(54) NANOSCALE CONTROL OF THE SPATIAL DISTRIBUTION, SHAPE AND SIZE OF THIN FILMS OF CONJUGATED ORGANIC MOLECULES THROUGH THE PRODUCTION OF SILICON OXIDE NANOSTRUCTURES

(57) The invention relates to a method of controlling the spatial distribution, shape and size of films of conjugated organic molecules. The inventive method can be used to grow single layers of organic molecules on silicon oxide nanostructures. The silicon oxide nanostructures are produced using an anodic oxidation process. The organisation of the molecules on the oxide nanostructures is dependent on the kinetic parameters of the latter (evaporation rate, diffusion coefficient) and on the interactions with the silicon (anodic) oxide regions. The molecules form domains which exactly reproduce the lateral size and the shape of the oxide nanostructures. The invention provides a powerful method of performing a bottom-up construction of wires, electrodes and charge transfer zones in nanoscale devices.
Description

SECTOR

Background

[0002] Conjugated materials constitute a family of organic materials formed from coordinated compounds, polymers, copolymers and polymer mixtures which are characterised by the existence of functional groups with electron orbitals delocalised on different carbon atoms or other atoms, fundamentally nitrogen, oxygen or sulphur. These materials display optical and electronic properties similar to those observed in silicon or III-V semiconductors and are generically referred to as organic semiconductors. The spatial distribution of the charge density of the pi orbitals is highly anisotropic and as a consequence their optical and electronic properties depend on the orientation and on the molecular groupings.

[0003] Plastic electronics is a new sustainable technology based on the use of thin films of conjugated compounds whose thicknesses vary between 1 and 100 nm. The products of plastic electronics are complementary to those of microelectronics since they are concentrated in low cost applications and they can take recycling or their waste has a very low environmental impact. As examples, mention can be made of the manufacture of labels, cards and intelligent clothing or electronic identity cards. Conjugated compounds are easy to process and compatible with microelectronic processes. Nevertheless, it is crucial to control the molecular orientation, the order and the anisotropy of the molecular domains in order to obtain efficient devices.

[0004] The improvement in the electronic properties of a device formed from electronic molecules requires an understanding and control of the interactions between the organic molecules and the biological material. This is a complex problem since in an integrated circuit type device there co-exist regions of differing properties, both chemical and electrical or topographical. All this means that the molecules undergo different interactions. This heterogeneity has an influence on the nucleation and growth processes, which in the end will determine the structure and morphology of the film. A self-organised growth would be very desirable since it would permit the active elements to be connected to the electrodes which would lead to a growth in the integration of the devices. All this makes it necessary to develop new procedures for promoting the spontaneous organisation of organic molecules.

[0005] Cited below are some patents for obtaining nanostructures of organic materials.

[0006] A sign of the impact of nanotechnology on the economic growth of developed economies can be seen from the level of government investment in Europe, USA and Japan. For example, in the sixth framework programme of the EU, nanotechnology is a priority area with financing of more than 1300 M€.

DESCRIPTION

[0007] The invention consists of a process which permits the growth of organic molecules in defined regions of a silicon substrate. The said regions are defined by means of the anodic oxidation of a selective region of the sample. The anodic oxidation process produces a silicon oxide with numerous defects which modifies both the topography and the chemical composition. The oxidation is used to create structures extending from a few nanometres up to tens of microns. The shape and periodicity of the nanostructures is variable. Matrices of points, lines, matrices of parallel lines, tracks and circles have been manufactured.

[0008] The molecules preferentially nucleate on the oxide nanostructures, which originates a monolayer of molecules that reproduce the shape and size of the silicon oxide nanostructure. The validity of the proposed method is demonstrated with molecules of α-sextithionyl (T6) deposited by sublimation in an ultra high vacuum chamber. Due to the kinetics of the growth and the preferential, though non-specific, interactions of the molecules with the silicon oxide regions, structures of organic molecules are formed which reproduce the shape and size of the nanostructures (see Figure 1 and Figures 3 and 4). The tracks or strips of organic molecules have a length of several microns and their width varies between 100 and 600 nm. From the height of the molecules, it is deduced that they are orientated with their longitudinal
axis perpendicular to the substrate.

The same material grown on an unmodified silicon substrate does not give rise to the formation of ordered structures. The molecules are grouped forming islands of irregular shape and distribution and with diameters of several microns.

The proposed method could be used for manufacturing wires and conduction channels in integrated circuits made of a plastic material with pattern densities of between three and ten times greater than those obtained with ultraviolet optical lithography.

The silicon oxide regions were obtained by means of anodic oxidation, for which purpose an atomic-force microscope (AFM) was used. The method is known as local oxidation nanolithography. A detailed description of it can be found in references 1-4. Nevertheless, the process is completely general and valid for any production method of anodic silicon oxides.

With the proposed method, an integrated circuit could be manufactured with active elements formed by organic molecules and with a pattern density of between three and ten times greater than those obtained with ultraviolet optical lithography.

The silicon oxide regions were obtained by means of anodic oxidation, for which purpose an atomic-force microscope (AFM) was used. The method is known as local oxidation nanolithography. A detailed description of it can be found in references 1-4. Nevertheless, the process is completely general and independent of the technique employed for producing anodic oxides.

The arrangement used for carrying out anodic oxidation is shown in diagrammatic form in figure 2. The head of an atomic-force microscope is introduced into a chamber permitting control of the relative humidity. The relative humidity is kept at between 30-50%. The oxidations are carried out with silicon microlevers (n+) characterised by force constants of between 30-40 N/m and resonance frequencies between 300-400 kHz. The semiconductor samples were of Si(100) type p and with resistivities of 14 Ω cm.

The local oxidation process in the mode of atomic-force microscope non-contact requires several stages. First, the tip-microlever system oscillates at a distance of about 5 nm from the sample surface. The surface of the sample has previously been coated with a few monolayers of water. After that, a voltage is applied between the tip and sample. If the applied voltage exceeds a certain threshold value, a neck of water of formed between the two surfaces. Another voltage pulse is then introduced in order to initiate the oxidation. Once the above process has been completed, the microscope returns to the visualisation mode, which permits images of the modified zones to be taken. In certain situations, those which have been used in these experiments, the same voltage pulse can be used to form the neck and grow the oxide.

The electron current measured during the oxidation process is very close to that expected for anodic oxidation processes if it is calculated starting from the volume of oxide generated and it is assumed that the reaction is described by

\[\text{Si} + 2h^+ + 2(\text{OH}) \rightarrow \text{SiO}_2 + \text{H}_2 \]

The above reaction implies the decomposition of water molecules according to

\[2\text{H}_2 \rightarrow 2\text{H}^+ + 2(\text{OH}^-) \]

while the oxidation that takes place in the anode (here the sample) is described as

\[\text{Si} + 2\text{H}^+ + 2(\text{OH}^-) \rightarrow \text{SiO}_2 + 2\text{H}^+ + 2\text{e}^- \]

Furthermore, the process involves the generation at the cathode according to

\[2\text{H}^+ + 2\text{e}^- \rightarrow \text{H}_2 \]

Nevertheless, the proximity existing between the tip and the sample and the application of voltage pulses in the range 10-20 V originates high electric fields (E ~ 1-3 V/nm). Those fields modify the chemical equilibrium established by the above equations and favours the distribution of defects in the oxide. As a consequence, a high concentration of positively charged defects H30+---O- are generated in the proximity of the Si/SiOx interface.

In order to demonstrate the advantages of the proposed method for controlling and directing the growth of molecular films at the nanoscale, a series of parallel tracks have been manufactured of length 6 μm, width 360-550 nm and height 3 nm (Figure 4). The height of the patterns almost coincides with the Van de Waals length of T6 (2.7 nm). Each track is composed of eight lines and each line is a sequence of oxide points. The separation between oxide points (-10 nm) is less than their diameter (-20-40 nm); as a consequence, the points overlap and a continuous line is formed. The oxide points have been obtained by means of the application of a voltage peak of 20 V during 10 ms.

Once the sample with the oxide patterns had been manufactured, it was transferred to the ultra high vacuum chamber in order to proceed with deposition of the molecules. During the deposition, the results obtained by Biscarini et al. were applied, which demonstrate a layer to layer growth in a band of deposition temperatures (50-150°C) and small thicknesses (1-10 microns). In these experiments, rated thicknesses of 1.5 nm were deposited while the sample was kept at a temperature of 150 °C.

Figures 5(a) and (b) show the results obtained. We wish to emphasise these results. First, away from the modified zones the molecules display morphologies characterised by islands having a fractal appearance and characteristic dimensions of 1 μm. Second, within the
modified zone the molecules preferentially grow along the oxide tracks. The coating of the molecules is greater on the tracks than on the unmodified zones between them. Third, the continuity of the film depends on the lateral spacing of the oxide lines forming the tracks. Those tracks whose lines are more separated show more fractures in the organic film. In the first track from the left (Figure 5), the lines forming the track overlap giving rise to a uniform and continuous film. In some zones of the film the molecules also display a lateral growth with dendritic shapes. This growth indicates that there exists an excess of molecules since not all of them can be accommodated on the oxide track.

Moreover, when the lateral separation of the lines is increased, the continuity of the film is broken. The above images permit the inference that the growth of a continuous film in an arbitrary manner is a competition between the diffusion coefficient of the molecules on the unmodified substrate, the density of the molecules and the preferential growth observed on the oxide lines. The preferential growth along the oxide lines increases when the number of oxidations effected in order to form the line is increased. Here, the density of defects is controlled by reducing the lateral separation of the individual lines.

Figure 6 shows tracks or strips of organic molecules grown by means of the proposed method. The pattern that is manufactured has the shape of an orthodox cross with tracks that cut each other perpendicularly (Fig. 6a). The difference between the density and uniformity of the domains of molecules on the oxide nanostructures and on the unmodified substrate does not cease to cause surprise.

To summarise, the present development demonstrates that control of the kinetic parameters during growth and the existence of preferential interactions of organic molecules with the silicon oxide structures make it possible to carry out the nanoscale manufacture of structures formed by conjugated molecules.

DESCRIPTION OF THE FIGURES

Figure 1. Diagram of the result of the invention. The organic molecules spontaneously grow on the manufactured zones of silicon oxide. The size and shape of the molecular film is controlled by the nanostructure of the oxide. outside the modified regions the molecules adopt irregular shapes and sizes.

Figure 2. Diagram of the arrangement used for carrying out the anodic oxidation.

Figure 3. Diagram of the local oxidation process used in this patent.

Figure 4. AFM image of a series of parallel tracks manufactured by the method of anodic oxidation of silicon.

Figure 5. (a) AFM image of silicon oxide nanostructures after the deposition of 1.5 nm of T6 molecules.

(b) Section of the previous image. The continuity of the organic film is obtained by increasing the density of anodic oxide patterns.

References

Claims

1. A method for controlling the growth of organic films formed by conjugated molecules in predefined sites of a silicon substrate. The method is based on the preferential but non-specific interactions of the molecules with regions of anodic silicon oxide that have been generated by lithographic methods.

2. According to claim 1, a method based on the use of anodic oxides for promoting nucleation and growth of the molecules on the oxide nanostructures.

3. Process for controlling the growth of conjugated organic molecules on predefined regions of a silicon substrate (with or without the presence of an oxide layer, whether this be thermal or native). Those regions have been manufactured by anodic oxidation by means of an atomic-force microscope.

4. Process for controlling the growth of molecules of α-sexithiényl on predefined regions of a silicon sub-
strate (with or without the presence of an oxide layer, whether this be thermal or native). Those regions have been manufactured by anodic oxidation by means of an atomic-force microscope.

5. Process for controlling the growth of molecules of \(\alpha \)-sexithielen on structures manufactured by means of anodic oxidation of silicon.

6. Method according to claims 1 and 2 for improving the properties of the monolayers by increasing the density of oxide patterns.

7. According to claims 1 and 3, a method is proposed for optimising the organisation of molecular domains of variable shape and size between a few nanometres and several microns.

8. According to claim 4, a process is proposed for forming wires, tracks and molecular regions of \(\alpha \)-sexithielen.

9. From claims 1 and 4 a process is proposed for introducing length scales extrinsic to the molecules employed.

Amended claims under Art. 19.1 PCT

1. Procedure for the manufacture of films of conjugated organic molecules characterised in that it takes place on selected regions or nanostructures of a substrate of silicon and because it comprises the following steps:
 a) generation of the region or nanostructure of anodic silicon oxide selected by means of a process of anodic oxidation of silicon, and
 b) a growth process of organic molecules on the nanostructures of a).

2. Procedure according to claim 1 characterised in that the generation of the nanostructure of a) is done by means of a process belonging to the following group: local oxidation nanolithography and ultraviolet optical lithography.

3. Procedure according to claim 1 characterised in that the growth process of b) is done by means of a sublimation process in an ultra-high vacuum chamber.

4. Procedure according to claims 1 to 3 characterised in that the organic molecule is \(\alpha \)-sexithielen.

5. Use of the procedure according to claims 1 to 4 for the manufacture of microelectronic and optoelectronic devices.

6. Use according to claim 5 characterised in that the microelectronic device consists of an integrated circuit.

Statement under Art. 19.1 PCT

This PCT application describes a procedure for the manufacture of films of conjugated organic molecules. The definition of organic molecules is presented as an introduction at the beginning of the State of the Art, along with a description of the meaning of the term "organic molecules" which is going to be used in the rest of the invention. In this way, the term "organic molecules" refers to molecules which give rise to organic materials such as coordinated compounds, polymers, co-polymers and mixtures of polymers which are characterised by the existence of functional groups with electron orbitals delocalised on different atoms of carbon or other atoms, fundamentally nitrogen, oxygen or sulphur. As stated, these materials show optical and electronic properties similar to those observed in silicon or semiconductors III-V, which are known in a generic way as organic semiconductors. For that reason, we consider that the scope of the procedure is the manufacture of films of conjugated organic molecules. Moreover, the invention presents the manufacture of these films starting from \(\alpha \)-sexithielen as a particular embodiment of the object of the invention, in which this molecule represents one of the potential conjugated organic molecules to use.

Furthermore, the generation of the region or nanostructure of anodic silicon oxide can be carried out by any method of anodic oxidation of silicon. In the description, mention is made of two possibilities - local oxidation nanolithography and ultraviolet optical lithography - which are known to an expert in the field forming the object of the invention, though the particular embodiments (see Figure 5 and 6) only use the method of local oxidation nanolithography. But as stated in the description "the procedure is completely general independently of the technique employed for producing the anodic oxides". Finally, claims have been introduced referring to the Use of the procedure for the manufacture of films for the manufacture of microelectronic devices (integrated circuits) and optoelectronic devices, which is described in the invention.
FIG. 1
FIG. 3
FIG. 5A FIG. 5B
INTERNATIONAL SEARCH REPORT

CLASSIFICATION OF SUBJECT MATTER

- IPC7: H01L5/140

According to International Patent Classification (IPC) or to both national classification and IPC

FIELDS SEARCHED

- IPC7: H01L, B81C, B82B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (names of data base and, where practicable, search terms used)

CIBEPAT, EPODOC, WPI, XPESP

DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US6403397 B (KATZ, H.E.) 11.06.2002, the whole document</td>
<td>1-9</td>
</tr>
<tr>
<td>A</td>
<td>US6117344 A (COX, I.W. et al.) 12.09.2000, the whole document</td>
<td>1-9</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

Date of the actual completion of the international search
16 June 2004 (16.06.04)

Date of mailing of the international search report
09 July 2004 (09.07.04)

Name and mailing address of the ISA/
S.P.T.O

Authorized officer

Facsimile No.

Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US6403397 B</td>
<td>11.06.2002</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 3104499 A</td>
<td>11.10.1999</td>
</tr>
</tbody>
</table>

Form PCT/S/A/210 (patent family annex) (July 1992)