
Pseudo-Tree Search with Soft Constraints
Javier Larrosa � and Pedro Meseguer � and Martı́ Sánchez �

Abstract. Pseudo-tree search is a well known algorithm for CSP
solving. It exploits the problem structure to detect independent sub-
problems that are solved separately. Its main advantage is that its run
time complexity is bounded by a problem structural parameter. In
this paper, we extend this idea to soft constraint problems. We show
that the same general principles apply to this domain. However, a
naive implementation is not competitive with state-of-the-art algo-
rithms, because solving independent problems separately may yield
a poor algorithmic efficiency due to loose upper bounds. We intro-
duce PT-BB, a branch-and-bound algorithm that performs efficient
pseudo-tree search. Its main feature is the use of local upper bounds
which can improve over loose global upper bounds. We also show
that PT-BB combines nicely with russian doll search (RDS), produc-
ing an interesting algorithm.

1 INTRODUCTION

Constraint satisfaction problems (CSPs) involve the assignment of
values to variables, subject to a set of constraints. Many interest-
ing problems can be modelled as CSPs. Solving techniques can be
roughly divided into search and decomposition methods. The main
advantage of search is its polynomial space complexity. Its main dis-
advantage is its time complexity, exponential on the number of vari-
ables. The main advantage of decomposition methods is their time
complexity, exponential on a topological parameter called width. The
width is always less than or equal to the number of variables and
some important problems have small width. The main disadvantage
is the space complexity, also exponential on the width. The high
space complexity makes these methods impractical in many cases.

Pseudo-tree search, introduced by Freuder and Quinn for CSP [4],
is a search algorithm that exploits the problem structure to make
search more efficient. Search is conducted over a pseudo-tree ar-
rangement of the problem which allows the detection of indepen-
dent subproblems that are solved separately. The algorithm inher-
its from search methods its polynomial space complexity. It also
has, similarly to decomposition methods, a bounded time complexity

� � � � � � � 	 	 , where � is the height of the pseudo-tree arrangement. In-
terestingly, Bayardo and Miranker [1] showed that � is no more than
a logarithm away of the width used by decomposition methods.

In the last years, the CSP framework has been augmented with the
so-called soft constraints with which it is possible to express prefer-
ences among solutions [9, 3]. Soft constraint frameworks associate
costs to tuples and the goal is to find a complete assignment with
minimum combined cost. Therefore, soft constraints specify opti-
mization problems, which increases the expressivity of the frame-
work and therefore, its applicability.

 Dep. LSI, UPC, Jordi Girona 1-3, 08034 Barcelona, Spain�

IIIA-CSIC, Campus UAB, 08193 Bellaterra, Spain�

IIIA-CSIC, Campus UAB, 08193 Bellaterra, Spain

In this paper we extend pseudo-tree search to soft constraint prob-
lems. For simplicity reasons, we will develop our work for weighted
CSPs (WCSPs), where costs are natural numbers and global costs
are computed by summing partial costs. The extension to other soft-
constraint frameworks is direct. We introduce pseudo-tree branch-
and-bound (PT-BB), an optimization algorithm exploiting pseudo-
tree arrangements. We show that general ideas developed for the CSP
case apply directly to soft constraint problems. However, a naive im-
plementation is not competitive with state-of-the-art algorithms. The
reason is that independence in optimization subproblems means so-
lution independence (i.e., the global solution can be correctly com-
puted by solving subproblems separately). However, there is not ef-
ficiency independence because solving subproblems separately pro-
duces loose upper bounds for each subproblem. Loose upper bounds
imply weak pruning capabilities and, consequently, an inefficient
execution. We overcome this problem with the use of local upper
bounds, which may improve over a loose global upper bound.

2 PRELIMINARIES

A binary weighted constraint satisfaction problem (WCSP) is a triple
� � � � � � � 	 . � � � � � � � � � � � is a set of variables. Each variable�

� � has a finite domain � � � � of values that can be assigned
to it. �

�
� � 	 denotes the assignment of value � � � � to variable

�

.
A tuple � is an ordered set of values assigned to the ordered set of
variables � � � �. If is a subset of � � , the projection of � over

is noted as � ! " . � is a set of binary soft constraints. A soft constraint#
� $ is a cost function over binary tuples (i.e.,

#
� $ % � � & � $ ' ().

The cost of tuple �, noted) * + � � � 	 , is the sum of all applicable costs,

) * + � � � 	 � ,- . / 0 1 2 3 � 2 $ 4 5 6 7

#
� $ � � ! 3 � 2 $ 4 	

The goal is to find a complete assignment with minimum valuation,

8 9 :� ; < � < = 7 > = �) * + � � � 	 �

Branch-and-bound (BB) is a search algorithm for WCSP solving
[7, 5, 9]. It traverses the search tree defined by the problem, where in-
ternal nodes represent incomplete assignments and leaf nodes stand
for complete ones. During the traversal, BB keeps the cost of the
best solution found so far. Its cost is an upper bound (? @) of the best
cost in the problem. At each internal node, defined by its current par-
tial assignment �, the algorithm computes a lower bound (A @) which
underestimates the best solution that can be found by extending �.
When ? @ B A @, the current best cost cannot be improved by extend-
ing �. Consequently, the algorithm backtracks pruning the subtree
below the current node �. The time complexity of BB is exponential
on the number of variables and the space complexity is polynomial.
At a given node, ? @ C A @ is what we call the uncertainty gap. It is well

function BB � � � � � � � � � ? @ 	 return nat;
1 if � � � � 	 then return 8 9 : � ? @ �) * + � � � 	 � ;
2 else
3

�
� PopVar � � 	 ;

4 for each � � � � do
5 � � � � � � � �

�
� � 	 ;

6 A @ � LB(� � � � � � � � � �);
7 if � A @ � ? @ 	 then
8 � �

� LookAhead � � � � � � � � � � � � ? @ 	 ;
9 if (�EmptyDom(� �)) then A @ �BB(� � � � � � � � � � � � ? @);
10 if � A @ � ? @ 	 then ? @ � A @;
11 return ? @;
endfunction

Figure 1. Branch and Bound.

known [5, 11, 6] that the average efficiency of BB heavily depends
on the availability of good bounds producing small uncertainty gaps
at initial levels of the search tree.

Figure 1 showsBB, a recursive branch-and-bound based algorithm
enhanced with a look-ahead process in which unfeasible values are
pruned [5]. BB receives the current problem defined by the tuple
containing the current assignment �, the set of future (unassigned)
variables �, the current domains �, the set of constraints � and the
global upper bound ? @. If the cost of the best extension of � is less
than ? @, the algorithm returns that cost. Else, the algorithm returns

? @. Therefore, the behavior of BB is defined as,

BB � � � � � � � � � ? @ 	 � 8 9 : � ? @ � 8 9 :� � �) * + � � � � 	 � �
where � � is an extension of � to variables in �.
BB works as follows: If the set � is empty, the result is trivially

computed (line 1). Else, it selects a variable

�

and iterates over its
values (lines 3, 4). For each value � � � � the current assignment �

is extended to �
�

� � 	 and stored in � � � � (line 5). Next, the algorithm
computes a lower bound A @ (line 6). If the lower bound is greater than
or equal to ? @, the current subproblem does not need to be solved
because there is no solution improving over ? @ (line 7). Therefore,
the algorithm proceeds to the following domain value. Else, a look-
ahead procedure is executed in which unfeasible values are removed
from future domains (line 8). If no empty domain is detected, the
current problem is recursively solved with ? @ as global upper bound,
and the solution is stored in variable A @ (line 9). If A @ is smaller than
the global upper bound ? @, a better solution has been found so ? @ is
updated (line 10). After trying all feasible values of variable

�

, the
cost of the best solution remains in ? @, which is returned (line 11).

3 PSEUDO-TREE SEARCH

The constraint graph of a CSP instance is an undirected graph having
problem variables as nodes and edges connecting pairs of constrained
variables. A pseudo-tree arrangement of a constrained graph [4, 1] is
a rooted tree with the same set of vertices as the constraint graph and
the property that adjacent vertices from the constraint graph must be
in the same branch of the rooted tree. Figure 2. � shows a constraint
graph of a CSP with seven variables and six constraints. For each
variable

�
� � � � 	, there is a constraint

#
� 2 �

 . Figure 2. @ shows one

of the many pseudo-tree arrangements that are possible. Solid lines

1 2 3 4 5 6 7

1

2

3

4

5

6

7

a)

b)

Figure 2. � � A constraint graph and � a pseudo-tree arrangement.

indicate the edges in the pseudo-tree. Dotted lines are the edges in
the original constraint graph.

Pseudo-tree search for CSPs [4] assigns variables according to a
pseudo-tree arrangement. Starting from the pseudo-tree root, if the
current variable has � � � children in the pseudo-tree, the cur-
rent problem can be divided into � independent subproblems. Each
subproblem includes previous assignments in the path from the sub-
problem to the root. These subproblems can be solved independently.
The current problem has a solution iff every independent subproblem
has a solution. Pseudo-tree search has time complexity � � A � � � � � 	 	 ,
where A and � are the number of leaves and the height of the pseudo-
tree, respectively. Pseudo-tree search is polynomial in space.

The extension of pseudo-tree search to WCSP solving requires the
introduction of the previous ideas to the branch-and-bound scheme.
Let us illustrate it through an example: Consider a WCSP instance

� � � � � � 	 , whose variables can be partitioned into three sets � �
� � � � � such that no constraint connects variables from � and � .

Assume that we are solving the problem with algorithm BB. The cur-
rent upper bound is ? @, the current assignment is �, which assigns all
variables in �. Therefore, the current problem is

� � � � � � � � � 	 ,

where the set of future variables is � � � � � .

is separable into
two subproblems:

� � � � � � � � � � � � 	 and

� � � � � � � � � � � � 	 .� � and � � denote the current domains of variables in � and � , re-

spectively. � � and � � denote the set of constraints mentioning vari-
ables in � and � , respectively. These two problems are independent
because they do not share any constraint.

Let � � and � � be the cost of the optimal solution to

� and

� , respectively. Clearly, the optimal cost of

(that is, the mini-
mum cost among assignments including tuple �) can be computed as

� � � � � � � C) * + � � � 	 , since

� and

� have no constraints in com-

mon. Note that) * + � � � 	 needs to be substracted, because it has been
counted twice. Therefore,

can be solved by solving its independent
subproblems

� and

� separately.

Consider now that we want to solve

� and

� by two indepen-

dent calls to BB, starting with

� . We must call BB with

� and an

appropriate upper bound ? @ � . Aiming at efficiency, we want ? @ � as
low as possible, in order to decrease the uncertainty gap for the sub-
probem. The simplest idea is to use ? @ � � ? @, the maximum accept-
able cost for the whole problem

. A better approach is to compute

A @ � , a lower bound of the cost of solving

� . Then, A @ � C) * + � � � 	

is a necessary cost of extending � to � . Consequently, we can use

? @ � � ? @ C A @ � �) * + � � � 	 , because any higher cost in

� cannot be

possibly extended to � with cost below ? @. This approach may still
be too weak when A @ � is a bad lower bound, because we are passing
to the local task of solving

� the global uncertainty gap in

. One
way to overcome this problem, is to compute a local upper bound

A ? @ � of the cost solution of

� . If ? @ C A @ � �) * + � � � 	 is a bad upper

bound, it may not be costly to find a A ? @ � below ? @ C A @ � �) * + � � � 	 .
Then, we can use ? @ � � 8 9 : � A ? @ � � ? @ C A @ � �) * + � � � 	 � when
solving

� .

After solving

� , we must call BB with

� and an appropriate

upper bound ? @ � . We can set ? @ � to ? @ C � � �) * + � � � 	 , the cost
that we have left for

� after solving

� . Again, we can compute

a local upper bound A ? @ � and take the minimum between the two
upper bounds, but now that we have the actual solution of

� , it is

more unlikely that we can improve over ? @ � .
Figure 3 showsPT-BB, which implements pseudo-tree branch and

bound. It extends the ideas discussed in the previous example to an
arbitrary number of independent subproblems. PT-BB assumes that
variables are selected according to a pseudo-tree arrangement.

The following notation is used: � � � � � � � � 	 is the problem with
which the procedure is called and ? @ is the global upper bound. If
the set � is empty, the result is trivially computed (line 1). Else,
it selects a variable

�

and iterates over its values (lines 3, 4). Each
value � defines the current problem

� � � � � � � � � � � � 	 , which

is decomposed into a set of � independent subproblems,

� �

� � � � � � � � � � � � � � 	 , with � � � � � �, � � �, one per child of

�

in the
pseudo-tree arrangement. For each

� , a lower bound A @ � is com-

puted (line 6). The lower bound of

is A @, computed as the sum
of independent lower bounds, removing all contributions but one of

) * + � � � � � � 	 (line 7),

A @ � �
�

,� >

A @ � 	 C � � C �) * + � � � � � � 	

Independent subproblems are sequentially solved (line 8). The global
upper bound of

is ? @. Using ? @ and the independent subproblem
lower bounds, the algorithm specializes the global upper bound to
each independent subproblem as (line 9),

? @ � � ? @ C A @ � A @ �

In addition, local upper bound A ? @ � are computed (line 10). The up-
per bound for each independent subproblem is the minimum between
the two available bounds (line 11),

� � � � @ � � 8 9 : � ? @ � � A ? @ � �

If the lower bound A @ � of the subproblem is greater than or equal
to � � � � @ � , the current subproblem does not need to be solved be-
cause either A ? @ � is the solution, or there is no solution improving
over ? @ (line 12). Therefore, the algorithm proceeds to the following
subproblem. Otherwise, a look-ahead procedure is executed in which
unfeasible values are removed from future domains (line 13). If no
empty domain is detected, the current problem is recursively solved
with � � � � @ � as global upper bound, and the solution is stored in
variable A @ � (line 15). As the algorithm solves independent subprob-
lems, the lower bound A @ of

is improved by replacing the lower
bounds by the actual solution (line 16). If during the process, the
lower bound A @ becomes greater than or equal to the global upper
bound ? @, search can be aborted reporting that

cannot be solved
with a cost less than ? @ (line 17). Once all independent subproblems
have been solved, if A @ is smaller than the global upper bound ? @, a

function PT-BB � � � � � � � � � ? @ 	 return nat;
1 if � � � � 	 then return 8 9 : � ? @ �) * + � � � 	 � ;
2 else
3

�
� PopVar � � 	 ;

4 for each � � � � do
5 � � � � � � � �

�
� � 	 ;

6 for each � � � � � � do A @ � � LB(� � � � � � � � � � � � �);
7 A @ � � � �� >
 A @ � 	 C � � C �) * + � � � � � � 	 ;
8 for each � � � � � � do
9 if � A @ � ? @ 	 then exit for;
10 ? @ � � ? @ C A @ � A @ � ;
11 A ? @ � � UB(� � � � � � � � � � � � �);
12 � � � � @ � � 8 9 : � ? @ � � A ? @ � � ;
13 if (A @ � � � � � � @ �) then
14 � � � � LookAhead � � � � � � � � � � � � � � � � � � � @ � 	 ;
15 if (�EmptyDom(� � �) then
16 A @ � �PT-BB(� � � � � � � � � � � � � � � � � � � @ �);
17 A @ � � � �� >
 A @ � 	 C � � C �) * + � � � � � � 	 ;
18 if � A @ � ? @ 	 then ? @ � A @;
19 return ? @;
endfunction

Figure 3. Pseudo-Tree Branch-and-Bound.

better solution has been found so ? @ is updated (line 18). After trying
all feasible values of variable

�

, the cost of the best solution remains
in ? @, which is returned (line 19).

4 COMBINING PSEUDO-TREE AND RUSSIAN
DOLL SEARCH

Russian Doll Search (RDS) [11, 8] is a BB algorithm which invests
in high quality lower bounds. The idea of Russian Doll is to replace
one search by � successive searches on nested subproblems. Given
an ordering * of the problem variables, subproblem

�

involves all the
variables from the

�

th variable to the last, and subproblem � is the
whole problem. Figure 4. � depicts RDS nested problems for the con-
straint graph of Figure 2. � along the lexicographic variable ordering.
In RDS, subproblems are solved sequentially in inverse order, start-
ing with subproblem � (here, we use a subproblem notation that is
inverse to the one appearing in [11]). All subproblems use the same
static variable ordering * restricted to the variables of the subprob-
lem. After solving the subproblem

�

, RDS records the best solution�
* A �

�
	 along with its cost

#
* + � �

�
	 . The key to the efficiency of this

method lies in that

#
* + � �

�
	 can be used in local lower bounds of sub-

sequent problems, at nodes where the set of future variables is exactly

�
�

�
�

� � � � � � � � � . An additional feature of RDS is that the cost of the
assignment that extends

�
* A �

�
	 to any value of variable

�
C � pro-

duces an upper bound of the cost of subproblem

�
C � . Therefore,

RDS provides, at almost no extra cost, local upper bounds4.
RDS nicely adapts to PT-BB search. The idea is to use the

pseudo-tree arrangement in the nested subproblems structure. Given
a pseudo-tree arrangement, the subproblem

�

involves all the vari-
ables in the sub-tree rooted by node

�

. If node

�

is the pseudo-
tree root, subproblem

�

is the whole problem. Figure 4. @ depicts the
nested problems for the pseudo-tree arrangement of Figure 2. @. Each
subproblem is solved after each of its children subproblems have

� A different issue is the quality of this upper bound, which will depend on
how close this extension is with respect to 	
 � � � � � .

1 2 3 4 5 6 7

1

2

3

4

5

6

7

a)

pr. 1 pr. 2 pr. 6 pr. 7. . .

b)

Figure 4. The nested structure of � � RDS and � PT-RDS.

been solved. After solving subproblem

�

, we record its best solution�
* A �

�
	 along with its cost

#
* + � �

�
	 . We call this algorithm pseudo-

tree RDS (PT-RDS). When solving the whole problem, variables are
assigned following the pseudo-tree arrangement. When arriving to
subproblem

�

, a local upper bound can be computed as the cost of
the assignment that extends

�
* A �

�
	 with the assigned variables that

are in the path from

�

to the root. Therefore, PT-RDS provides local
upper bounds of subproblems considered by pseudo-tree search.

5 EXPERIMENTAL RESULTS

We have evaluated the performance of pseudo-tree RDS using the
SRDS algorithm (the specialized version of RDS [8]), on over-
constrained binary random CSP. A binary random CSP class is char-
acterized by � � � � � �
 � � �

� where � is the number of variables, � the
number of values per variable, �
 the graph connectivity defined as
the ratio of existing constraints, and � �

the constraint tightness de-
fined as the ratio of forbidden value pairs. The constrained variables
and the forbidden value pairs are randomly selected [10]. Using this
model, we have tested on the connectivity range between 0.1 and
0.5, where non-degenerated pseudo-trees can be constructed. Specif-
ically, we have experimented on the following problem classes,

1 � � � � � � � � � � � � � � � �
� , 2 � � � � � � � � � � � � � � � �

� ,
3 � � � � � � � � � � � � � �

� , 4 � � � � � � � � � � � � � � �
� ,

5 � � � � � � � 	 � � 	 � � � � �
� , 6 � � � � � � � � � �
 � � � �

� .

Observe that (1) and (2) are medium connected problems (�
 �
� � �), (3) and (4) are problems with low connectivity (�
 � � �), and

(5) and (6) are sparse problems (�
 � � � �). For each problem class
and each parameter setting, we generated samples of 50 instances.

Each problem is solved by three algorithms based on PFC [5]:
MRDAC, SRDS and PT-SRDS. In MRDAC variables are dynami-
cally ordered by the increasing ratio of domain size divided by for-
ward degree, and values are ordered by increasing

�
) � � �) (see [6]

for a more detailed description). SRDS uses a static variable order-
ing that heuristically combines degree and locality, to produce low
bandwidth orderings. PT-SRDS follows the variable ordering exist-
ing in the pseudo-tree. Since RDS-based algorithms are very sensi-

tive to variable orderings, we decide to construct the pseudo-tree ac-
cording to the heuristic static variable ordering used for SRDS. This
means that the ordering in which variables appear in the pseudo-tree
branches is in agreement with that static variable ordering.

Figure 5 reports the average cpu-time required to solve the six
problem classes. We observe that for medium connectivity classes
(�
 � � � �), SRDS and PT-SRDS both offer the best performance
(without practical differences) while MRDAC is clearly worse. For
low connectivity classes (�
 � � �), PT-SRDS shows the best perfor-
mance, while there is no clear second between SRDS and MRDAC.
For sparse problems (�
 � � � �), PT-SRDS exhibits the best perfor-
mance, followed by MRDAC and SRDS in third position. From these
graphs we conclude that, for random binary problems with medium
to very low connectivity, PT-SRDS is the algorithm of choice. PT-
SRDS performance improves over other algorithms as connectivity
decreases. This observation is in full agreement with our approach,
because a low connectivity problem is very likely to produce a shal-
low pseudo-tree, which enhances the savings of pseudo-tree search
with respect to other algorithms.

Figure 6 contains the average number of visited nodes for three
problem classes (the other results are omitted for space reasons).
We observe that PT-SRDS visits fewer nodes than SRDS for the six
problem classes tested. This suggest that PT-SRDS searches more
efficiently than SRDS. However, PT-SRDS has a higher overhead
than SRDS. The savings of pseudo-tree search are compensated by
this extra overhead in medium connectivity classes, both algorithms
offering a similar performance. For low and very low connectivity,
pseudo-tree savings surpass the pseudo-tree overhead.

Since the temporal complexity is exponential in the pseudo-tree
height, we have recorded the average height of pseudo-trees used in
the experiments. For medium connectivity classes, the average height
is around � � 	 � (� is the number of variables); for low connectivity
classes is around � � � � ; for very low connectivity classes is � � 	 � .
These results confirm that pseudo-tree search decreases substantially
the height of the search tree to explore, improving efficiency.

We have explored the relevance of local upper bounds in our im-
plementation, substituting line 10 of Figure 3 by A ? @ � � � . In this
case, experimental results show that PT-SRDS looses performance.
This result confirms that, although solving independent subproblems
independently is an attractive strategy, working with the global upper
bound is not cost-effective and the presence of local upper bounds is
essential.

If we eliminate from the problem the constraints that are less tight,
better pseudo-trees can be build (with lower height). Solving the
problem with this particular pseudo-tree will give us a lower bound
on the optimum cost of the original problem. Doing so we have ob-
tained good lower bounds in few seconds for radio link frequency
assignment (CELAR) instances [2].

6 CONCLUSION

Pseudo-tree search is a well known algorithm for CSP with two nice
properties:

�
	 its time complexity is bounded by a structural param-

eter and

� �
	 its space complexity is polynomial. In this paper, we

have extended pseudo-tree search to the soft constraints framework.
We have shown that the general principles can be easily extended.
However, if good average efficiency is required, a careful implemen-
tation is needed. We have introduced PT-BB, a branch-and-bound
algorithm that performs pseudo-tree search. Its main feature is that
it computes local upper bounds with which a good efficiency is ob-
tained. We have also shown that pseudo-tree search nicely combines

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

cp
u

tim
e

p2

<15,10,50/105>

MRDAC
SRDS

PT-SRDS

0

1

2

3

4

5

6

0.4 0.5 0.6 0.7 0.8 0.9 1

cp
u

tim
e

constraint tightness

<20,5,100/190>

MRDAC
SRDS

PT-SRDS

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

cp
u

tim
e

constraint tightness

<14,7,57/190>

MRDAC
SRDS

PT-SRDS

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 0.5 0.6 0.7 0.8 0.9 1

cp
u

tim
e

constraint tightness

<20,5,57/190>

MRDAC
SRDS

PT-SRDS

0

1

2

3

4

5

6

7

8

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

cp
u

tim
e

constraint tightness

<25,10,37/300>

MRDAC
SRDS

PT-SRDS

0

2

4

6

8

10

0.4 0.5 0.6 0.7 0.8 0.9 1

cp
u

tim
e

constraint tightness

<40,5,55/780>

MRDAC
SRDS

PT-SRDS

Figure 5. Average CPU time versus tightness for six classes of binary random problems.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

no
de

s

p2

<15,10,50/105>

MRDAC
SRDS

PT-SRDS

0

5000

10000

15000

20000

25000

30000

35000

40000

0.4 0.5 0.6 0.7 0.8 0.9 1

no
de

s

p2

<20,5,57/190>

MRDAC
SRDS

PT-SRDS

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

no
de

s

p2

<14,7,27/91>

MRDAC
SRDS

PT-SRDS

Figure 6. Average visited nodes versus tightness for three classes of binary random problems.

with russian doll search, producing an efficient algorithm.
We have presented some preliminary empirical results showing

how our algorithms are competitive with state-of-the-art solvers. We
believe that our results can be further improved, becausewe have still
not addressed several important practical aspects. For instance, we
have not studied the effect of the ordering in which the independent
subproblems are solved. Similarly, we have used naive pseudo-tree
arrangements, probably having non-optimal height. The effect of this
on the algorithms efficiency is a topic of our current work.

ACKNOWLEDGEMENTS

This work was supported by the IST Programme of the Commission
of the European Union through the ECSPLAIN project (IST-1999-
11969), and by the Spanish CICYT project TAP99-1086-C03. We
thank the anonymous reviewers for their constructive criticisms.

REFERENCES
[1] R. Bayardo and D. Miranker, ‘On the space-time trade-off in solving

constraint satisfaction problems’, in Proc. of 14th IJCAI, pp. 558–562,
(1995).

[2] B.Cabon, S. De Givry, L.Lobjois, T.Schiex, and J.P.Warners, ‘Radio
link frequency assignment’, Constraints, 4(1), 79–89, (1999).

[3] S. Bistarelli, U. Montanari, and F. Rossi, ‘Semiring-based constraint
satisfaction and optimization’, Journal of the ACM, 44(2), 201–236,
(1997).

[4] E.C. Freuder and M.J. Quinn, ‘Taking advantage of stable sets of vari-
ables in constraint satisfaction problems’, in Proc. of 9th IJCAI, pp.
1076–1078, (1985).

[5] E.C. Freuder and R.J. Wallace, ‘Partial constraint satisfaction’, Artifi-
cial Intelligence, 58, 21–70, (1992).

[6] J. Larrosa, P. Meseguer, and T. Schiex, ‘Maintaining reversible DAC
for max-CSP’, Artificial Intelligence, 107(1), 149–163, (1999).

[7] E. L. Lawler and D. E. Wood, ‘Branch-and-bound methods: A survey’,
Operations Research, 14(4), 699–719, (1966).

[8] P. Meseguer and M. Sanchez, ‘Specializing russian doll search’, in
Proc. of 7th CP, pp. 464–478, (2001).

[9] T. Schiex, H. Fargier, and G. Verfaillie, ‘Valued constraint satisfaction
problems: hard and easy problems’, in Proc. of 14th IJCAI, pp. 631–
637, (1995).

[10] B. Smith, ‘Phase transition and the mushy region in constraint satisfac-
tion problems’, in Proc. of 11th ECAI, pp. 100–104, (1994).

[11] G. Verfaillie, M. Lemaı̂tre, and T. Schiex, ‘Russian doll search’, in Proc.
of 13th AAAI, pp. 181–187, (1996).

