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Abstract 

In this work it is experimentally shown that capping ZnO nanoparticles with 

organic molecules leads to the appearance of magnetism at room temperature. 

The bonds between the molecules and the Zn atoms at the nanoparticle 

surface alter its electronic structure (as XANES and photoluminescence 

spectra demonstrate) arising magnetic moments with values that depend on 

the nature of the molecule. This result points out the possibility to observe 

magnetism at nanoscale in semiconductors without typical magnetic atoms 

(transition metals and rare earths). 
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Text 

 

Diluted Magnetic Semiconductors (DMS), consisting on semiconductor 

matrices  containing a small amount of magnetic impurities are among the 

most interesting new magnetic materials in view of their potential applications 

for spintronics [1,2]. The main challenge for this kind of materials is to present 

a Curie Temperature (TC) above 300 K in order to be useful for technological 

applications. Despite some initial promising results on Mn:ZnO [3], it is not 

clear if DMS can exhibit this required high temperature magnetism. For most 

of the experimental results doubts arose about the real origin of magnetism 

[4,5,6]. The most recent and outstanding works on this field showed that the 

magnetic properties are not exclusively related to the presence of the magnetic 

ions but strongly determined by the defects in the host matrix 

[7,8,9,10,11,12]. For instance, Kittisltved et al [7,8] showed that Mn:ZnO  

nanoparticles and thin films show room temperature (RT) ferromagnetism 

when doped p-type defects, while other capping that introduce n-type defects 

leads to no RT ferromagnetism. On the contrary, for Co:ZnO films the n-type 

defects favours the appearance of RT ferromagnetism while p-type defects yield 

to no RT ferromagnetism. Rubi et al [9] found similar results for Co and Mn 

doped ZnO powder samples. Moreover, Coey et al [10] demonstrated that 

doping ZnO thin films with 3d non magnetic ions (as Ti or V) also leads to RT 

ferromagnetic behaviour and for insulating HfO2 the effect appear even 

without doping [11]. Those results point on the alteration of the electronic 

structure of the semiconductor (induced by both, the presence of the magnetic 

impurity and the defects) as responsible of the origin of the observed 

magnetism.   

Actually, it was recently found that an alteration of the electronic structure of  

Au nanoparticles and thin films produced by capping them with organic 

molecules also lead to the appearance of RT ferromagnetism despite the 

diamagnetic character of bulk Au [13,14,15]. When thiols are chemisorbed on 

Au surface, there is a charge transfer from the Au to the S [16] generating 

holes at the 5d orbital of Au involved in the bond, initially full, arising a 

magnetic moment. These moments results strongly fixed along the bond 

direction and the system exhibits giant anisotropy. Thus, the ferromagnetic 
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behaviour is observed even at RT. For thiol capped thin films the 

magnetization curves are fairly different upon applying field parallel or 

perpendicular to the surface (hence confirming the huge anisotropy) and the 

magnetic moments are giant [14,15]. Similar features (giant magnetic 

moments and huge anisotropy) have been observed for DMS thin films 

[10,11,17] suggesting a possible common origin of both effects. In this work we 

experimentally show that capping ZnO NPs with a variety of organic molecules 

modifies its electronic structure arising ferromagnetic-like behaviour up to 300 

K. Therefore, this method opens a new way to obtain the desired magnetic 

semiconductors without using any type of magnetic atoms and avoiding the 

superparamagnetic limit.  

ZnO NPs were prepared by sol-gel following the method described in [7,18,19] 

and subsequently capped with three different organic molecules: 

Tryoctylphosphine (named after here TOPO), dodecylamine (AMINE) and 

dodecanethiol (THIOL), which bond to the particle surface through an O, N 

and S atom, respectively. Zinc acetate dihydrate (Zn(Ac)2, Zn(CH3CO2)2•2H2O, 

98 %, Sigma-Aldrich, ≤ 5 ppm of Fe impurities), tetramethylammonium 

hydroxide pentahydrate (TMAH, N(CH3)4OH, 97 %, Sigma-Aldrich), dimethyl 

sulfoxide (DMSO, (CH3)2SO, Sigma-Aldrich), dodecylamine (C12H25NH2, ≥ 98 %, 

Merck), dodecanethiol (C12H25SH, 98 %, Sigma-Aldrich), tryoctylphospine oxide 

(TOPO, (C8H17)3PO, 90 % technical grade, Sigma-Aldrich) and absolute ethanol 

(CH3CH2OH, Panreac)  were used as received. ZnO NPs were prepared by a sol-

gel method. Zn(Ac)2 (5 mmol) was dissolved in DMSO and the solution was 

heated and kept at 60 ºC under stirring. Then a solution of TMAH (7.5 mmol) 

in ethanol was added dropwise.  After that, AMINE, THIOL and TOPO capped 

nanocrystals were precipitaded adding dodecylamine (7.5 mmol), 

dodecanethiol (7.5 mmol) and TOPO (7.5 mmol) solutions in heated ethanol 

respectively to the precursor solution. The products thus obtained were 

filtered and washed several times with heated ethanol. The recovered powders 

were allowed to dry at room temperature. 

Structural characterization, by means of X Ray Diffraction (XRD) and 

Transmission Electron Microscopy (TEM), evidences, for the three cases, the 

formation of hexagonal ZnO nanoparticles (wurtzite structural type) with 

average size around 10 nm as figure 1 illustrates. Figure 1b presents a low 

magnification image, characteristic of the AMINE sample, where the NPs 
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average size can be estimated. Figure 1c corresponds to a HREM (High 

Resolution Electron Microscopy) image of one of these particles, in which 

atomic distances and the corresponding FFT (figure 1d) confirms the 

hexagonal lattice. Similar results are obtained for THIOL and TOPO samples. 

EDS (Energy Dispersive Spectroscopy) analysis is in agreement with the 

presence of ZnO. Signals corresponding to impurity phases have not been 

detected. 
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Figure 1. (Color on-line) (a) X-Ray diffraction patterns of the AMINE, THIOL and TOPO samples; 

diffraction maxima (labelled) are indexed on the basis of a ZnO wurtzite type unit cell. (b) Low 

magnification image of the AMINE sample, showing the size distribution. (c) HREM image along 

[010] zone axis and (d) corresponding FFT in agreement to the wurtzite unit cell. 

 

Figure 2 show the XANES spectra at the Zn K-edge measured at RT in the 

SPLINE (BM25) beamline at ESRF. The spectra are clearly different for the 

three capping molecules.  The Zn K-edge, corresponding to the transition Zn 

1s→4p, has been shown to be more sensible to the Zn chemical bonding than 

L edges [20]. Although 4p level of Zn isolated atoms is empty, chemical 

bonding with different chemical species leads to hybridization, resulting states 

with a different degree of occupation depending on the features of the bond. In 

particular, a larger intensity at the first maximum is associated with a larger 

charge transfer between the Zn atoms and the surrounding atoms, that can be 

due to an increase of the coordination number [21] or changes in the 

electronegativity of these surrounding atoms. Hence, variations in intensity at 

the first maximum indicate different degree of occupation for the outer orbital 

of Zn atoms (including the hybridized states) for the three samples.   
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Figure 2. (Color on-line) XANES spectra at the Zn K-edge for the ZnO NPs capped with different 

molecules. Inset show a detail of the white line region. 

 

The photoluminescence (PL) spectra of the ZnO NPs are presented in figure 3. 

As figure 3a describes, upon excitation with UV light, electrons are pumped 

from the valence band (VB) to the conduction band (CB). Those electrons 

rapidly decay to the bottom of the CB via non-radiative processes. At this 

stage, there are several paths to return to the ground state, being the main 

ones: (a) Creation of an exciton and its subsequent annihilation emitting the 

excess of energy as a photon with an energy about that of the ZnO gap (3.4 eV) 

(b) Non-radiative transition to an intermediate level created by a defect and 

subsequent radiative decay emitting 2.3 eV photons. Although this emission 

has been reported many times, the nature of the defect is still a matter of 

discussion, being the oxygen vacancies the most likely candidate [22]. 

Recently, Shalish et al [23] demonstrated that this luminescence arise form 

the surface of the ZnO while Norberg and Gamelin established it is directly 

correlated with the surface hydroxide concentration [24]. Thus, the study of 

this emission is a suitable tool to investigate the modification in the surface 

electronic structure induced by capping the NP with different molecules. (c) 

Surface states can create intermediate levels in the gap that allow the non-

radiative decay of the excited electron to the VB [25,26]. 

The 2.3 eV emission (corresponding to photons with 550 nm wavelength) is 

clearly observed for the TOPO sample, being weaker for the AMINE and absent 

of the spectrum for the THIOL sample, as figure 3b shows. The strong 
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dependence of the PL visible emission with the type of capping molecule is in 

agreement with the surface origin [23,24], as the molecules can alter only the 

electronic structure close to the surface. These results can be understood 

assuming that the kind of molecule controls the number of deep-level 

recombination centers or, that it induces new surface states that provide 

alternative non-radiative decay paths, and hence quenching the PL emission 

[25]. In both cases, it is inferred that the capping molecule alters the electronic 

structure of the NPs surface, modifying the energy levels. 
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Figure 3. (a)  Scheme of the PL process for ZnO as described in the text (b) PL spectra from the 

three samples at 300 K upon excitation with 385 nm light. 

 

Figures 4 show the magnetization curves of the samples at 300 K, exhibiting 

diamagnetic character as bulk ZnO does. However, for the AMINE and THIOL 

capped NPs there is a ferromagnetic-like contribution that can be clearly 

observed after subtracting the diamagnetic background (Figure 4b). Identical 

results were found at 5 K. Actually the magnetization resulted thermally 

independent in the range 5-300 K (see inset). For an average nanoparticle size 

of 10 nm, the magnetic moment per surface atom resulted 2·10-3 µB and 

0.5·10-3 µB for THIOL and AMINE sample respectively. These values are 

calculated assuming that no rests of the precursors are present in the sample; 
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they represent therefore a lower limit. Chemical analysis provided by the 

precursors suppliers showed that possible traces, lower than 0.5 ppm, can not 

account for the magnetic moment experimentally measured. Moreover, we 

measured the magnetization curves for the precursors used in the NP 

synthesis to check any contamination in the measuring procedure and we 

found no magnetic signal up to the detection limit of our equipment. Thus, 

possible contribution of magnetic impurities should be two orders of 

magnitude below that measured for THIOLS and one order for AMINE.  

 

Figure 4. (a) Hysteresis loops from ZnO NPs capped with different molecules. (b) The loops alter 

subtracting the diamagnetic/paramagnetic background. Inset shows the thermal dependence of 

the under an applied field of 500 Oe after subtracting the corresponding constant diamagnetic 

background for clarity. 

 

It is worthy noting that structural analysis of the NPs (performed by XRD, TEM 

and HREM) showed about identical structure irrespective of the capping 

molecule but those measurements probing the electronic structure (XANES, 

PL and magnetic properties) confirmed that these are strongly dependent on 

the capping molecule. Moreover, there is a perfect correlation in the evolution 

of these measured properties with the capping molecule: THIOL sample shows 

the largest alteration of the electronic structure as evidenced by the highest 

XANES absorption, the absence of PL emission (totally quenched by 

appearance the new surface states) and the largest magnetic moments (despite 

the diamagnetic character of ZnO).  On the contrary, the TOPO sample 

presents the electronic configuration more similar to bulk ZnO as confirms the 

smallest XANES absorption (less charge transfer), the most intense PL 

(b)
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emission typical of bulk ZnO and diamagnetic behaviour. AMINE sample 

present in the three cases an intermediate result. All this results together 

point out that the capping molecule induces a modification of the electronic 

structure of the nanoparticles that is in the origin of the room temperature 

ferromagnetism of those samples.  

In view of those results, the confusing and apparently irreconcilable results 

about DMS can be understood assuming that that their magnetic properties 

are originated by two sources: (i) The magnetism arising by the magnetic 

moments of the 3d impurities that, when isolated, are expected to behave as 

paramagnetic and rapidly decrease with temperature, and (ii) an additional 

contribution originated by the alteration of the electronic structure of the 

semiconductor induced by defects (p or n type) that is thermally independent 

up to 300 K.  

Previous experiments on DMS demonstrates that when both contributions are 

present they are coupled [7,8]. Actually, the incorporation of magnetic 

impurities into the semiconductor matrix, besides the presence of its magnetic 

moment, represents an alteration of the semiconductor energy levels. Thus, 

the final electronic configuration will be determined by both non-magnetic 

defects and magnetic impurities, explaining why the RT ferromagnetism 

depends also on the presence of the magnetic ion. The observation of RT 

ferromagnetism in DMS without defects can be explained as due to the 

alteration of the changes in the energy levels induced by the presence of the 

impurity. Moreover, the ferromagnetism observed in semiconductors doped 

with non-magnetic ions can be also explained within this frame. What we 

confirmed here is that the magnetism due to the alteration of the 

semiconductor electronic configuration can be present in absence of the 

magnetic ions and that, for nanoparticles, capping with organic molecules may 

induce such an alteration of the electronic structure.  

In a recent work, Kittilstved and Gamelin found no RT ferromagnetism in 

AMINE capped ZnO NPs in disagreement with the result presented here [7]. It 

is evident that not any alteration of the electronic structure of ZnO will arise 

the ferromagnetism but only under certain circumstances. Actually, we found 

that slight modifications in the preparation conditions and size of thiol-capped 

Au NPs lead to important variations in their magnetic properties [13], and for 

DMS small differences in the preparation methods also lead to apparently 
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irreconciliable results, suggesting that slight variation of the electronic 

structure can lead to large variation of the magnetic properties. Thus, it is 

possible that the different preparation method used by Kittilstved and 

Gamelin, yield reduced values of magnetization for their samples that make 

the magnetic moments undetectable (note that the magnetization value we 

measured for AMINE is fairly small and close to the detection limit of the 

SQUID). Then, for NPs capped with AMINE and doped with Mn atoms the 

electronic structure (modified both by the presence of Mn and the capping 

molecules) arise the thermally independent magnetization that is 

superimposed to that due to the magnetic moments of Mn atoms that 

decreases fast with temperature (Figure 1 in reference [7]).  

In summary, we have experimentally shown that absorption of certain organic 

molecules onto semiconductor nanoparticles modifies its electronic structure 

and gives rise to a ferromagnetic-like behaviour at room temperature even in 

absence of magnetic ions. Identification of the particular electronic 

configuration that originates this magnetism is a amazing challenge that 

would open a world of possibilities for the use of these materials. 
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