
Surface Chemistry of Cherry Stone-Derived Activated Carbon prepared by H₃PO₄ Activation

J.M. González-Domínguez ^{1,*}, M.C. Fernández-González², M. Alexandre-Franco², V. Gómez-Serrano ^{2,*}

Figure S1. Graphical scheme depicting the samples preparation sequence (regarding the different impregnation methodologies with H_3PO_4). Cherry stones are impregnated either with diluted (D) H_3PO_4 , of 16 g/100 mL concentration, in single or multiple (DL, DI) impregnation steps adding up a total concentration equal to D, by filtration (DF) and/or washig (DFW), and using the residual liquid as the impregnation solution (DLR); or commercial concentrated (C) H_3PO_4 of 144 g/ 100 mL concentration and their overconcentrated derived solutions by mildly heating it at different time in hours (C2, C4, etc.). The semi-carbonized cherry stones were also impregnated with either D or C H3PO4 solutions. All impregnated samples ended up in activated carbon samples after heat treatment at 500°C for 2h under a N₂ atmosphere. Thus, the eventual sample name would end in –A.