCGGTG CACCGAATCTGTATAACCGTGGTGGACTTCCCGCATGATGATC ACAGATCTGTATAACCGTGGTGGACTTCCCGCATGATGATC ACATTCGTTATCTATTTTTGCGGGAAGTCAACCACGGTTACA TTGGCTC GAGCCAATGTAACCGTGGTTGACTTCCCGCAAAAAATAGATAA CGAATGTGATCATCATGCGGGAAGTCCACCACGGTTATACAGA TTCGGTG CACCTCTGTATAACCGTGGTGGACTTCCCGCATGATGATCACA TTCGTTATCTATTTTTTGCGGGAAGTCCACCACGGTTACAATG G CCAATGTAACCGTGGTTGACTTCCCGCAAAAAATAGATAACGA ATGTGATCATCATGCGGGAAGTCCACCACGGTTATACAGAGT G CACCTATAACCGTGGTGGACTTCCCGCATGATGATCACATTCG TTATCTATTTTTTGCGGGAAGTCCACCACGGTTACA TGTAACCGTGGTGACTTCCCGCAAAAAATAGATAACGA ATGTAACCGTGGTGGACTTCCCGCATGATGATCACATTCG TTATCTATTTTTTGCGGGAAGTCCACCACGGTTACA TGTAACCGTGGTTGACTTCCCGCAAAAAATAGATAACGAATGT GATCATCATGCGGGAAGTCCACCACGGTTACA TGTAAACCGTGGTTGACTTCCCGCAAAAAATAGATAACGAATGT GATCATCATGCGGGAAGTCCACCACGGTTATACAGAATGT GATCATCATGCGGGAAGTCCACCACGGTTATACGAATGT AATGTAAACCGCGGGTTCCTAACAGGATGATCACATTCGTTAT CTATTCTGTTAGGAAACCGCGGTTTCCTAACAGAATAGATAACGAATGTAA	qPCR amplification of NbDCL4 mRNA pENTR-BS-Δ7-amiR- NbSu/ 35S:BS-Δ7-amiR-NbSu pENTR-BS-Δ17-amiR- NbSu/ 35S:BS-Δ17-amiR-NbSu pENTR-BS-Δ23-amiR- NbSu/ 35S:BS-Δ23-amiR-NbSu pENTR-BS-Δ31-amiR- NbSu/ 35S:BS-Δ31-amiR-NbSu 35S:AtDSL-Δ6-amiR- NbDXS				

AC-595	TGTATAAACCGCGGGTTCCTAACAGGATCACATTCGTTATCCT GTTAGGAAACCGCGGTTTA	35S·AtDSL-A13-amiR-		
AC-596	AATGTAAACCGCGGTTTCCTAACAGGATAACGAATGTGATCCT	NbDXS		
AC-597		35S:AtDSL 421 amiP		
AC-598	AATGTAAACCGCGGTTTCCTAACAGACGAATGTCTGTTAGGAA CCCGCGGTTTA	NbDXS		
AC-599	TGTATAAACCGCGGGTTCCTAACAGATTCCTGTTAGGAAACCG CGGTTTA	35S:AtDSL-A25-amiR-		
AC-600	AATGTAAACCGCGGTTTCCTAACAGGAATCTGTTAGGAACCCG CGGTTTA	NbDXS		
AC-601	TGTATAAACCGCGGGTTCCTAACAGTCGAAATCAAACTACTGT TAGGAAACCGCGGTTTA			
AC-602	AATGTAAACCGCGGTTTCCTAACAGTAGTTTGATTTCGACTGT TAGGAACCCGCGGTTTA	35S:OsDSL-amiR-NbDXS		
AC-603	TGTATAAACCGCGGGTTCCTAACAGCGAAATCAAACTCTGTTA GGAAACCGCGGTTTA	35S:OsDSL-Δ2-amiR-		
AC-604	AATGTAAACCGCGGTTTCCTAACAGAGTTTGATTTCGCTGTTA GGAACCCGCGGTTTA	35S:shc-amiR-NbDXS		
AC-605	TGTATAAACCGCGGGTTCCTAACAGGAAATCAAACCTGTTAGG AAACCGCGGTTTA	35S:OsDSL-∆4-amiR-		
AC-606	AATGTAAACCGCGGTTTCCTAACAGGTTTGATTTCCTGTTAGG AACCCGCGGTTTA	NbDXS		
AC-607	TGTATAAACCGCGGGTTCCTAACAGAAATCAAACTGTTAGGAA ACCGCGGTTTA	35S:OsDSL-∆6-amiR-		
AC-608	AATGTAAACCGCGGTTTCCTAACAGTTTGATTTCTGTTAGGAA CCCGCGGTTTA	NbDXS		
AC-609	TGTATAAACCGCGGGTTCCTAACAGTCGATTCCTACTGTTAGG AAACCGCGGTTTA	35S:OsDS-AtL-amiR-		
AC-610	AATGTAAACCGCGGTTTCCTAACAGTAGGAATCGACTGTTAGG AACCCGCGGTTTA	NbDXS		
AC-611	CACCGAGAAGAATCTGTATAAACCGCGGGTTCCTAACAGATGA TGATCACATTCGTTATCTATTTTTTCTGTTAGGAAACCGCGGT TTACATTGGCTCTTCTT AAGAAGAGGCCAATGTAAACCGCGGTTTCCTAACAGAAAAAATA GATAACGAATGTGATCATCATCTGTTAGGAACCCGCGGTTTAT ACAGATTCTTCTCGGTG	pENTR-BS-47-amiR- NbDXS/ 35S:BS-47-amiR-NbDXS		
AC-612	CACCGAATCTGTATAAACCGCGGGTTCCTAACAGATGATGATC ACATTCGTTATCTATTTTTTCTGTTAGGAAACCGCGGTTTACA TTGGCTC GAGCCAATGTAAACCGCGGTTTCCTAACAGAAAAAATAGATAA CGAATGTGATCATCATCTGTTAGGAACCCGCGGTTTATACAGA TTCGGTG	pENTR-BS-Δ17-amiR- NbDXS/ 35S:BS-Δ17-amiR- NbDXS		
AC-613	CACCTCTGTATAAACCGCGGGTTCCTAACAGATGATGATCACA TTCGTTATCTATTTTTCTGTTAGGAAACCGCGGTTTACATTG G CCAATGTAAACCGCGGTTTCCTAACAGAAAAAATAGATAACGA ATGTGATCATCATCTGTTAGGAACCCGCGGTTTATACAGAGGT G	pENTR-BS-A23-amiR- NbDXS/ 35S:BS-A23-amiR- NbDXS		
AC-614	CACCTATAAACCGCGGGTTCCTAACAGATGATGATCACATTCG TTATCTATTTTTCTGTTAGGAAACCGCGGTTTACA TGTAAACCGCGGTTTCCTAACAGAAAAATAGATAACGAATGT	pENTR-BS-A31-amiR- NbDXS/ 35S:BS-A31-amiR-		
AC 621	GATCATCATCTGTTAGGAACCCGCGGTTTATAGGTG TGTATTGGTTATAAAGGAAGAGGCCCGAAATCAAACTGGCCTC	NbDXS		
AC-021	TTCCGTTATAACCAA AATGTTGGTTATAACGGAAGAGGCCAGTTTGATTTCGGGCCTC	35S:shc-amiR-AtFT		
AC-022	TTCCTTTATAACCAA TGTATTAAGTGTCACGGAAATCCCTCGAAATCAAACTAGGGAT	250 1		
AC-623	ТТССТТБАСАСТТАА	35S:shc-amiR-AtCH42		

AC-624	AATGTTAAGTGTCAAGGAAATCCCTAGTTTGATTTCGAGGGAT TTCCGTGACACTTAA		
AC-627	agtaagaagagccaatgTgagaccGGTCTCTTACAGATTCTTC TCTACTGGTG	pENTR-BS-AtMIR390a-	
AC-628	CACCAGTAGAGAAGAATCTGTAAGAGACCggtctcAcattggc tcttcttact	BB	
AC-648	gaggtcagcaccagctagcaTATAGGGGGGAAAAAAAGGTAG	35S:PVX-pri-amiR- GUS _{Nb} / PVX-pri-amiR-NbSu	
AC-650	gaggtcagcaccagctagcaGTAGAGAAGAATCTGTA	35S:PVX-shc-amiR-NbSu	
AC-654	GGGAATCAATCACAGTGTTGGC	amiRNA precursors	
AC-655	GCTACTATGGCACGGGCTGTAC	detection	
AC-657	ATGTCAGGCCTGTTCACTATCC	DVV dia mantia	
AC-658	TGGTGGTGGTAGAGTGACAAC	PVX diagnostic	
AC-662	gggaaacttaacaaaccctaGAGACTAAAGATGAGATCTAATC TG	35S:PVX-pri-amiR- GUS _{Nb} / PVX-pri-amiR-NbSu	
AC-663	gggaaacttaacaaaccctaGTAAGAAGAGCCAA	35S:PVX-shc-amiR-NbSu	
AC-672	TGTATGTAAGACGTGATTGTGTCCTCGAAATCAAACTAGGACA CAATAACGTCTTACA		
AC-673	AATGTGTAAGACGTTATTGTGTCCTAGTTTGATTTCGAGGACA CAATCACGTCTTACA	355:shc-amiR-15WV	
AC-919	agaggtcagcaccagctagcATTCCTTGGGGTTCTTATCA	255. DUV NILS. (90)	
AC-921	agggaaacttaacaaaccctGCATGCCCAAGTGGGGAC	555:PVA-INDSU(09)	
AC-923	AAAAGAATGAGATGGTATTTCGG	qPCR amplification of	
AC-924	TTCTTTCTGGCATGCTCAA	NbDCL1 mRNA	
AC-927	GAAGTGCTAATGACTGCTAT	qPCR amplification of	
AC-928	ACACGGAGGAGCTTACAGAG	PVX RNA	
D2065	TGTATAACCGTGGTGGACTTCCCGCATGATGATCACATTCGTT ATCTATTTTTGCGGGAAGTCAACCACGGTTA	25C.DC:D MLC.	
D2066	AATGTAACCGTGGTTGACTTCCCGCAAAAAATAGATAACGAAT GTGATCATCATGCGGGAAGTCCACCACGGTTA	555:B5-amiK-Nb5u	

thaliana Col-0 T1 transge	enic plants			
Construct	T1	Phenotypic		
	analyzed	penetrance ^a		
35S:pri-amiR-GUS _{Ath}	48	0%		
35S:pri-amiR-AtFT	40	100%		
35S:shc-amiR-AtFT	34	100%		
35S:pri-amiR-GUS _{Ath}	73	0%		
35S:pri-amiR-AtCH42	54	100%		
		3.7% weak		
		37% intermediate		
		59.3 % severe		
35S:shc-amiR-AtCH42	38	100%		
		2.7% weak		
		34.2% intermediate		
		63.1 % severe		

Table S2: Phenotypic penetrance of amiRNAs expressed in A.thaliana Col-0 T1 transgenic plants

^a The Ft phenotype was defined as a higher 'days to flowering' value when compared to the average 'days to flowering' value of the $35S:pri-amiR-GUS_{Ath}$ control set. Ch42 phenotype is scored in 10 days-old seedling and is considered 'weak', 'intermediate' or 'severe' if seedlings have >2 leaves, exactly 2 leaves or no leaves (only 2 cotyledons), respectively.

Appendix S1

Protocol to design and clone amiRNAs downstream the BS region in *BS-AtMIR390a-BsaI/ccd*B-based ('B/c') vectors.

1. Selection of the amiRNA sequence

Use the amiRNA Designer app from the P-SAMS webtool at <u>http://p-sams.carringtonlab.org/amirna/designer</u>.

2. Design of amiRNA oligonucleotides

Use amiRNA Designer app from the P-SAMS webtool at <u>http://p-</u> <u>sams.carringtonlab.org/amirna/designer</u>.

2.2.1 Sequence of the BS-AtMIR390a cassette containing the amiRNA

The following FASTA sequence includes amiRNA/amiRNA* sequences inserted in the *AtMIR390a* precursor sequence downstream the BS region:

>amiRNA in BS-AtMIR390a

AGTAGAAAAATC<u>TGTA</u>X₁X₂X₃X₄X₅X₆X₇X₈X₉X₁₀X₁₁X₁₂X₁₃X₁₄X₁₅X₁₆X₁₇X₁₈X₁₉X₂₀X₂₁CGAAATCAAACTX₁X ₂X₁X₂X₃X₄X₅X₆X₇X₈X₉X₁₀X₁₁X₁₂X₁₃X₁₄X₁₅X₁₆X₁₇X₁₈X₁₉CA<u>TT</u>GGCTCTTCTTACT

Where:

-X is a DNA base of the amiRNA sequence, and the subscript number is the base position in the amiRNA 21-mer

-X is a DNA base of the amiRNA* sequence, and the subscript number is the base position in the amiRNA* 21-mer

-X is a DNA base of the BS region of the AtMIR390a precursor

-X is a DNA base of the *OsMIR390* precursor included in the oligonucleotides required to clone the amiRNA insert in B/c vectors

- $\underline{\mathbf{X}}$ is a DNA base of the *AtMIR390a* precursor included in the oligonucleotides required to clone the amiRNA insert in B/c vectors

-X is a DNA base of the *OsMIR390a* precursor that may be modified to preserve the authentic *AtMIR390a* duplex structure

In the sequence above:

-Insert the amiRNA sequence where you see

 $x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 x_{10} x_{11} x_{12} x_{13} x_{14} x_{15} x_{16} x_{17} x_{18} x_{19} x_{20} x_{21}$

-Insert the amiRNA* sequence that has to verify the following base-pairing:

\mathbf{X}_{1}	X ₂	X 3	X_4	\mathbf{X}_5	X 6	X 7	X 8	X 9	$X_{10}X_{1}$	1 X 12	2 X 13	3 X 14	X 15	5 X 16	5 X 17	X 18	X_{19}	\mathbf{X}_{20}	X 21
X 19	X 18	X 17	X 16	5 X 15	X 14	X 13	3 X 12	X 11	$X_{10}X_{9}$	X 8	X 7	X 6	\mathbf{X}_{5}	\mathbf{X}_4	\mathbf{X}_3	\mathbf{X}_2	\mathbf{X}_{1}	\mathbf{X}_2	\mathbf{X}_{1}

Note that:

- -In general, X₁=T for amiRNA association with AGO1. In this case, X₁₉=A
- -Bases X_{11} and X_9 DO NOT base-pair to preserve the central bulge of the authentic *AtMIR390a*

duplex. The following base-pair rule applies:

-If $X_{11}=G$, then $X_9=A$ -If $X_{11}=C$, then $X_9=T$ -If $X_{11}=A$, then $X_9=G$ -If $X_{11}=U$, then $X_9=C$

2.2.2. Sequence of the amiRNA oligonucleotides

The sequences of the two amiRNA oligonucleotides are:

-Forward oligonucleotide (58 b),

 $\textbf{TGTAX}_{1}\textbf{X}_{2}\textbf{X}_{3}\textbf{X}_{4}\textbf{X}_{5}\textbf{X}_{6}\textbf{X}_{7}\textbf{X}_{8}\textbf{X}_{9}\textbf{X}_{10}\textbf{X}_{11}\textbf{X}_{12}\textbf{X}_{13}\textbf{X}_{14}\textbf{X}_{15}\textbf{X}_{16}\textbf{X}_{17}\textbf{X}_{18}\textbf{X}_{19}\textbf{X}_{20}\textbf{X}_{21}\textbf{C}\textbf{G}\textbf{A}\textbf{A}\textbf{T}\textbf{C}\textbf{A}\textbf{A}\textbf{C}\textbf{T}\textbf{X}_{1}\textbf{X}_{2}\textbf{X}_{3}\textbf{X}_{4}\textbf{X}_{1}\textbf{X}$

 $\boldsymbol{X}_5 \boldsymbol{X}_6 \boldsymbol{X}_7 \boldsymbol{X}_8 \boldsymbol{X}_9 \boldsymbol{X}_{10} \boldsymbol{X}_{11} \boldsymbol{X}_{12} \boldsymbol{X}_{13} \boldsymbol{X}_{14} \boldsymbol{X}_{15} \boldsymbol{X}_{16} \boldsymbol{X}_{17} \boldsymbol{X}_{18} \boldsymbol{X}_{19}$

-Reverse oligonucleotide (58 b),

```
\begin{aligned} \mathbf{AATGY}_{19}\mathbf{Y}_{18}\mathbf{Y}_{17}\mathbf{Y}_{16}\mathbf{Y}_{15}\mathbf{Y}_{14}\mathbf{Y}_{13}\mathbf{Y}_{12}\mathbf{Y}_{11}\mathbf{Y}_{10}\mathbf{Y}_{9}\mathbf{Y}_{8}\mathbf{Y}_{7}\mathbf{Y}_{6}\mathbf{Y}_{5}\mathbf{Y}_{4}\mathbf{Y}_{3}\mathbf{Y}_{2}\mathbf{Y}_{1}\mathbf{Y}_{2}\mathbf{Y}_{1}\\ \mathbf{Y}_{16}\mathbf{Y}_{15}\mathbf{Y}_{14}\mathbf{Y}_{13}\mathbf{Y}_{12}\mathbf{Y}_{11}\mathbf{Y}_{10}\mathbf{Y}_{9}\mathbf{Y}_{8}\mathbf{Y}_{7}\mathbf{Y}_{6}\mathbf{Y}_{5}\mathbf{Y}_{4}\mathbf{Y}_{3}\mathbf{Y}_{2}\mathbf{Y}_{1} \end{aligned}
```

Where:

```
-x_{1}x_{2}x_{3}x_{4}x_{5}x_{6}x_{7}x_{8}x_{9}x_{10}x_{11}x_{12}x_{13}x_{14}x_{15}x_{16}x_{17}x_{18}x_{19}x_{20}x_{21} = amiRNA sequence
-x_{1}x_{2}x_{3}x_{4}x_{5}x_{6}x_{7}x_{8}x_{9}x_{10}x_{11}x_{12}x_{13}x_{14}x_{15}x_{16}x_{17}x_{18}x_{19} = partial amiRNA* sequence
-y_{21}y_{20}y_{19}y_{18}y_{17}y_{16}y_{15}y_{14}y_{13}y_{12}y_{11}y_{10}y_{9}y_{8}y_{7}y_{6}y_{5}y_{4}y_{3}y_{2}y_{1} = amiRNA reverse-complement
sequence
```

```
-\mathbf{T}\mathbf{G}\mathbf{Y}_{19}\mathbf{Y}_{18}\mathbf{Y}_{17}\mathbf{Y}_{16}\mathbf{Y}_{15}\mathbf{Y}_{14}\mathbf{Y}_{13}\mathbf{Y}_{12}\mathbf{Y}_{11}\mathbf{Y}_{10}\mathbf{Y}_{9}\mathbf{Y}_{8}\mathbf{Y}_{7}\mathbf{Y}_{6}\mathbf{Y}_{5}\mathbf{Y}_{4}\mathbf{Y}_{3}\mathbf{Y}_{2}\mathbf{Y}_{1}=\text{amiRNA* reverse-complement} sequence
```

 $-X_1X_2 = OsMIR390$ sequence that may be modified to preserve authentic OsMIR390a duplex structure.

 $-\mathbf{Y}_{2}\mathbf{Y}_{1}$ = reverse-complement of $\mathbf{X}_{1}\mathbf{X}_{2}$

Example:

The sequences of the two oligonucleotides to clone the amiRNA 'amiR-NbSu'

(TCCCATTCGATACTGCTCGCC) are:

-Sense oligonucleotide (58 b),

TGTATAACCGTGGTGGACTTCCCGCCGAAATCAAACT<mark>GC</mark>GGGAAGTCAACCACGGTTA

-Antisense oligonucleotide (58 b),

AATGTAACCGTGGTTGACTTCCCGCAGTTTGATTTCG**GCGGGAAGTCCACCACGGTTA Note:** *the 58 b long oligonucleotides can be ordered desalted, no purification is required.*

3. Cloning of amiRNA sequence(s) in BS-AtMIR390a-B/c-based vectors

Notes:

-Available BS-AtMIR390a-B/c vectors are listed in Table I at the end of the section.

-BS-AtMIR390a-B/c-based vectors must be propagated in a ccdB resistant E. coli strain such as DB3.1.

-Alternatively, BsaI digestion of the B/c vector and subsequent ligation of the amiRNA oligonucleotide insert can be done in separate reactions

3.1. Oligonucleotide annealing

-Dilute sense oligonucleotide and antisense oligonucleotide in sterile H2O to a final concentration of $100 \ \mu\text{M}$.

-Prepare Oligo Annealing Buffer:

60 mM Tris-HCl (pH 7.5) 500 mM NaCl 60 mM MgCl₂ 10 mM DTT

Note: Prepare 1 ml aliquots of Oligo Annealing Buffer and store at $-20^{\circ}C$.

-Assemble the annealing reaction in a PCR tube as described below:

Forward oligonucleotide (100 μ M) 2 μ L

Reverse oligonucleotide (100 μ M) 2 μ L

Oligo Annealing Buffer	46 µL
Total volume	50 µL

The final concentration of each oligonucleotide is 4 $\mu M.$

-Use a thermocycler to heat the annealing reaction 5 min at 94°C and then cool down (0.05°C/sec) to 20°C.

-Dilute the annealed oligonucleotides just prior to assembling the digestion-ligation reaction as described below:

Annealed oligonucleotides 3 μ L dH_2O 37μ LTotal volume 40μ L

The final concentration of each oligonucleotide is 0.15 $\mu M.$

Note: Do not store the diluted oligonucleotides.

3.2. Digestion-ligation reaction

- Assemble the digestion-ligation reaction as described below:

B/c vector (x ug/uL)	Y µL (50 ng)
Diluted annealed oligonucleotides	1 μL
10x T4 DNA ligase buffer	1 µL
T4 DNA ligase (400 U/µL)	1 µL
<i>Bsa</i> I (10U/ μL, NEB)	1 µL
<u>dH₂O</u>	<u>to 10 μL</u>
Total volume	10 µL

Prepare a negative control reaction lacking BsaI.

-Mix the reactions by pipetting. Incubate the reactions at room temperature for 5 minutes at 37°C.

3.3. E. coli transformation and analysis of transformants

-Transform 1-5 ul of the digestion-ligation reaction into an *E. coli* strain that doesn't have *ccd*B resistance (e.g. DH10B, TOP10, ...) to do counter-selection.

-Pick two colonies/construct, grow LB-Kan (100 mg/ml) cultures and purify plasmids.

-Sequence with appropriate primers: M13-F (CCCAGTCACGACGTTGTAAAACGACGG) and M13-R (CAGAGCTGCCAGGAAACAGCTATGACC) for *pENTR*-based vectors; attB1 (ACAAGTTTGTACAAAAAAGCAGGCT) and attB2 (ACCACTTTGTACAAGAAAGCTGGGT) primers for *pMDC32B*-based vectors).

Vector	Small RNA expressed	Bacterial antibiotic resistance	Plant antibiotic resistance	GATEWAY use	Backbone	Promoter of syn-tasiRNA cassette	Terminator of syn-tasiRNA cassette	Plant species tested
pENTR-BS-AtMIR390a-B/c	_	Kanamycin	_	Donor	pENTR	_	_	_
pMDC32B-BS-AtMIR390a- B/c	amiRNA	Kanamycin Hygromycin	Hygromycin	_	pMDC32	CaMV 2x35S	Nos	A. thaliana N. benthamiana

Table I: BsaI/ccdB-based ('B/c') vectors for direct cloning of amiRNAs downstream the BS region in AtMIR390a precursor.

Appendix S2

Protocol to generate PVX-based amiRNA constructs (shc precursor).

1. Preparation of the dsDNA amiRNA insert

Design and order a dsDNA (129 bp, eg. ultramer duplex in IDT) including the sequences of your amiRNA/amiRNA* inserted into the *shc* (MIR390-based) precursor, as follows:

agaggtcagcaccagctagcAGTAGAGAAGAATCTGTAX₁X₂X₃X₄X₅X₆X₇X₈X₉X₁₀X₁₁X₁₂X₁₃X₁₄X₁₅X₁₆X₁₇X₁₈X ₁₉X₂₀X₂₁CGAAATCAAACTX₁X₂X₁X₂X₃X₄X₅X₆X₇X₈X₉X₁₀X₁₁X₁₂X₁₃X₁₄X₁₅X₁₆X₁₇X₁₈X₁₉CATTGGCTCTTCTTAC **T**agggtttgttaagtttccct

Where:

-X is a DNA base of the amiRNA sequence, and the subscript number is the base position in the amiRNA 21-mer

-X is a DNA base of the amiRNA* sequence, and the subscript number is the base position in the amiRNA* 21-mer

-X is a DNA base of the BS region of the AtMIR390a precursor

-X is a DNA base of the *OsMIR390* precursor included in the oligonucleotides required to clone the amiRNA insert in B/c vectors

-X is a DNA base of the *OsMIR390a* precursor that may be modified to preserve the authentic *AtMIR390a* duplex structure

-x is a DNA base of the PVX sequence, required for Gibson-based assembly

In the sequence above:

-Insert the amiRNA sequence where you see

 $x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 x_{10} x_{11} x_{12} x_{13} x_{14} x_{15} x_{16} x_{17} x_{18} x_{19} x_{20} x_{21}$

-Insert the amiRNA* sequence that has to verify the following base-pairing:

 $x_{19}x_{18}x_{17}x_{16}x_{15}x_{14}x_{13}x_{12}x_{11}x_{10}x_9 \ x_8 \ x_7 \ x_6 \ x_5 \ x_4 \ x_3 \ x_2 \ x_1 \ x_2 \ x_1$

Note that:

-In general, $X_1=T$ for amiRNA association with AGO1. In this case, $X_{19}=A$

-Bases X_{11} and X_9 DO NOT base-pair to preserve the central bulge of the authentic *AtMIR390a*

duplex. The following base-pair rule applies:

-If \mathbf{X}_{11} =G, then \mathbf{X}_9 =A

-If $X_{11}=C$, then $X_9=T$

-If X_{11} =A, then X_9 =G

-If $X_{11}=U$, then $X_9=C$

Fragment #1 (shc amiRNA precursor) is ready.

2. Preparation of the vector

-Digest *pLB-PVX-Z* with *Mlu*I.

-Gel purify the 9921 bp band.

-Quantify 1 ul in Nanodrop.

Fragment #2 (backbone vector) is ready.

3. Assembly

-Assemble the Gibbson reaction as described below:

Fragment 1 (dsDNA insert) ^a	
Fragment 2 (vector) ^{b,c,d}	
GeneArt Gibson Assembly HiFI Master Mix	5 µL
<u>dH₂O</u>	to 10 µL
Total volume	10 µL
^a The optimal amount of vector is between	50-100 ng
^b Insert/vector molar excess is between 2-3	
°Total DNA amount is between 0.02-0.5 p	mol
^d Mass to moles conversions can be calcula	ated here:
http://nebiocalculator.neb.com/#!/ssdnaam	<u>nt</u>
1	

-Incubate reactions at 50°C for 1h.

-Clean up reactions with a column (e.g. Zymo Research)

-Transform 1-4 µL in E. coli DH5a

-Plate in L-Kan plates and incubate 16h at 37°C

4. Clone verification

-Pick several colonies and grow in liquid LB-Kan 16h at 37°C, and purify plasmids.

-Digest candidate clones with ApaI+XhoI

Good clones: 8595 + **1409** bp

Bad clones (empty *pLB-PVX-Z-MluI*): 8595 + **1738** bp

-Confirm insert sequence by Sanger sequencing with forward and reverse oligos AC-654(GGGAATCAATCACAGTGTTGGC) and/or AC-655 (GCTACTATGGCACGGGCTGTAC), respectively.

Appendix S3.

FASTA sequences of amiRNA-producing precursors.

pri-AtMIR390a AtMIR390a BS AtMIR390a DSL OSMIR390 DSL amiRNA amiRNA

AtCH42

>pri-amiR-AtCH42

>shc-amiR-AtCH42

AGTAGAGAAGAATCTGTA<mark>TTAAGTGTCACGGAAATCCCT</mark>CGAAATCAAACTAG<mark>GGATTTCCTTGACACTTAACA</mark>T TGGCTCTTCTTACT

<u>AtFT</u>

>pri-AtMIR390a-AtFT

>shc-amiR-AtFT

AGTAGAGAAGAATCTGTA<mark>TTGGTTATAAAGGAAGAGGCC</mark>CGAAATCAAACTGG<mark>CCTCTTCCGTTATAACCAACA</mark>T TGGCTCTTCTTACT

<u>GUS_{Nb}</u>

>pri-amiR-GUS_{Nb}

>BS-amiR-GUS_{Nb}

AGTAGAGAAGAATCTGTA<mark>TCTTGTAACGCGCTTTCCCAG</mark>ATGATGATCACATTCGTTATCTATTTTTTCT<mark>GGGA.</mark> <mark>AGCTCGTTACAAGACA</mark>TTGGCTCTTCTTACT

<u>NbDXS</u>

>pri-amiR-NbDXS

>AtDSL-∆6-amiR-NbDXS

> AtDSL- Δ 13-amiR-NbDXS

> AtDSL- Δ 21-amiR-NbDXS

> AtDSL- Δ 25-amiR-NbDXS

>OsDSL-amiR-NbDXS

>OsDSL- Δ 2-amiR-NbDXS

>OsDSL-\Delta4-amiR-NbDXS

>OsDSL-\D6-amiR-NbDXS

>OsDS-AtL-amiR-NbDXS

>BS-amiR-NbDXS

AGTAGAGAAGAATCTGTA<mark>TAAACCGCGGGTTCCTAACAG</mark>ATGATGATCACATTCGTTATCTATTTTTTCT<mark>GTTAG</mark> GAAACCGCGGTTTACA</mark>TTGGCTCTTCTTACT

>BS-\D27-amiR-NbDXS

GAGAAGAATCTGTA<mark>TAAACCGCGGGTTCCTAACAG</mark>ATGATGATCACATTCGTTATCTATTTTTTCT<mark>GTTAGGAAA</mark> CCGCGGTTTACA</mark>TTGGCTCTTCTT

>BS- Δ 17-amiR-NbDXS

GAATCTGTA<mark>TAAACCGCGGGTTCCTAACAG</mark>ATGATGATCACATTCGTTATCTATTTTTCT<mark>GTTAGGAAACCGCG</mark> <mark>GTTTACA</mark>TTGGCTC

>BS- Δ 23-amiR-NbDXS

TCTGTA<mark>TAAACCGCGGGTTCCTAACAG</mark>ATGATGATCACATTCGTTATCTATTTTTTCT<mark>GTTAGGAAACCGCGGGTT</mark> <mark>TACA</mark>TTGG

>BS-\Delta31-amiR-NbDXS

TA<mark>TAAACCGCGGGTTCCTAACAG</mark>ATGATGATCACATTCGTTATCTATTTTTTCT<mark>GTTAGGAAACCGCGGGTTTACA</mark>

>shc-amiR-NbDXS

AGTAGAGAAGAATCTGTA<mark>TAAACCGCGGGGTTCCTAACAG</mark>CGAAATCAAACTCT<mark>GTTAGGAAACCGCGGTTTACA</mark>T TGGCTCTTCTTACT

<u>NbSu</u>

>pri-amiR-NbSu

>AtDSL-∆6-amiR-NbSu

>AtDSL-∆13-amiR-NbSu

>AtDSL- Δ 21-amiR-NbSu

>AtDSL-25-amiR-NbSu

> OsDSL-amiR-NbSu

>OsDSL- Δ 2-amiR-NbSu

>OsDSL-\Data amiR-NbSu

>OsDSL-∆6-amiR-NbSu

>OsDS-AtL-amiR-NbSu

>BS-amiR-NbSu

AGTAGAGAAGAATCTGTA<mark>TAACCGTGGTGGACTTCCCGC</mark>ATGATGATCACATTCGTTATCTATTTTTGC<mark>GGGAA</mark> <mark>GTCAACCACGGTTACA</mark>TTGGCTCTTCTTACT

>BS-∆7-amiR-NbSu

GAGAAGAATCTGTA<mark>TAACCGTGGTGGACTTCCCGC</mark>ATGATGATCACATTCGTTATCTATTTTTGC<mark>GGGAAGTCA</mark> <mark>ACCACGGTTACA</mark>TTGGCTCTTCTT

>BS-∆17-amiR-NbSu

GAATCTGTA<mark>TAACCGTGGTGGACTTCCCGC</mark>ATGATGATCACATTCGTTATCTATTTTTGC<mark>GGGAAGTCAACCAC</mark> <mark>GGTTACA</mark>TTGGCTC

>BS-∆23-amiR-NbSu

TCTGTA<mark>TAACCGTGGTGGACTTCCCGC</mark>ATGATGATCACATTCGTTATCTATTTTTGC<mark>GGGAAGTCAACCACGGT</mark> TACA</mark>TTGG

>BS-∆31-amiR-NbSu

TA<mark>TAACCGTGGTGGACTTCCCGC</mark>ATGATGATCACATTCGTTATCTATTTTTGC<mark>GGGAAGTCAACCACGGTTACA</mark>

>shc-amiR-NbSu

AGTAGAGAAGAATCTGTA<mark>TAACCGTGGTGGACTTCCCGC</mark>CGAAATCAAACTGC<mark>GGGAAGTCAACCACGGTTACA</mark>T TGGCTCTTCTTACT

TSWV

>pri-amiR-TSWV

>shc-amiR-TSWV

AGTAGAGAAGAATCTGTA<mark>TGTAAGACGTGATTGTGTCCT</mark>CGAAATCAAACTAG<mark>GACACAATAACGTCTTACACA</mark>T TGGCTCTTCTTACT

Appendix S4.

DNA sequence of *BsaI-ccd*B-based (B/c) vectors used for direct cloning of amiRNAs in *MIR390*-based *shc* precursors.

>pENTR-BS-AtMIR390a-B/c (4076 bp)

CCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGCCTCTCCCCGC GCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAAT TAATACGCGTACCGCTAGCCAGGAAGAGTTTGTAGAAACGCAAAAAGGCCATCCGTCAGGATGGCCTTCTGCTTA GTTTGATGCCTGGCAGTTTATGGCGGGCGTCCTGCCCGCCACCCTCCGGGCCGTTGCTTCACAACGTTCAAATCC GACTGAGCCTTTCGTTTTATTTGATGCCTGGCAGTTCCCTACTCTCGCGTTAACGCTAGCATGGATGTTTTCCCA GTCACGACGTTGTAAAACGACGGCCAGTCTTAAGCTCGGGCCCCAAATAATGATTTTATTTTGACTGATAGTGAC CTGTTCGTTGCAACAAATTGATGAGCAATGCTTTTTTATAATGCCAACTTTGTACAAAAAAGCAGGCTCCCGCGGC CGCCCCCTTCACCGTAGAGAAGAATCTGTAAGAGACCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCT aatgtacctataaccagaccqttcagctggatattacggccttttttaaagaccgtaaagaaaaataagcacaagt tttatccqqcctttattcacattcttqcccqcctqatqaatqctcatccqqaqttccqtatqqcaatqaaaqacq gtgagetggtgatatgggatagtgttcacccttgttacaccgttttccatgagcaaactgaaacgttttcatcgc tctggaqtgaataccacgacgatttccggcagtttctacacatatattcgcaagatgtggcgtgttacggtgaaa acctggcctatttccctaaagggtttattgagaatatgtttttcgtctcagccaatccctgggtgagtttcacca gttttgatttaaacgtggccaatatggacaacttettegeeeccgtttteaceatgggcaaatattatacgcaag gcgacaaggtgctgatgccgctggcgattcaggttcatcatgccgtttgtgatggcttccatgtcggcagaatgc ttaatgaattacaacaqtactqcqatqqqcqqqqcqqqqqcqtaaACGCGTGGAGCCGGCTTACTAAAAGCCA GATAACAGTATGCGTATTTGCGCGCTGATTTTTGCGGTATAAGAATATATACTGATATGTATACCCGAAGTATGT CAAAAAGAGGTATGCTATGAAGCAGCGTATTACAGTGACAGTTGACAGCGACAGCTATCAGTTGCTCAAGGCATA TATGATGTCAATATCTCCGGTCTGGTAAGCACAACCATGCAGAATGAAGCCCGTCGTCTGCGTGCCGAACGCTGG AAAGCGGAAAATCAGGAAGGGATGGCTGAGGTCGCCCGGTTTATTGAAATGAACGGCTCTTTTGCTGACGAGAAC GCCGGTTTCCGTTATCGGGGAAGAAGTGGCTGATCTCAGCCACCGCGAAAATGACATCAAAAACGCCATTAACCT GATGTTCTGGGGAATATAAATGTCAGGCTCCCTTATACACAGCCAGTCTGCACCTCGACqqtctcAcattqqctc ttcttactAAGGGTGGGCGCCGCCGACCCAGCTTTCTTGTACAAAGTTGGCATTATAAGAAAGCATTGCTTATCAA TTTGTTGCAACGAACAGGTCACTATCAGTCAAAATAAAATCATTATTTGCCATCCAGCTGATATCCCCCTATAGTG AGTCGTATTACATGGTCATAGCTGTTTCCTGGCAGCTCTGGCCCGTGTCTCAAAATCTCTGATGTTACATTGCAC AAGATAAAAATATATCATCATGAACAATAAAACTGTCTGCTTACATAAACAGTAATACAAGGGGTGTTatgagcc at attcaacgggaaacgtcgaggccgcgattaaattccaacatggatgctgatttatatgggtataaatgggctcgcgataatgtcgggcaatcaggtgcgacaatctatcgcttgtatgggaagcccgatgcgccagagttgtttctgaaacatggcaaaggtagcgttgccaatgatgttacagatgagatggtcagactaaactggctgacggaatttatgc $\verb+ctcttccgaccatcaagcattttatccgtactcctgatgatgcatggttactcaccactgcgatccccggaaaaaa$ ${\tt cagcattccaggtattagaagaatatcctgattcaggtgaaaatattgttgatgcgctggcagtgttcctgcgcc}$ ggttgcattcgattcctgtttgtaattgtccttttaacagcgatcgcgtatttcgtctcgctcaggcgcaatcacaagaaatgcataaacttttgccattctcaccqgattcagtcgtcactcatggtgatttctcacttgataacctta tttttgacgaggggaaattaataggttgtattgatgttggacgagtcggaatcgcagaccgataccaggatcttg ccatcctatggaactgcctcggtgagttttctccttcattacagaaacggctttttcaaaaatatggtattgataAACACTGGCAGAGCATTACGCTGACTTGACGGGACGGCGCAAGCTCATGACCAAAATCCCTTAACGTGAGTTACG CGTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAA TTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACC ACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCCGCGGCG ATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGG GTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCATTGAGAAA GCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGA GGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGAT TTTTGTGATGCTCGTCAGGGGGGGGGGGGGGGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCT TTTGCTGGCCTTTTGCTCACATGTT

PURPLE/UPPERCASE: M13-F binding site orange/lowercase: attL1 BLUE/UPPERCASE: AtMIR390a 5' region RED/UPPERCASE: BsaI site magenta/lowercase: chloramphenicol resistance gene MAGENTA/UPPERCASE: ccdB gene red/lowercase: inverted BsaI site blue/lowercase: AtMIR390a 3' region orange/lowercase/underlined: attL2 PURPLE/UPPERCASE/UNDERLINED: M13-Reverse binding site brown/lowercase: Kanamycin resistance gene

>*pMDC32B-BS-AtMIR390-B/c* (11629 bp)

CCAGCCAGCCAACAGCTCCCCGACCGGCAGCTCGGCACAAAATCACCACTCGATACAGGCAGCCCATCAGTCCGG GACGGCGTCAGCGGGAGAGCCGTTGTAAGGCGGCAGACTTTGCTCATGTTACCGATGCTATTCGGAAGAACGGCA ACTAAGCTGCCGGGTTTGAAACACGGATGATCTCGCGGAGGGTAGCATGTTGATTGTAACGATGACAGAGCGTTG CTGCCTGTGATCACCGCGGTTTCAAAATCGGCTCCGTCGATACTATGTTATACGCCAACTTTGAAAACAACTTTG AAAAAGCTGTTTTCTGGTATTTAAGGTTTTAGAATGCAAGGAACAGTGAATTGGAGTTCGTCTTGTTATAATTAG ${\tt CTTCTTGGGGTATCTTTAAATACTGTAGAAAAGAGGAAAGGAAATAATAAtatggctaaaatgagaatatcaccgaatatcaccggaatatcaccggaatatcaccggaatatcaccggaatatcaccggaatatcaccggaatatcaccgaatatcaccggaatatcaccggaatatcaccggaatatcaccggaatatcaccggaatatcaccggaatatcaccggaatatcaccgaatatcaccgaatatcaccgaatatcaccgaatatatcaccgaatatcaccgaatattatcaccgaatattatcaccgaatattatcaccgaatatta$ ggtgggagaaaatgaaaacctatatttaaaaatgacggacagccggtataaagggaccacctatgatgtggaacg ggaaaaggacatgatgctatggctggaaggaaagctgcctgttccaaaggtcctgcactttgaacggcatgatgg ctgqaqcaatctqctcatqaqtqaqqccqatqqcqtcctttqctcqqaaqaqtatqaaqatqaacaaaqccctqa aaagattatcgagctgtatgcggagtgcatcaggctctttcactccatcgacatatcggattgtccctatacgaa tagettagacagecgettageegaattggattaettaetgaataaegatetggeegatgtggattgegaaaaetg ggaagaagacactccatttaaagatccgcgcgagctgtatgattttttaaagacggaaaagcccgaagaggaact tgtcttttcccacggcgacctgggagacagcaacatctttgtgaaagatggcaaagtagtggctttattgatct tgggagaagcggcagggcggacaagtggtatgacattgccttctgcgtccggtcgatcagggaggatatcqqqqa agaacagtatgtcgagctattttttgacttactggggatcaagcctgattgggagaaaataaaatattatattttactqgatqaattqttttaqTACCTAGAATGCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTC AAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTT CAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGC ACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGG GTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAG CTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGG GAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGGGCGCACGAGGGAGCTTCCAGGGGGAAA CGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGG GGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCA CCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCTGATGCGGTATTTTCTCCT TACGCATCTGTGCGGTATTTCACACCGCATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAG CCAGTATACACTCCGCTATCGCTACGTGACTGGGTCATGGCTGCGCCCCGACACCCCGCCAACACCCGCTGACGCG CCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAG AGGTTTTCACCGTCATCACCGAAACGCGCGAGGCAGGGTGCCTTGATGTGGGCGCCGGCGGTCGAGTGGCGACGG ${\tt CTGGCCAGACAGTTATGCACAGGCCAGGCGGGTTTTAAGAGTTTTAATAAGTTTTAAAGAGTTTTAGGCGGAAAA$ ATCGCCTTTTTTTCTCTTTTATATCAGTCACTTACATGTGTGACCGGTTCCCAATGTACGGCTTTGGGTTCCCAAT GTACGGGTTCCCGATGTACGGCTTTGGGTTCCCAATGTACGTGCTATCCACAGGAAAGAGA CTTTTCG ACCTTTTTCCCCTGCTAGGGCAATTTGCCCTAGCATCTGCTCCGTACATTAGGAACCGGCGGATGCTTCGCCCTC GATCAGGTTGCGGTAGCGCATGACTAGGATCGGGCCAGCCTGCCCCGCCTCCTCCAAATCGTACTCCGGCAG GTCATTTGACCCGATCAGCTTGCGCACGGTGAAACAGAACTTCTTGAACTCTCCGGCGCTGCCACTGCGTTCGTA GCCGGGATCGATCAAAAAGTAATCGGGGTGAACCGTCAGCACGTCCGGGTTCTTGCCTTCTGTGATCTCGCGGTA CATCCAATCAGCTAGCTCGATCTCGATGTACTCCGGCCGCCCGGTTTCGCTCTTTACGATCTTGTAGCGGCTAAT CAAGGCTTCACCCTCGGATACCGTCACCAGGCGGCCGTTCTTGGCCTTCTTCGTACGCTGCATGGCAACGTGCGT GGTGTTTAACCGAATGCAGGTTTCTACCAGGTCGTCTTTCTGCTTTCCGCCATCGGCTCGCCGGCAGAACTTGAG TACGTCCGCAACGTGTGGACGGAACACGCGGCCGGGCTTGTCTCCCTTCCCGGTATCGGTTCATGGATTC CTCTACGTGCCCGTCTGGAAGCTCGTAGCGGATCACCTCGCCAGCTCGGTCACGCTTCGACAGACGGAAAAC GGCCACGTCCATGATGCTGCGACTATCGCGGGTGCCCACGTCATAGAGCATCGGAACGAAAAAATCTGGTTGCTC GTCGCCCTTGGGCGGCTTCCTAATCGACGGCGCACCGGCTGCCGGCGGTTGCCGGGATTCTTTGCGGATTCGATC AGCGGCCGCTTGCCACGATTCACCGGGGCGTGCTTCTGCCTCGATGCGTTGCCGCTGGGCGGCCTGCGCGGCCTT CAACTTCTCCACCAGGTCATCACCCAGCGCCGCCGCCGATTTGTACCGGGCCGGATGGTTTGCGACCGTCACGCCG ATTCCTCGGGCTTGGGGGTTCCAGTGCCATTGCAGGGCCGGCAGACAACCCAGCCGCTTACGCCTGGCCAACCGC CCGTTCCTCCACACATGGGGCATTCCACGGCGTCGGTGCCTGGTTGTTCTTGATTTTCCATGCCGCCTCCTTTAG ${\tt CCGCTAAAATTCATCTACTCATTTATTCATTTGCTCATTTACTCTGGTAGCTGCGCGATGTATTCAGATAGCAGC$ TCGGTAATGGTCTTGCCTTGGCGTACCGCGTACATCTTCAGCTTGGTGTGATCCTCCGCCGGCAACTGAAAGTTG GCACTTAGCGTGTTTGGCTCTTTGCTCATTTCTCTTTACCTCATTAACTCAAATGAGTTTTGATTTAATTTCAG CGGCCAGCGCCTGGACCTCGCGGGCAGCGTCGCCCTCGGGTTCTGATTCAAGAACGGTTGTGCCGGCGGCGGCGGCAG TGCCTGGGTAGCTCACGCGCTGCGTGATACGGGACTCAAGAATGGGCAGCTCGTACCCGGCCAGCGCCTCGGCAA CCTCACCGCCGATGCGCGTGCCTTTGATCGCCCGCGACACGACAAAGGCCGCTTGTAGCCTTCCATCCGTGACCT CAATGCGCTGCTTAACCAGCTCCACCAGGTCGGCGGTGGCCCATATGTCGTAAGGGCTTGGCTGCACCGGAATCA GCACGAAGTCGGCTGCCTTGATCGCGGACACAGCCAAGTCCGCCGCCTGGGGCGCTCCGTCGATCACTACGAAGT CGCGCCGGCCGATGGCCTTCACGTCGCGGTCAATCGTCGGGCGGTCGATGCCGACAACGGTTAGCGGTTGATCTT CCCGCACGGCCGCCCAATCGCGGGCACTGCCCTGGGGATCGGAATCGACTAACAGAACATCGGCCCCGGCGAGTT GCAGGGCGCGGGCTAGATGGGTTGCGATGGTCGTCTTGCCTGACCCGCCTTTCTGGTTAAGTACAGCGATAACCT TCATGCGTTCCCCTTGCGTATTTGTTTATTTACTCATCGCATCATATACGCAGCGACCGCATGACGCAAGCTGTT GTACCCGGCCGCGATCATCTCCGCCTCGATCTCTTCGGTAATGAAAAACGGTTCGTCCTGGCCGTCCTGGTGCGG TTTCATGCTTGTTCCTCTTGGCGTTCATTCTCGGCGGCCGCCAGGGCGTCGGCCTCGGTCAATGCGTCCTCACGG AAGGCACCGCGCCGCCTGGCCTCGGTGGGCGTCACTTCCTCGCTGCGCTCAAGTGCGCGGTACAGGGTCGAGCGA TGCACGCCAAGCAGTGCAGCCGCCTCTTTCACGGTGCGGCCTTCCTGGTCGATCAGCTCGCGGGCGTGCGCGATC TGTGCCGGGGTGAGGGTAGGGCGGGGGGCCAAACTTCACGCCTCGGGCCTTGGCGGCCTCGCGCCCGCTCCGGGTG GTGGTGTCGGCCCACGGCTCTGCCAGGCTACGCAGGCCCGCGCCGCCCCCGGATGCCCCGGCAATGTCCAGT AGGTCGCGGGTGCTGCGGGCCAGGCGGTCTAGCCTGGTCACTGTCACAACGTCGCCAGGGCGTAGGTGGTCAAGC GCGCTCTTGTTCATGGCGTAATGTCTCCGGTTCTAGTCGCAAGTATTCTACTTTATGCGACTAAAACACGCGACA AGAAAACGCCAGGAAAAAGGGCAGGGCGGCAGCCTGTCGCGTAACTTAGGACTTGTGCGACATGTCGTTTTCAGAA GACGGCTGCACTGAACGTCAGAAGCCGACTGCACTATAGCAGCGGAGGGGTTGGATCAAAGTACTTTGATCCCGA GGGGAACCCTGTGGTTGGCATGCACATACAAATGGACGAACGGATAAACCTTTTCACGCCCTTTTAAATATCCGT TATTCTAATAAACGCTCTTTTCTCTTAGGtttacccgccaatatatcctgtcaAACACTGATAGTTTAAACTGAA GGCGGGAAACGACAATCTGATCCAAGCTCAAGCTGCTCTAGCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAG GGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGG TAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGCCAAGCTTGGCGTGCCTGCAGGTCAAC ATGGTGGAGCACGACACACTTGTCTACTCCAAAAATATCAAAGATACAGTCTCAGAAGACCAAAGGGCAATTGAG ACTTTTCAACAAAGGGTAATATCCGGAAACCTCCTCGGATTCCATTGCCCAGCTATCTGTCACTTTATTGTGAAG ATAGTGGAAAAGGAAGGTGGCTCCTACAAATGCCATCATTGCGATAAAGGAAAGGCCATCGTTGAAGATGCCTCT GCCGACAGTGGTCCCCAAAGATGGACCCCCCACCGAGGAGCATCGTGGAAAAAGAAGACGTTCCAACCACGTCT TCAAAGCAAGTGGATTGATGTGATAACATGGTGGAGCACGACACCTTGTCTACTCCAAAAATATCAAAGATACA GTCTCAGAAGACCAAAGGGCAATTGAGACTTTTCAACAAAGGGTAATATCCGGAAACCTCCTCGGATTCCATTGC GGAAAGGCCATCGTTGAAGATGCCTCTGCCGACAGTGGTCCCAAAGATGGACCCCCACCACGAGGAGCATCGTG GAAAAAGAAGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTGATGTGATATCTCCACTGACGTAAGGGATGAC GCACAATCCCACTATCCTTCGCAAGACCCTTCCTCTATATAAGGAAGTTCATTTCATTTGGAGAGGACCTCGACT CTAGAGGATCCCCGGGTACCGGGCCCCCCCCGAGGCGCCCAAGCTATCAAACAAGTTTGTACAAAAAGCAGG CTCCGCGGCCGCCCCTTCACCAGTAGAGAAGAATCTGTAAGAGACCATTAGGCACCCCAGGCTTTACACTTTAT GCTTCCGGCTCGTATAATGTGTGGATTTTGAGTTAGGAGCCGTCGAGATTTTCAGGAGCTAAGGAAGCTAAAatq gagaaaaaaatcactggatataccaccgttgatatatcccaatggcatcgtaaagaacattttgaggcatttcag t cagttgctcaatgtacctataaccagaccgttcagctggatattacggcctttttaaagaccgtaaagaaaaataagcacaagttttatccqqcctttattcacattcttqcccqcctqatqaatqctcatccqqaqttccqtatqqca atgaaagacggtgagctggtgatatgggatagtgttcacccttgttacaccgttttccatgagcaaactgaaacg ${\tt ttttcatcgctctggagtgaataccacgacgatttccggcagtttctacacatatattcgcaagatgtggcgtgt$ ${\tt tacggtgaaaacctggcctatttccctaaagggtttattgagaatatgtttttcgtctcagccaatccctgggtg$ agtttcaccagttttgatttaaacgtggccaatatggacaacttcttcgcccccgttttcaccatgggcaaatattatacgcaaggcgacaaggtgctgatgccgctggcgattcaggttcatcatgccgtttgtgatggcttccatgtcCTAAAAGCCAGATAACAGTATGCGTATTTGCGCGCTGATTTTTGCGGTATAAGAATATATACTGATATGTATACC CGAAGTATGTCAAAAAGAGGTATGCTATGAAGCAGCGTATTACAGTGACAGCTGACAGCGACAGCTATCAGTTGC TCAAGGCATATATGATGTCAATATCTCCGGTCTGGTAAGCACCATGCAGAATGAAGCCCGTCGTCTGCGTGC CGAACGCTGGAAAGCGGAAAATCAGGAAGGGATGGCTGAGGTCGCCCGGTTTATTGAAATGAACGGCTCTTTTGC TGGATGTACAGAGTGATATTATTGACACGCCCGGCCGACGGATGGTGATCCCCCTGGCCAGTGCACGTCTGCTGT ${\tt CAGATAAAGTCTCCCGTGAACTTTACCCGGTGGTGCATATCGGGGATGAAAGCTGGCGCATGATGACCACCGATA}$ TGGCCAGTGTGCCGGTTTCCGTTATCGGGGAAGAAGTGGCTGATCTCAGCCACCGCGAAAATGACATCAAAAACG CCATTAACCTGATGTTCTGGGGAATATAAATGTCAGGCTCCCTTATACACAGCCAGTCTGCACCTCGACggtctc AcattqqctcttcttactAAGGGTGGGCGCGCCGACCCAGCTTTCTTGTACAAAGTGGTTCGATAATTCCTTAAT TAACTAGTTCTAGAGCGGCCGCCCACCGCGGTGGAGCTCGAATTTCCCCCGATCGTTCAAACATTTGGCAATAAAG TTTCTTAAGATTGAATCCTGTTGCCGGTCTTGCGATGATTATCATATAATTTCTGTTGAATTACGTTAAGCATGT

AATAATTAACATGTAATGCATGACGTTATTTATGAGATGGGTTTTTATGATTAGAGTCCCGCAATTATACATTTA TTCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACAACATACGAGCCGG AAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGC TTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTAT TGGCTAGAGCAGCTTGCCAACATGGTGGAGCACGACACTCTCGTCTACTCCAAGAATATCAAAGATACAGTCTCA GAAGACCAAAGGGCTATTGAGACTTTTCAACAAAGGGTAATATCGGGAAACCTCCTCGGATTCCATTGCCCAGCT ATCTGTCACTTCATCAAAAGGACAGTAGAAAAGGAAGGTGGCACCTACAAATGCCATCATTGCGATAAAGGAAAG GCTATCGTTCAAGATGCCTCTGCCGACAGTGGTCCCAAAGATGGACCCCCACGAGGAGGAGCATCGTGGAAAAA ${\tt GAAGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTGATGTGATAACatqqtqqaqcacqacactctcqtctac}$ tccaaqaatatcaaaqatacaqtctcaqaaqaccaaaqqqctattqaqacttttcaacaaaqqqtaatatcqqqa aaatgccatcattgcgataaaggaaaggctatcgttcaagatgcctctgccgacagtggtcccaaagatggaccc ccacccacqaqqaqcatcqtqqaaaaaqaaqacqttccaaccacqtcttcaaaqcaaqtqqattqatqtqatatctccactgacgtaagggatgacgcacaatcccactatccttcgcaagaccttcctctatataaggaagttcatttc GGGCAATGAGATATGAAAAAGCCTGAACTCACCGCGACGTCTGTCGAGAAGTTTCTGATCGAAAAGTTCGACAGC GTCTCCGACCTGATGCAGCTCTCGGAGGGCGAAGAATCTCGTGCTTTCAGCTTCGATGTAGGAGGGCGTGGATAT GTCCTGCGGGTAAATAGCTGCGCCGATGGTTTCTACAAAGATCGTTATGTTTATCGGCACTTTGCATCGGCCGCG ${\tt CTCCCGATTCCGGAAGTGCTTGACATTGGGGAGTTTAGCGAGAGCCTGACCTATTGCATCTCCCGCCGTGCACAG}$ GGTGTCACGTTGCAAGACCTGCCTGAAACCGAACTGCCCGCTGTTCTACAACCGGTCGCGGAGGCTATGGATGCG ATCGCTGCGGCCGATCTTAGCCAGACGAGCGGGTTCGGCCCATTCGGACCGCAAGGAATCGGTCAATACACTACA TGGCGTGATTTCATATGCGCGATTGCTGATCCCCATGTGTATCACTGGCAAACTGTGATGGACGACACCGTCAGT GCGTCCGTCGCGCAGGCTCTCGATGAGCTGATGCTTTGGGCCGAGGACTGCCCCGAAGTCCGGCACCTCGTGCAC GCGGATTTCGGCTCCAACAATGTCCTGACGGACAATGGCCGCATAACAGCGGTCATTGACTGGAGCGAGGCGATG TTCGGGGGATTCCCAATACGAGGTCGCCAACATCTTCTTCTGGAGGCCGTGGTTGGCTTGTATGGAGCAGCAGACG ${\tt CGCTACTTCGAGCGGAGGCATCCGGAGCTTGCAGGATCGCCACGACTCCGGGCGTATATGCTCCGCATTGGTCTT}$ GACCAACTCTATCAGAGCTTGGTTGACGGCAATTTCGATGATGCAGCTTGGGCGCAGGGTCGATGCGACGCAATC GTCCGATCCGGAGCCGGGACTGTCGGGCGTACACAAATCGCCCGCAGAAGCGCGGCCGTCTGGACCGATGGCTGT GTAGAAGTACTCGCCGATAGTGGAAACCGACGCCCCAGCACTCGTCCGAGGGCAAAGAAATAGAGTAGATGCCGA tcaataaaatttctaattcctaaaaccaaaatccagtactaaaatccagatcCCCCGAATTAATTCGGCGTTAAT TCAGTACATTAAAAACGTCCGCAATGTGTTATTAAGTTGTCTAAGCGTCAATTTGTTTACACCACAATATATCCT

brown/lowercase: kanamycin resistance gene CYAN/UPPERCASE/UNDERLINED: C->A transversion to block vector's BsaI site cyan/lowercase: T-DNA right border GREEN/UPPERCASE: 2x35S CaMV promoter ORANGE/UPPERCASE: attB1 BLUE/UPPERCASE: AtMIR390a 5' region RED/UPPERCASE: BsaI site magenta/lowercase: chloramphenicol resistance gene MAGENTA/UPPERCASE: ccdB gene red/lowercase: inverted BsaI site blue/lowercase: AtMIR390a 3' region ORANGE/UPPERCASE/UNDERLINED: attB2 GREY/UPPERCASE/UNDERLINED: Nos terminator green/lowercase: CaMV promoter BROWN/UPPERCASE: hygromycin resistance gene green/lowercase/underlined: CaMV terminator CYAN/UPPERCASE: T-DNA left border