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Abstract: Safe and adaptable motion planning for autonomous vehicles remains an open problem in
urban environments, where the variability of situations and behaviors may become intractable using
rule-based approaches. This work proposes a use-case-independent motion planning algorithm that
generates a set of possible trajectories and selects the best of them according to a merit function that
combines longitudinal comfort, lateral comfort, safety and utility criteria. The system was tested
in urban scenarios on simulated and real environments, and the results show that different driving
styles can be achieved according to the priorities set in the merit function, always meeting safety and
comfort parameters imposed by design.

Keywords: autonomous driving; motion planning; trajectory generation; speed profile; merit function

1. Introduction

Automated Driving Functions (ADF) are progressing at a vertiginous pace. There
are already commercial solutions for levels of driving automation 2 to 4 (defined by the
Society for Automotive Engineers (SAE) J3016 standard [1]), which are valid in specific
Operational Design Domains (ODD), but there are still open problems for a safe navigation
in urban environments. In these contexts, decision-making is significantly challenging,
as the artificial system must properly interact with a diversity of traffic participants and
consider sensors limitations under very different driving situations.

Traditional decision-making methods are often based on predefined rules and im-
plemented as hand-crafted state machines (e.g., [2]). Other classical methods handle the
decision-making process as a motion planning problem [3]. More recently, end-to-end
solutions (e.g., [4]), enabled by deep and imitation learning, are also achieving impressive
performance. Although all these strategies may be successful in many cases, one draw-
back is that they are designed for specific ODDs and sometimes also produce inexplicable
behaviors, which makes it hard to scale them to the complexity of real-world urban driving.

One of the main limitations for most of the state-of-the-art motion planning solutions
is their difficulty to provide fallback mechanisms in case of taking a wrong decision, either
because of algorithm design limitations or due to sensors/actuators inaccuracy or failure.
To overcome this situation, some recent works [5], inspired by high-level cognition mecha-
nisms, propose, instead of looking for a unique and optimal planning/acting solution, to
simultaneously map as many reachable states as possible. In this setting, a spatio-temporal
picture of the state’s reachability in terms of multiple criteria can be drawn at each planning
cycle, paving the path towards a fail-operational strategy. Indeed, with this representation,
multiple action areas with similar levels of safety could be identified, allowing one to
choose different levels of comfort and utility following eventual sensor uncertainties or
actuators misbehavior.

This work proposes following that paradigm, initially designed to model sensory-
motor primitives, and applying it to the motion planning problem. To that end, an adap-
tation of an existing road-oriented path sampling strategy ([6,7]) is proposed here, so
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that simple primitives can be quickly computed and evaluated in terms of a wide variety
of performance indicators. As a result, a framework for behavior generalization would
be available in any driving context, allowing not only multiple fallback strategies but
also an easy-to-implement and easy-to-interpret mechanism for adaptation to different
driving styles.

The main contributions of this work with respect to the existing motion planning
literature can be summarized in the four following points:

• Contrarily to the majority of current approaches, it does not seek to obtain a unique
(quasi-)optimal solution but a good representation of reachable states. The planning
strategy relies on a two-step procedure: (i) a systematic generation of planning-
oriented reachability maps, thus allowing it to model all the available trajectories to
be followed, and (ii) a multi-criteria evaluation and selection of candidates.

• The proposed algorithm is use-case-independent, as it can consider any driving
situation in which drivable corridors are available.

• The multiple trajectory performance indicators computed per motion candidate allow
driving style personalization in terms of safety, longitudinal and lateral comfort and
utility and could be eventually exploited for fail-operational mechanisms.

• The proposed mechanism is validated in urban-like scenarios, using both a realistic
state-of-the-art simulator and an automated vehicle. Note that although the traffic
involved in the driving scenes has been limited for the sake of clarity, the framework
is fully scalable to much more crowded scenarios.

The outline of the paper is as follows: Section 2 presents an overview of the motion
planning architecture. Section 3 describes the generation of the trajectory candidates.
Section 4 explains the evaluation method to select the best trajectory among possible
candidates. The experimental results are shown in Section 5. Finally, Section 6 presents the
concluding remarks.

Related Work

Motion planning is a key technology of autonomous vehicles that aims to solve the
problem of computing a sequence of feasible states for the vehicle to maneuver among
obstacles from an initial state toward a desired terminal state, considering the vehicle
and actuators restrictions. Despite the extensive research in this field, it still represents
a relevant challenge because of unavoidable uncertainties in the operating scenario and
computational capability limitations of the ADF.

According to [8], most of these existing decision-systems can be categorized into two
major paradigms: mediated perception approaches and behavior reflex approaches. In
the former group, several interconnected sub-systems intervene to infer a world model for
which the most adapted decision and control are generated. Although this has been the
preferred strategy in the automotive industry, extremely concerned with the predictability
of safety-critical systems, it may have some limitations when fail-operational behavior is
at stake. In the latter group, a direct mapping from the sensory input to a driving action
is computed, often supported by different kinds of cognition-inspired mechanisms (e.g.,
neural networks [9] or reinforcement learning [10]). Although very interesting results can
be obtained with this latter approach, the underlying level of abstraction may fail to capture
the complexity of a scene, focusing the learning efforts in a wrong direction and, worse,
leading to a deficient interpretability of the decisions made by system. To cope with the
aforementioned problems, there might be an intermediate approach that is able to provide
a safe-by-design representation that directly predicts the affordance of all the available
driving actions, allowing a wide variety of fallback mechanisms and a potential oriented
learning mechanism.

To address the challenge of learning more efficiently, some authors (e.g., [5]) propose
an architecture that covers the complete perception-to-action loop in a biologically plausible
model that separates (i) parallel priming on many potential actions or plans (creating some
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sort of reachability map) and (ii) subsequent adaptive selection, according to different kinds
of bias (which could be expressed in terms of mathematical criteria or merit functions).

Inspired by this approach, some relevant works on the motion planning literature
could be reoriented to produce not only the most suitable path and speed profile for a
given context, but the set of all of them that generate reachable states for the vehicle.

The existing literature on motion planning for autonomous driving can be grouped
depending on whether they use sampling or optimization techniques. The latter group
proposes solutions to constrained spatio-temporal optimization and receding-horizon con-
trol problems (e.g., Model Predictive Control (MPC) [11] or constrained iterative LQR [12])
to compute collision-free trajectories. In the former group of algorithms, a predetermined
number of samples is chosen in the sampled space, and the corresponding trajectories are
then evaluated with respect to a chosen cost function; they can be classified following the
nature of the chosen samples: random (e.g., RRT [13], PRM [14], MPPI [15]) or deterministic
(e.g., lattice planners [16], primitives-based [17]). Particularly noteworthy of this category
is the focused motion sampling (e.g., [6,18]), where a sampling center that guides the
focused trajectory sampling is determined and then random path and velocity candidates
are generated and evaluated within this small region.

Although sampling-based strategies are often computationally more efficient, their
main associated difficulty is finding the right spatial configuration parameters to obtain
a good representation of motion in a given evolution environment [14]. In addition to
that, many of these motion planning strategies explicitly include a large set of rules such
that the planned trajectories are compliant with the driving situation. These rule-based
approaches (e.g., [19]) lack the ability to generalize to unknown situations and to deal
with uncertainties. Moreover, under specific circumstances, they need to be relaxed or
even violated. If traffic rules are encoded in a merit function, sampling-based motion
planning methods can be employed to find the set of authorized and inhibited trajectories,
allowing thus parallel behaviors that, properly used, may be exploited in fail-operational
decision-making systems.

As a result, the existence of desirable properties in terms of comfort and safety need to
be compliant with context-aware utility and translated into appropriate metrics in the state
space [20]. Unique proper metrics are often difficult to be defined as the involved costs
have coupled and hard-to-model effects. The work from [21] proposes a solution in this
direction, where (i) an optimal path is selected from a finite set of path candidates including
multi-faceted performance indicators, and (ii) appropriate vehicle acceleration and speed
are then generated. However, the article does not give details on the way intermediate
waypoints should be generated in a generic environment, limiting its operational scope. In
addition to that, the resulting planned speed is not based on a dynamic interaction-aware
longitudinal model, which may lead to a suboptimal spatio-temporal exploration. This
paper aims at obtaining answers to the aforementioned research questions taking into
consideration the current identified limitations.

2. Motion Planning Architecture

The motion planning architecture proposed in this work is displayed in Figure 1.
The system will use a destination point and information of the on-board sensors to
generate a proper throttle, braking and steering wheel commands to control the ego-
vehicle autonomously.

The perception and motion prediction module uses exteroceptive sensors to estimate
the status of traffic agents present on the scene and an occupancy grid (Gocc) of the ego-
vehicle surroundings [22]. It also processes GPS and proprioceptive sensors to generate a
reliable state estimation (ev) of the ego-vehicle. Finally, this module computes the motion
predictions of the vehicles present in the scene (Gpr) by taking into account the interaction
between agents. The generation of these motion predictions is described in detail in [23,24].

The maneuver planner module obtains the navigation corridors (ζ) of the ego-vehicle
based on its current position on a lanelet2 map [25]. Each navigation corridor represents a
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reachable lane for the ego-vehicle in a limited time horizon. Next, the maneuver planner
selects the best available corridor (c) using the lane-changing model presented in [26],
which allows to evaluate mandatory and discretionary lane-change considerations. This
approach of detaching the corridor selection from the trajectory generation allows the
motion planner to perform strategic maneuvers like overtaking, getting to the right-most
lane before a roundabout, if necessary, or selecting the less occupied lane on a highway.
A lane-invasion grid (Ginv) is calculated from (ζ) in order to evaluate one of the safety
indicators of the trajectory candidates computed in the subsequent trajectory generator.

On-board computing system

Perception and
Motion prediction

Control
Trajectory
generator

Global
router

Maneuver
planner

Figure 1. Block diagram of motion planning architecture.

The trajectory generator module creates a valid set of trajectories (Γ) and selects the
best of them according to a merit function. Each trajectory consists on a path and a speed
profile. The candidates’ paths are created using quintic Bézier curves, which were selected
after a thorough comparison [27]. A set of waypoints (ωp), obtained from the centerlines
of ζ, are used as ending points for the candidates. The trajectory generator module is the
main focus of this paper, and the complete process is described in Sections 3 and 4.

The global router receives the destination point and calculates the complete route
from the current position of the ego-vehicle to the destination. This route is a multi-
lane set of lanelets that the maneuver planner will use to create the possible navigation
corridors. Finally, the control module is in charge of calculating the proper throttle, braking
and steering wheel commands to follow the best trajectory from the trajectory generator
module. This module has been tested in an automated vehicle with good results in [28].

The Algorithm 1 shows the steps of the proposed motion planning process. It receives
the destination point (d) and the data (ψ) from the on-board sensors as inputs. The output
of the algorithm is a suitable trajectory (Γbest) for the vehicle control module to follow. A
new iteration of the motion planing algorithm starts over as soon as the previous iteration
is finished, so the current trajectory is constantly being updated, allowing the system to
react properly in dynamic environments. The algorithm keeps running on a loop until the
destination point is reached.

Algorithm 1: Motion planning algorithm
input : Destination point (d), sensor data (ψ)
output : Final trajectory Γbest(t)

ev ←UpdateEgoVehicleStatus(ψ);
route ←FindGlobalRoute(d);
while evposition 6= d do

ev ← UpdateEgoVehicleStatus(ψ);
ζ ← GetNavigationCorridors(ev, d);
c ← GetTargetCorridor(ev, ζ, ψ, d, route);
ωp ← GetWayPoints(ζ);
Gocc , Gpr ← GetPlanningGrids(ev, ζ, ψ);
Ginv ← GetLaneInvasionGrid(ev, c, ζ);
Γ ← CreateTrajectorySet(ev, c, ωp, Gocc , Gpr , Ginv);
if Γvalid is not empty then

Γbest ← FindBestTrajectory(Γ);
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3. Generation of Candidates

This section describes the trajectory generation process as well as the preparatory
steps required for this purpose.

3.1. Navigation Corridors Computation

The first step is to obtain a set of possible navigation corridors. The length of each
corridor is equal to the maximum distance that the ego-vehicle can reach on a fixed-
time window given its current speed and assuming maximum acceleration. Lanelet2 maps
format [25] was chosen since it provides two layers of information: physical and topological.
The physical layer contains geographic information such as borderlines, centerlines or
location of elements, while the topological one contains the relation between road elements
in a graph network.

In order to compute ζ, the lanelet(s) where the ego-vehicle is located is (are) found
by evaluating the position and orientation in the physical layer of the map. Next, a graph
search on the topological layer of the map is performed to create a lanelet sequence for
each corridor. Figure 2 shows the navigation corridors for the ego-vehicle (black vehicle) in
a roundabout scenario using a time-window of 5 s and a maximum possible acceleration
of 3 m/s2.

Figure 2. Navigation corridors for the black vehicle on a roundabout scenario.

In this case, there are three possible corridors: two of them (blue and red) stay
inside the roundabout, and a third one (cyan) takes the first exit to the right. The purple
circle around the ego-vehicle represents the planning horizon for the corridors in this
particular context.

Once ζ is created, the next task is to select the best corridor c ∈ ζ. This calculation
is performed using Toledo’s lane-changing model [26], which assigns a utility level and
evaluates the gap acceptance for each corridor. The chosen corridor is the one with the
greatest utility that has an acceptable gap.

Finally, a set of waypoints ωp is computed from the centerlines of ζ. These waypoints
will be used in the candidate paths generation.

3.2. Planning Grids

Three different grids are involved in the evaluation of the trajectory candidates: an
occupancy grid (Gocc), a lane-invasion grid (Ginv) and a motion-prediction grid (Gpr).

Gocc contains information about the static obstacles present on the driving scene and
information of the navigation space obtained from ζ. Figure 3 shows an example of Gocc in
a roundabout scenario with static obstacles on the left lane. Green cells are considered free
(Pocc = 0), while magenta cells are occupied (Pocc = 1). The cells around the static obstacles
have intermediate values that are used in the evaluation of the candidates; the closer to
the obstacle, the higher the value of the cell. Thus, candidates further from obstacles are
preferred. Any candidate that goes through a completely occupied cell is considered as
not valid.
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Figure 3. Occupancy grid for planning.

Ginv is a grid used to quantify the candidates’ invasion level into adjacent lanes. The
cells inside the ego-lane are set to 0, whereas the value of the outside cells is calculated based
on the Euclidean distance to the border of the ego-lane, using the following expression:

Ginv,j =
min(dbj, dbmax)

dbmax
(1)

where dbj is the Euclidean distance of the cell j to the border of the ego-lane and dbmax
is a design parameter to define the maximum invasion distance into adjacent lanes. In
this case dbmax is set to 3 m, so any cell with dbj > 3 will have a Ginv,j = 1. Figure 4
shows Ginv for the same scenario as Figure 3, the cells inside the current lane are plotted
in white, while cells inside the road but outside the ego-lane are fading into blue, which
represent Ginv,j = 1. The cells outside the road are not computed, and therefore their
default value is 0.

Figure 4. Lane invasion grid in the entrance of a double-lane roundabout.

Gpr is a set of grids, where each grid contains the estimated positions of the traffic
agents within a finite time interval from the current instant t ∈ [0, t f ]. Each cell has a
binary value: free or occupied by a vehicle in the future. Figure 5 shows the combination
of the prediction grids for two vehicles inside a roundabout. Magenta cells represent the
predictions at t = 0, while green cells represent the predictions at t = 4 s.

Figure 5. Combined predictions grids for two vehicles in a time horizon of 4 s.
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3.3. Path Generation

Each iteration, a new set P of possible paths for the ego-vehicle to follow is created.
Each path candidate (ρ ∈ P ) must be consistent with the current trajectory (which is being
used as reference by the control module) with the purpose of getting a smooth navigation.
This consistency is achieved by maintaining the initial segment of the current path and
generating the new paths from a point located at a distance dinit ahead of the ego-vehicle.
The ending point of ρ is a waypoint ep ∈ ωp. The location of the starting and ending points
of the Bézier curves of the candidates are already determined, and the remaining control
points are established using the algorithm described in [18], which allows to explore a large
variety of possible paths while maintaining G2 curvature continuity as well as imposing
orientation in the starting and ending points.

A validity check is performed before the generation of speed profiles and the merit
evaluation of the trajectory candidates, so only valid path candidates are converted into
complete trajectories. Each ρ is considered as valid if (i) its maximum curvature is lower
than the maximum curvature feasible by the ego-vehicle and (ii) the area occupied by
the vehicle while driving along the path does not include any completely occupied cell
in Gocc. Figure 6 shows the valid path candidates for a roundabout scenario with two
obstacle vehicles (yellow and green). The ego-vehicle (black) is behind the obstacles,
and the candidates are generated from a future position of the current trajectory to the
waypoints located in the centerlines of the navigation corridors. The red-dotted line shows
the trajectory trail followed by the ego-vehicle until the current iteration. The best trajectory
candidate, whose selection process is described in Section 4, is highlighted in magenta.

Figure 6. Candidate generation to different navigation corridors.

3.4. Speed Profile Generation

The valid paths are converted into trajectories by assigning them a speed profile.
The speed profile generation algorithm limits the lateral and longitudinal accelerations to
satisfy comfort requirements, and it also uses a dynamic inter-distance model to maintain
safe-distance from obstacles.

The first step is to create an obstacle-free speed profile considering, on the one hand,
the geometry of the path, and on the other hand, lateral and longitudinal comfort accelera-
tions bounds. Next, a traffic-based speed profile is created taking into account the obstacles
present on the scene and using the obstacle-free speed profile as its maximum limit. The
traffic-based speed sequence is then assigned to the path to create a trajectory candidate. If
a valid trajectory has already been selected in a previous iteration, the speed profile of that
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trajectory is maintained during dinit meters in the new candidates in order to keep a stable
reference for the control module.

The future positions of the obstacles are projected into a spatio-temporal representation
for each path, with the purpose of including them in the speed profile generation. This
projection is performed by evaluating the occupancy polygon of each valid path into the
prediction grids set (Gpr) and finding the intersections. The projected occupied space of the
obstacles that have intersecting points with the path will be referred to as Possible Collision
Points (PCP). The PCPs also contain information about the ID and speed of the obstacles.

The traffic-based speed profile is created using the inter-distance model proposed
in [29]. This reference model creates a virtual vehicle located at a reference distance dr
from a leader vehicle and determines the required acceleration for the ego-vehicle to keep
such distance (see Figure 7a). The PCPs are used to feed this model with the leader vehicle
positions (x̂l) and speeds ( ̂̇xl) so that the ego-vehicle keeps a safe-distance to these points.
The inter-distance model only influences the acceleration of the ego-vehicle when the
distance to the leader vehicle (d̂ ) is lower than a safe nominal constant inter-distance
d0, and the resulting speed-profile will stop the ego-vehicle before reaching the design
minimal inter-distance dc. An acceleration u′ that minimizes the tracking error signal de is
put together with the reference-model acceleration and then applied to the ego-vehicle as
(γ), while considering the obstacle-free speed-profile along the path. This speed-profile
generation process is repeated at each planning step for all the path points (i.e., xego is
lower than the length of the path (L)), as represented in Figure 7b.

dr

dc

d0

(a) Inter-distance reference model.

Reference
inter-distance

Model

Error-based
acceleration

xl

.̂

+

-

r

d
^

d

+

ru

u

ed

+
-

xego

xl

^

x     egowhile  <L  (         )

Obstacle-free
Limitator

u'

+

(b) Inter-distance control scheme.
Figure 7. Speed profile generation.

The detailed algorithms for the creation of obstacle-free speed profiles, PCPs and
traffic-based speed profiles can be found in [30].

In order to increase the diversity of trajectory candidates and provide the candidate-
selection module a richer trajectory set (Γ), the acceleration limits (γl) of each candidate’s
speed profile are generated with a bounded random value, as shown below:

γl,i = ϕi ∗
γo,i

2
+

γo,i

2
, i = 1, 2, 3, 4 (2)

where ϕi ∈ [0, 1] is a random number with a uniform distribution and γo is a vector formed
by the four acceleration limits involved in the speed-profile generation, which are presented
in Section 5.2.

Figure 8a shows the obstacle-free speed profile and the traffic-based speed profile for
the best trajectory candidate on the traffic scene of Figure 6, as well as the speed of the
leader vehicle. The vertical line in t = 2.51 s indicates the ending point of the initial section
where the speed profile of the previous trajectory is kept. Figure 8b shows the estimated
inter-distance evolution (d̂), the reference inter distance (dr), the safe nominal constant
inter-distance d0 = 47.1 m and the minimum possible inter-distance between vehicles
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dc = 10 m (set by design). The tracking error signal de increases slightly around t = 6 s
due to the obstacle-free limitations but is reduced again after t = 10 s.
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(b) Evolution of inter-distances.
Figure 8. Speed profile generation for the best trajectory candidate in the roundabout traffic scene.

4. Evaluation of Candidates

Once the trajectory set (Γ) is created, the motion planner must decide which is the best
candidate to handle the current driving scene. This task is performed by comparing the
candidates using 4 Decision Variables (DV): longitudinal comfort, lateral comfort, safety
and utility. Each DV is obtained from a set of Trajectory Performance Indicators (TPI)
that measure different variables of the candidates such as accelerations, jerks, distance to
obstacles and lane invasion, among others. The merit of the candidates is quantified by
combining the DV using a weighted function that allows the system to select one candidate
or another according to the driving profile. For example, if the driving strategy is to drive
comfortably, the system will prioritize candidates with lower accelerations and jerks even
if that has a negative impact in the cruise speed; if the driving strategy is rather aggressive,
then the candidates with a higher utility will be preferred, in spite of reducing safety
or comfort.

4.1. Trajectory Performance Indicators and Decision Variables

A set of 15 TPI is computed for each trajectory candidate, grouped into four DV, as
shown in Table 1. According to [31], comfort in autonomous vehicles is directly related
to acceleration (γ) and jerk ( ), which explains their central role in comfort DV. The
longitudinal comfort variable is obtained by combining the mean and maximum values of
the longitudinal acceleration and jerk. The lateral comfort not only combines the lateral
acceleration and jerk, but it also includes the smoothness of the path, obtained from the
first and second derivative of its curvature, as in [18]. In [32], the collision risk is minimized
by increasing the distance to the existing obstacles in the driving scene; in [33], the authors
propose different metrics such as time headway or lateral and longitudinal distances to
surrounding obstacles, and in [34], the risk metric is directly linked to the lane departure
of the vehicle. With this in mind, the safety DV is computed by measuring the distance
to static obstacles, the average inter-distance to a leader vehicle (if present) and the lane
invasion of the candidates. Most of these TPI are obtained by evaluating the occupancy
polygon of the candidate in the planning grids Gocc and Ginv. Finally, the utility is calculated
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from the average speed of the candidate and the length of its path. In the end, each TPI is
normalized using a maximum possible value set by design.

Table 1. Trajectory Performance Indicators and decision variables of trajectory candidates.

Decision Variable TPI Formula

Longitudinal comfort

Average acceleration |γx(s)|

Maximum acceleration max(γx(s)2)

Average jerk |x(s)|

Maximum jerk max( x(s)
2)

Lateral comfort

Average acceleration |γy(s)|

Maximum acceleration max(γy(s)2)

Average jerk |y(s)|

Maximum jerk max( y(s)
2)

Smoothness
∫ s f

s0
k̇(s)2

+ wk̈ ∗ k̈(s)2ds

Safety

Safe chase d̂(s)/d0

Closeness max(Gi
occ)

Occupancy Gi
occ

Lane invasion Gi
inv

Utility
Path length Lmax − L

Average speed vmax − v(s)

4.2. Merit Function

The merit score (m) assigned to each candidate is calculated by combining the four DV
with a modified version of the weighted product (WP). This approach was chosen over the
weighted sum (WS) because it provides an intrinsic filter (due its multiplication nature) to
the candidates that do not perform well in one of the DV [35]. For the sake of illustration,
if a candidate has an outstanding longitudinal comfort but keeps a very dangerous inter-
distance with the vehicle up front, it should be considered irrelevant. Each DV is first
weighted using a non-linear weighting function in order to vary its influence in the final
merit of the candidate, and then it is multiplied with the other DV:

mc = 4

√√√√ 4

∏
j=1

w f
(

DVc,j , ωj
)

(3)

where DVc,j represents one of the four decision variables of a candidate c and ωj ∈ [0, 1] is
the weight of that DV.

This weighting function is designed to satisfy three properties: (i) it must reinforce the
difference between the lower and higher values of DVj when ωj → 1; (ii) it must decrease
the difference between the lower and higher values of DVj when ωj → 0; (iii) values of
DVj near 0 must stay near 0 after being weighted. The weighing function is defined to be
bounded in the interval [0, 1]. In order to meet these properties, the weighing function
w f (DVj , ωj) is defined as a piecewise function which depends on the value of ωj. If the
value of ωj is lower than 0.5, the function is similar in shape to the square root function,
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and if the value of ωj is higher or equal than 0.5, the weighting function has an exponential
behavior. The formal definition of this function is as follows:

w f (DVj , ωj) =


1−ω

2 DVj
j

1−ω2
j

i f DVj < 0.5

DV
2 ωj
j otherwise

(4)

Figure 9 shows how a DV is modified with different values of ω.
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Figure 9. Behavior of non-linear weighting function w f (DV, ω) for different values of ω.

Figure 10 illustrates the performance of the merit function (Equation (3)) when com-
bining two different DV. Figure 10a shows the merit values after combining the two DV
with a non-weighted geometric mean, where it can be seen that both DV equally affect
the resulting merit. In Figure 10b, DV1 and DV2 have weights ω1 = 0.1 and ω2 = 0.9,
respectively. In this case, the variation of DV1 does not influence the merit function as
much as the variation of DV2, but it gets very close to 0 when values of DV1 are near to 0,
as expected for property (iii).
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Figure 10. Weighing function for different weight configurations of two parameters.

Each DV is created from a combination of TPI, as stated in Table 1, using the merit
function (3). Accordingly, if a candidate performance is poor for a specific TPI, then the
value of the corresponding DV will be low, and the final merit of that candidate will be
affected. Since TPI are defined using a lowest-is-better equation and WP needs a greatest-
is-better formulation, they are inverted after being normalized, using, for each of the 15
TPI, the following expression:

TPIk = 1− TPIk, k = 1, ..., 15 (5)

In order to show how the weight configuration affects decision making in the au-
tonomous driving process, three different weight configurations (see Table 2) were tested
for the driving scenario of Figure 6. Figure 11 shows a reachability map where each candi-
date is represented as a vector, formed by four decision variables (DVj, j ∈ [1, ..., 4]) and
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their correspondent weighted value. The final merit assigned to the candidates is plotted
using a color-map. Alternatively, Figure 12 shows the distribution of the weighted DV in a
histogram representation.

Table 2. Weight configurations of decision variables for use case scenario.

Decision Variable Config. 1 Config. 2 Config. 3

Longitudinal comfort 0.5 1.0 0.1
Lateral comfort 0.5 0.1 0.1
Safety 0.5 0.1 0.1
Utility 0.5 0.1 1.0
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(b) Highest priority for longitudinal
comfort.
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(c) Highest priority for utility.

Figure 11. Reachability maps of the trajectory set (Γ) when different weight configurations are applied to DV.

The first configuration, where each DVj has a weight ωj = 0.5, is used as baseline
(see Figures 11a and 12a to see its DVj distribution). The second configuration establishes
the highest weight to the longitudinal comfort and sets the weights of the other DV to
0.1. The effect of this configuration is that the system will be more selective with the
candidates according to their longitudinal comfort, and the other DV will not affect the
final merit correspondingly. This behavior can be observed in the histogram distribution
of the Figure 12b. Note that in the case of the longitudinal comfort, a great number of
candidates obtained a value lower than 0.05, while the performance of the other DV was
improved compared to the distributions of Figure 12a (the number of candidates in the
higher bins of the histograms increased). Figure 11b shows that the overall merit of the
candidates was increased and that candidates with poor longitudinal comfort performance
tend to have low merits, while candidates with better longitudinal comfort performance
have a higher merit. In the third configuration, the highest weight is assigned to utility; as
a result, the system raises the bar with this DV, and only the candidates with good utility
performance maintain a good value after being weighted. Now the number of candidates
tend to be more distributed along the utility histogram, as seen in Figure 12c; besides,
the performance of the candidates with regard to the longitudinal comfort increased
considerably compared with Figure 12b, and now it does not influence the final merit
of candidates as much (there are no red candidates due to the low performance on the
longitudinal comfort). In this case, the overall merit of the candidates improved because of
the low influence of DV such as safety or longitudinal comfort in this configuration.

Figure 13 shows the vehicle’s evolution inside the roundabout during the complete
driving scenario. It can be observed that the ego-vehicle keeps a distance with respect to
the yellow vehicle inside the roundabout, and it performs a lane-change in the highway
once outside the roundabout. The trajectory does not follow the centerline of the ego-lane
in order to increase the lateral comfort, but it does not invade the adjacent lane because
that would jeopardize safety. This experiment was carried out with a weight configuration
wc = [0.5, 0.5, 0.5, 0.5].
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(a) Same priority for all DV. (b) Highest priority for longitudinal comfort.

(c) Highest priority for utility.
Figure 12. Histogram of the DV of Γ when different weight configurations are applied.
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Figure 13. Vehicle evolution during the complete driving scenario.

5. Experimental Results

The performance of the motion planning algorithm was tested both in a simulation
environment and in a real vehicle driving on a test track. This section shows the results
after performing a number of experiments with different weights configurations and
analyzing how the final trajectory and the driving profile is affected by those weights. For
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the performed experiments, 650 candidates were created at each planning cycle in the
Trajectory generation module.

5.1. Testing Environments

In the simulation environment, the motion planner was connected in a software-
in-the-loop architecture to SCANeR Studio 1.9 simulation software [36]. A middleware
was implemented in [37] to allow a real-time interaction with SCANeR Studio by using
the same commands applied to control the real vehicle, so the motion planning software
was the same for simulation and real environments. Figure 14 shows a setup where the
simulation environment reproduces a double-lane intersection (right-side screen) and the
motion planner controls the vehicle in real-time on the left-side screen.

Figure 14. Simulation testing environment.

The automated vehicle on which the algorithm was evaluated is a Citroën DS3 with
different exteroceptive and proprioceptive sensors, actuators and high-end computing
devices, which allow testing complex algorithms. The main modules installed on the
vehicle are listed in Figure 15. The experiments involving the automated vehicle were
carried out in a testing track that includes intersections and roundabouts.

Figure 15. Modules of the autonomous vehicle of AUTOPIA Program.

5.2. Experimental Setup

The methodology used to test the Trajectory generator and the influence of the DV
weights in the driving profile was to (i) repeat the same maneuver (defined by a layout,
an initial configuration and a final point) using different weight configurations and (ii)
to analyze offline the final trajectories using a set of key performance indicators (KPI) to
compare the results.

Each scenario was repeated five times. In the first four, a different DV was prioritized
by assigning to it the maximum possible weight (1.0), while the weights of the other DV
were set to 0.1, reducing thus their influence on the driving behavior without canceling it.



Sensors 2021, 21, 3755 15 of 25

In the fifth configuration, all DV had a weight of 0.8, which forces candidates to have good
performance in all of DV. Table 3 shows the numeric values of the weight configurations
used in the experiments.

Table 3. Weight configurations of the decision variables for different experiments.

Decision Variable Config. 1 Config. 2 Config. 3 Config. 4 Config. 5

Longitudinal comfort 1.0 0.1 0.1 0.1 0.8
Lateral comfort 0.1 1.0 0.1 0.1 0.8
Safety 0.1 0.1 1.0 0.1 0.8
Utility 0.1 0.1 0.1 1.0 0.8

The acceleration/deceleration limits used in the speed profiles generation for these
experiments are showed in Table 4. The obstacle-free speed profile involves the parameters
γcom f ,lat, γcom f ,acc and γcom f ,dec; while the traffic-based speed profile uses γcom f ,acc and
γsa f e,dec parameters.

Table 4. Acceleration limits used in the validation experiments.

Parameter Unit Value

γcom f ,lat (m/s2) 1.0
γcom f ,acc (m/s2) 1.1
γcom f ,dec (m/s2) 1.2
γsa f e,dec (m/s2) 4.0

The limits of γcom f ,lat, γcom f ,acc, γcom f ,dec were selected to comply with the comfort
limits proposed in [31], which recommends acceleration values between 1 m/s2 and
1.4 m/s2. The value of γsa f e,dec, obtained empirically, limits the maximum possible braking
acceleration and keeps proper inter-distances to guarantee a safe braking.

The KPI used to analyze the experiments are shown in Table 5. They are grouped in
four Comparing Categories (CC) that match the decision variables used in the trajectory
generator module. The longitudinal comfort, lateral comfort and utility CC are computed
by combining two KPI using a weighted arithmetic mean:

CCj = α1 KPI1,j + α2 KPI2,j , j = 1, 2, 4 (6)

Table 5. Key performance indicators used to compare the performance of different configurations.

Comparing Category KPI Formula

Longitudinal comfort
Average acceleration γx(s)2

Average jerk x(s)2

Lateral comfort
Average acceleration γy(s)2

Average jerk y(s)2

Safety Lane invasion
∫ s f

s0
dli(s) ds

Utility
Positive acceleration

∫ s f
s0

max(γx(s), 0) ds

Average speed vs
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Weights α1, α2 are tuned so that both KPI of each CCj have the same influence on the
result. This is achieved by using the equation:

α1 = 1, α2 = KPI1
KPI2

, i f KPI1 > KPI2

α1 = KPI2
KPI1

, α2 = 1 otherwise
(7)

where KPI1 , KPI2 are the mean values among the performed experiments.
The longitudinal comfort of the final trajectory was calculated from the average

magnitude of the longitudinal acceleration and jerk. Lateral comfort was obtained in the
same way, but considering the lateral acceleration and jerk. Safety was determined from
the lane invasion along the route; this KPI was calculated by integrating the invasion
distances of the vehicle to adjacent lanes (dli). Lastly, the utility was computed from the
positive acceleration and average speed KPI. The positive acceleration is the integral of the
positive values in the acceleration profile, the purpose of this KPI being to quantify how
aggressive the longitudinal acceleration profile was.

Once the CCs are computed from the KPI, they are normalized using the maximum
value among each category and inverted to obtain a higher-is-better format.

5.2.1. Simulation Experiments

The simulation scenario is shown in Figure 16. It consists of a roundabout with two
moving vehicles inside. The ego-vehicle will go into the the roundabout, reducing its
speed to avoid collision with the obstacles and will take the third exit of the roundabout to
reach the destination point. The speeds of the red and black vehicles are 15 and 17 km/h,
respectively, both constant throughout the whole scenario.

The resulting accelerations and speed profiles of the ego-vehicle in the five experiments
are plotted in Figure 17. From the longitudinal acceleration profiles (Figure 17a), it can
be observed that Configuration 1 and Configuration 5 had smoother acceleration and
their maximum values were small, while the accelerations used in Configuration 4 were
the highest. Regarding lateral accelerations (Figure 17b), even though all profiles had a
maximum value of ∼0.6 m/s2, in Configuration 2, the values were steadier, hence reducing
the lateral jerk of the trajectory. The speed profiles, plotted in Figure 17c, show that
Configuration 4 reaches the highest value and it gets to the destination point around 4 s
before the rest of configurations.

Figure 16. Experimental setup for simulation environment.
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(a) Longitudinal accelerations.

0 10 20 30 40 50 60

Time (s)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

A
cc

e
le

ra
tio

n
 (

m
/s

2 )

Config. 1 (lon) Config. 2 (lat) Config. 3 (safe) Config. 4 (util) Config. 5 (balanced)

(b) Lateral accelerations.
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Figure 17. Acceleration and speed profiles for the different configurations executed in the simula-
tion environment.

Figure 18a shows the lane invasion for the configuration with best performance in
this KPI (Configuration 3), whereas the worst performance, obtained in Configuration 4, is
plotted in Figure 18b. The red zones highlight the areas when adjacent lanes were occupied
by the ego-vehicle during the travel. In Configuration 3, where safety was prioritized,
the lane invasion is low, and even in the red zones, the distance to the border of the lane
(dli(s)) is almost zero. Conversely, as the priority of Configuration 4 was utility, straighter
candidates with higher speeds were chosen, even if it that decision compromised safety by
invading adjacent lanes.
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(a) Configuration 3 (safety).
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(b) Configuration 5 (utility).

Figure 18. Lane invasion for the simulated environment.

Table 6 shows the numeric values of the resulting KPI in these configurations, and
Figure 19 shows a radar plot of the comparing categories after combining the KPI. Con-
figuration 1 showed good performance on longitudinal and lateral comfort, but it had



Sensors 2021, 21, 3755 18 of 25

medium and poor performance on safety and utility, respectively. Configuration 2 had
good performance in longitudinal/lateral comfort and safety, but it also presented a poor
performance with respect to utility. Configuration 3 exhibited a good behavior in terms of
lateral comfort and safety, and a medium performance on longitudinal comfort and utility.
Configuration 4 had the worst performance in all categories except in utility, where it had
the best behavior. The balanced configuration showed a medium-high performance in all
categories, with longitudinal comfort almost being the highest one.

Table 6. Key performance indicators obtained in the simulation environment.

Decision Variable KPI Config. 1 Config. 2 Config. 3 Config. 4 Config. 5

Longitudinal comfort Average acceleration (m/s2) 0.091 0.143 0.174 0.268 0.123
Average jerk (m/s3) 0.957 1.621 1.834 3.030 0.943

Lateral comfort Average acceleration (m/s2) 0.113 0.115 0.119 0.143 0.129
Average jerk (m/s3) 0.018 0.012 0.018 0.055 0.020

Safety Lane invasion (m) 109.591 30.522 17.796 179.785 65.188

Utility Positive acceleration (m/s2) 139.932 153.225 200.556 280.480 212.376
Average speed (m/s) 12.502 12.547 12.463 13.951 13.209
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Figure 19. Radar plot of the comparing categories for the different configurations performed in the
simulation environment.

Figure 20 shows the complete path of each configuration along the roundabout sce-
nario. Even though the configurations follow similar paths, in Configuration 4, the lane
invasion on the initial segment of the roundabout is very prominent. It can also be observed
that Configuration 3 is close to the centerline during the whole scenario.
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Figure 20. Final trajectories for the different weight configurations in the simulation environment.

5.2.2. Real Vehicle Experiments

The trials were carried out in the proving ground of the Centre for Automation and
Robotics (CSIC), Spain. The vehicle executed three 90º turns before facing a roundabout,
then took the third exit and made one last turn before reaching the destination point.
Figure 21 shows an aerial view of the testing facilities and the complete route used in
this experiment.

Figure 21. Route to be followed in the experiments with real vehicle.

Figure 22 shows the acceleration and speed profiles of the five configurations. These
data were obtained from the on-board sensors of the vehicle. Since there were no other
vehicles involved in this setup, the differences between configurations are higher than in the
simulation environment. Regarding longitudinal accelerations (Figure 22a), Configuration
1 and Configuration 5 had the lowest values over time, and Configuration 4 presented the
highest magnitudes of both positive and negative accelerations. With respect to lateral
accelerations (Figure 22b), Configuration 1 and Configuration 2 kept the lower and more
stable values along the route. In the speed profiles graph (Figure 22c), it can be observed that
Configuration 4 reaches 30 km/h twice during the route, while the other configurations did
not exceed 25 km/h. The traveling time was significantly different in all the configurations,
being Configuration 4 the fastest with a traveling time of 105 s, and Configuration 1 the
slowest with a traveling time of 124 s.
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(a) Longitudinal accelerations.
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(b) Lateral accelerations.

0 20 40 60 80 100 120 140

Time (s)

0

5

10

15

20

25

30

35

S
p

e
e

d
 (

k
m

/h
)

Config. 1 (lon) Config. 2 (lat) Config. 3 (safe) Config. 4 (util) Config. 5 (balanced)

(c) Speeds.
Figure 22. Acceleration and speed profiles for the different configurations executed in the
real environment.

Once again, Configuration 3 presented the best performance on the lane-invasion KPI
(Figure 23a). The worst performance was obtained in Configuration 2 (Figure 23b) because
the curves of the test track were very sharp and the planner decided to make wider turns
in order to maximize the lateral comfort. In Configuration 3, the magnitudes of dli(s) were
almost zero, while in Configuration 2, the magnitudes of dli(s) are higher.
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(a) Configuration 3 (safety).
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(b) Configuration 2 (lateral comfort).

Figure 23. Lane invasion for the real environment.

Table 7 shows the numeric values of the resulting KPI and Figure 24 shows a radar
plot of the comparing categories after combining the KPI. In the case of the real vehicle
experiments, Configuration 1 also showed good performance on longitudinal and lateral
comfort, at the expense of sacrificing safety and utility. Configuration 2 had very good
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behavior in terms of longitudinal and lateral comfort, but it had the worst safety perfor-
mance because, in order to preserve lateral comfort, higher lane-invasions were applied;
it also presented a poor performance in terms of utility. Configuration 3 had a medium
performance longitudinal/lateral comfort and utility, but it exhibited the best performance
by far in terms of safety. Configuration 4 had the worst performance in the longitudinal and
lateral comfort categories, but it was reasonably safe and scored the best results in terms
of utility. The balanced configuration showed a medium performance in all categories,
having again an above average result in longitudinal comfort.

Table 7. Key performance indicators to compare the performance of different configurations in the real environment.

Decision Variable KPI Config. 1 Config. 2 Config. 3 Config. 4 Config. 5

Longitudinal comfort Average acceleration (m/s2) 0.101 0.108 0.169 0.250 0.100
Average jerk (m/s3) 1.732 1.761 1.965 2.246 1.650

Lateral comfort Average acceleration (m/s2) 0.226 0.221 0.262 0.298 0.287
Average jerk (m/s3) 0.844 0.612 1.203 1.233 1.091

Safety Lane invasion (m) 264.25 405.51 31.45 270.92 279.01

Utility Positive acceleration (m/s2) 177.200 215.440 325.200 396.880 208.560
Average speed (m/s) 12.403 12.428 12.862 14.407 13.271
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Figure 24. Radar plot of the compared categories in the real vehicle experiments.

Figure 25 show the complete path of each configuration along the test-track. It is
important to notice how the trajectory followed by the ego-vehicle tends to maximize
comfort and speed. Indeed, it can be observed that it is closer to the inner border of the
lanes during the first part of the turns and thereafter moves closer to the outer border.
Configuration 2 had the highest lane-invasion along the route, and Configuration 3 was
closer to the centerline.

5.2.3. Results Comparison

After performing the experiments using five weight configurations in simulated and
real environments, there are some relevant aspects that are worth mentioning. In both
environments, there was a strong correlation between lateral and longitudinal comfort: if
one of these DV was prioritized, the other enhanced its performance accordingly. The lane
invasion was reduced drastically in both environments when the safety DV had the highest
weight; nevertheless, the worst scenario in the simulated environment was Configuration
4 (utility), while in the real environment it was Configuration 2 (lateral comfort); this
disparity is because, in the case of the simulated environment, the lane invasion was
produced when straighter (and faster) trajectories were selected inside the roundabout,
while in the case of the of the real environment, since the turns are more narrow, the
opposite lane had to be invaded in order to make wider and more comfortable turns. In
both environments, the utility had a negative impact on the rest of the DV, introducing the
dilemma of choosing between comfortable and safe travel vs. a fast and more aggressive
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maneuver. In the case of the real environment, the utility presented a greater impact on the
traveling speed due to the lack of traffic agents that may limit the speed of the ego-vehicle.
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Figure 25. Final trajectories for the different configurations in the real environment.

Note also that both longitudinal and lateral accelerations reached higher values in the
real environment, as a result of the narrow turns of the test track. The average jerk values
were also higher in the real environment, which was the reason for this the noisy signals of
the accelerometers on board the automated vehicle.

5.2.4. Computing-Time Results

The experiments in simulation were conducted on a computer with an Intel Core
i7-7700 3.6 GHz processor and 16 GB RAM, while on the real vehicle, the processing unit
was an Intel Core i7-7700HQ 2.8 GHz processor with 16 GB RAM.

Figure 26 shows the computing time analysis for the two main stages in the motion-
planning algorithm: grid-computing and candidate-generation. Figure 26a,c, shows com-
puting times for the grids at each iteration of the algorithm. It can be seen that it increases
with the number of cells. In the case of the simulation environment, the grids’ computing
time was higher on average than in the real environment due to the need to generate
prediction grids for each vehicle present in the scene. Figure 26b,d, shows the time needed
to create the trajectory set. It shows a proportional relation between the number of valid
candidates and the computing time for generating them. The point distribution in the
figures highlights that the simulation environment allowed to obtain more valid candidates
along the route than the real environment (83% versus 60%, respectively). This difference
can be explained by the different geometry of the roads, as turns are tighter in the real test
track, leading to lower number of valid candidates.

Table 8 shows the average computing times of the motion planning algorithm in
simulation and real environments. It can be observed that the average of planning time
was around 400 ms for 650 trajectory candidates in both environments.

Table 8. Computing-time analysis for the experiments performed in simulation and real environments.

Environment Grids Time Candidates Generation Remaining Tasks Total Time

Simulation Environment 115.7± 40.3 ms 165.3± 48.8 ms 137.6± 58.4 ms 418.6± 79.9 ms
Real Environment 89.3± 33.7 ms 150.4± 71.9 ms 157.4± 57.1 ms 397.1± 82.2 ms
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(a) Grid-computing time for simulation environment.
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(b) Candidate generation time for simulation
environment.
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(c) Grid-computing time for real environment.
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(d) Candidate-generation time for real environment.
Figure 26. Times for grid and candidate generation.

6. Concluding Remarks

This paper presents a merit-based motion planning algorithm for an autonomous
driving system, which allows to customizing the driving profile according to four deci-
sion variables.

The motion planning strategy was tested by executing a set of experiments on urban-
like scenarios with different weight configurations and comparing the final trajectories
and relevant KPI. The results showed that when comfort criteria has higher priority,
the resulting acceleration profiles are smoother and have lower overall values, both in
longitudinal and lateral comfort. When safety is considered the most important design
variable, the resulting trajectories do not invade adjacent lanes, avoiding possible collisions
with near obstacles. When the priority is efficiency or utility, the generated trajectories are
faster and exhibit more aggressive acceleration profiles.

The system was tested using software-in-the-loop in a simulated roundabout scenario
with traffic, and it was able to obtain a comfortable and safe trajectory by avoiding the
dynamic obstacles present on the scene while keeping bounded the lateral and longitudinal
accelerations. The system was also tested successfully in a real vehicle on a test track that
includes intersections and a roundabout.

Since the trajectory generation algorithm constantly generates a variety of candidates
to the reachable lanes of the ego-vehicle, a fall-back maneuver strategy can be imple-
mented in the future. Indeed, in case the current trajectory is no longer valid, a valid
candidate is always available as a backup. A machine-learning algorithm may also be
implemented to automatically infer the most adapted weights for the merit-function to
match a driving profile.
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