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Abstract 1 

In semi-arid conditions, nitrogen (N) is the main limiting factor of crop yield after water, 2 

and its accurate quantification remains essential. Recent studies have demonstrated that 3 

solar-induced chlorophyll fluorescence (SIF) quantified from hyperspectral imagery is a 4 

reliable indicator of photosynthetic activity in the context of precision agriculture and for 5 

early stress detection purposes. The role of fluorescence might be critical to our 6 

understanding of N levels due to its link with photosynthesis and the maximum rate of 7 

carboxylation (Vcmax) under stress. The research presented here aimed to assess the 8 

contribution played by airborne-retrieved solar-induced chlorophyll fluorescence (SIF) to 9 

the retrieval of N under irrigated and rainfed Mediterranean conditions. The study was 10 

carried out at three field sites used for wheat phenotyping purposes in Southern Spain 11 

during the 2015 and 2016 growing seasons. Airborne campaigns acquired imagery with two 12 

hyperspectral cameras covering the 400–850 nm (20 cm resolution) and 950-1750 nm (50 13 

cm resolution) spectral regions. The performance of multiple regression models built for N 14 

quantification with and without including the airborne-retrieved SIF was compared with the 15 

performance of models built with plant traits estimated by model inversion, and also with 16 

standard approaches based on single spectral indices. Results showed that the accuracy of 17 

the models for N retrieval increased when chlorophyll fluorescence was included 18 

(r2
LOOCV≥0.92; p<0.0005) as compared to models only built with chlorophyll a+b (Cab), dry 19 

matter (Cm) and equivalent water thickness (Cw) plant traits (r2
LOOCV ranged from 0.68 to 20 

0.77; p< 0.005). Moreover, nitrogen indices (NIs) centered at 1510 nm yielded more 21 

reliable agreements with N concentration (r2=0.69) than traditional chlorophyll indices 22 

(TCARI/OSAVI r2=0.45) and structural indices (NDVI r2=0.57) calculated in the VNIR 23 

region. This work demonstrates that under irrigated and non-irrigated conditions, indicators 24 
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directly linked with photosynthesis such as chlorophyll fluorescence improves predictions 25 

of N concentration. 26 

 27 

Keywords:	 Nitrogen concentration, chlorophyll fluorescence, chlorophyll content, NIR 28 

indices, hyperspectral, airborne 29 
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1. Introduction 30 

Nitrogen (N) content plays an important role in the plant life cycle. In most situations, N is 31 

the major limiting factor of crop yield after water deficiency, and it is an essential element 32 

in plant growth (Lemaire et al., 2008). It is well documented that an adequate N supply is 33 

crucial for the maintenance of plant biochemistry quality (Nobel, 2009), and that N 34 

deficiency greatly changes the photosynthetic capacity, leading to a decrease in 35 

photosynthetic quantum yield and light-saturated photosynthetic rate (Khamis et al., 1990). 36 

N management of crops has important economic impacts and environmental implications, 37 

although nitrogen overfertilization is widely used by farmers as a form of insurance against 38 

uncertain soil fertility (Tremblay et al., 2012). In particular, a higher N supply causes 39 

significant effects on the environment. Hence, an adequate N management strategy is 40 

needed to guide precision diagnosis of soil status and efficient crop management.  41 

 42 

Traditionally, the N concentration is estimated using chemical analyses based on leaf tissue, 43 

such as Kjeldahl-digestion and Dumas-combustion,	 due to their reliability in organic N 44 

determination. However, these methods are destructive, time consuming, and need complex 45 

analysis.	Moreover, traditional N estimates provide only limited information, as sampling is 46 

based on only a limited number of sites in a given field; they are therefore not suitable for 47 

the continuous monitoring of N content in the entire field. For these reasons, remote 48 

sensing and, in particular, hyperspectral imagery, can be useful for monitoring spatial and 49 

temporal variations in crop N content over large areas (Quemada et al., 2014). 50 

The use of simple empirical models that incorporate hyperspectral reflectance indices is 51 

still the dominant method used to estimate N (Ferwerda et al., 2005; Stroppiana et al., 52 

2009; Herrmann et al., 2010; Wang et al., 2012; Li et al., 2014; Mahajan et al., 2016). 53 
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Several studies have shown improvements in canopy N quantifications using reflectance 54 

bands in the near infrared  (NIR) and in the short-wave infrared (SWIR) regions (Kokaly, 55 

1999; Ferwerda et al., 2005; Herrmann et al., 2010; Pimstein et al., 2011; Gnyp et al., 56 

2014; Mahajan et al., 2014), especially when indices calculated from wavelengths centered 57 

at 850 and 1510 nm are used, as described in detail by Herrmann et al. (2010). Serrano et 58 

al. (2002) also showed that the combination of the 1510 nm and 1680 nm spectral regions 59 

was sensitive to N concentration in green biomass. Nevertheless, and despite the successful 60 

empirical relationships, nitrogen estimation at the canopy level from remote sensing 61 

requires appropriate modeling strategies due to the large contribution of structural and 62 

shadow effects to canopy reflectance (Zarco-Tejada et al., 2005). On the other hand, 63 

radiative transfer models offer advantages compared to index-based empirical models 64 

regarding robustness and transferability (Jacquemoud and Baret, 1990; Zarco-Tejada et al., 65 

2004; Schlerf and Atzberger, 2006; Wang et al., 2015), and these have been widely 66 

proposed as a method for retrieving chlorophyll content, dry matter, and water content from 67 

remote sensing data (Clevers and Kooistra, 2012; Jacquemoud and Baret, 1990; Zarco-68 

Tejada et al., 2004). In this context, recent studies have evaluated the estimation of leaf N 69 

content using models built with leaf and canopy biophysical parameters retrieved by 70 

inversion (e.g. Wang et al., 2015), and these have yielded reasonable success (r2= 0.58). 71 

 72 

In recent years, the quantification of chlorophyll fluorescence has attracted increasing 73 

attention in the context of global monitoring of crop physiology and vegetation functioning, 74 

and this method can offer improvements on the estimation of N status (Tremblay et al., 75 

2012). Chlorophyll fluorescence is generally considered as a direct proxy for electron 76 

transport rate and hence photosynthetic activity (Genty et al., 1989; Weis and Berry, 1987). 77 
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The leaf-level maximum carboxylation rate (Vcmax; µmol·CO2·m-2·s-1) is closely related to 78 

the chlorophyll content at leaf scale (Croft et al., 2017; Houborg et al., 2013) and with 79 

solar-induced chlorophyll fluorescence (SIF) (Rascher et al., 2015; Yang et al., 2015). In 80 

this regard, SIF can be considered as a direct link with Vcmax through its strong connexion 81 

to chlorophyll content and photosynthetic activity (Walker et al., 2014). In fact, recent 82 

studies have demonstrated the link between chlorophyll fluorescence and photosynthetic 83 

activity at leaf and canopy levels (see e.g. Zarco-Tejada et al., 2013, 2016; Cendrero-Mateo 84 

et al., 2016). The rationale is based on the dependence of chlorophyll fluorescence 85 

emissions on chlorophyll concentration and photosystem I (PSI) and II (PSII) efficiency 86 

(Lichtenthaler et al., 1996). It is well documented that N deficiency affects PSII 87 

photochemistry, lowering the quantum yield electron transport, the photochemical 88 

efficiency, and therefore the assimilation rate (Lu and Zhang, 2000; Jin et al., 2015).  89 

 90 

Crop water status may alter N balance: crop N demand is reduced under drought 91 

conditions, as growth rate diminishes (Gonzalez-Dugo et al. 2010). In arid and semi-arid 92 

environments, the co-limitation between nitrogen and water often reduces crop production 93 

which therefore must be considered together (Sadras, 2004). For these reasons, spectral 94 

indicators related to the leaf functioning, as chlorophyll fluorescence, is a potentially 95 

important candidate for improving the quantification of N concentration using passive 96 

remote sensing techniques. The present study aimed to explore the contribution of airborne-97 

retrieved chlorophyll fluorescence to the quantification of N concentration using 98 

hyperspectral imagery. Specifically, we evaluated the fluorescence quantification in spring 99 

wheat (early sawing) grown under rainfed and irrigated conditions to assess whether they 100 
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contributed significantly to the retrieval of N concentration in the context of precision 101 

agriculture and plant phenotyping experiments. 102 

 103 

2. Material and Methods 104 

2.1. Study area 105 

The study was carried out in 2015 and 2016 at three field trial sites for durum wheat 106 

(Triticum turgidum L. var. durum) and bread wheat (Triticum aestivum L.) selection in 107 

Southern Spain. The sowing date for all sites was mid-November in the previous year. 108 

Regarding fertilization, pest and disease management, all the plots received the same 109 

treatment at all trial sites. Fertilization with diammonium phosphate and urea was carried 110 

out in early November, while similar amounts of fungicides and pesticides were applied at 111 

the early and middle growth stages at all trial sites. 112 

 113 

The first trial site was located in Ecija (EC), near Seville, Southern Spain (37°32ʹ17ʺN, 114 

5°06ʹ57ʺW), which was managed under rainfed conditions in 2015. The experiment was 115 

designed with a balanced square lattice design using 300 individual plots (6 x 1.25 meters) 116 

separated in four blocks, with 150 varieties of durum wheat and 150 of bread wheat. Each 117 

cultivar was replicated three times per block (Fig. 1a).  118 

 119 

The second site trial was in Carmona (CA), also close to Seville, Southern Spain 120 

(37°30ʹ29ʺN, 5°34ʹ42ʺW) in 2015. The experiment comprised 882 individual plots 121 

(7.5x1.25 meters) divided into two blocks managed under rainfed conditions and one block 122 

under irrigated conditions. Each block contained a mixture of varieties of durum and bread 123 

wheat, each cultivar replicated three times per block (Fig. 1b).  124 
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 125 

The third trial site was managed by IFAPA in Santaella (SA), near Cordoba, Southern 126 

Spain (37°31ʹ34ʺN, 4°50ʹ40ʺW) in 2016, where 20 varieties of durum wheat and 20 127 

varieties of bread wheat were replicated three times under irrigated and rainfed conditions 128 

(Fig. 1c). The plot size was 15 m2 (10 x 1.5 meters). 129 

 

 
Fig. 1. Scene of the field trial sites at EC (a), CA (b) and Santaella (c) obtained with a color 
infrared camera (CIR; a and b, not used for analysis in this study) and the hyperspectral 
imagery (c) on board the aircraft. Black rectangles indicate plots under rainfed conditions 
and blue rectangles indicate plot under irrigated conditions. 
 
2.2. Field data 130 

In order to assess the physiology and the leaf optical properties of the wheat, a series of 131 

leaf-level measurements were made concurrently with the airborne flights at midday (12:00 132 

to 13:00 h local time) at all the trial sites. A summary of field measurements and airborne 133 
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campaigns at each trial site is shown in Table 1. The wheat growth stage during the flight 134 

campaigns refers to the stem length at the time of the first flight in Santaella (SA-1) and 135 

grain filling (milking stage) at the time of the flights in EC, CA and the second flight in 136 

Santaella (SA-2). 137 

 138 

Leaf water potential (𝜓" ; MPa) was measured using a pressure chamber (Model 600 139 

Pressure Chamber Instrument, PMI Instrument Company, Albany, NY, USA) on two sunlit 140 

leaves per plot. Assimilation rate (A; µmol·m-2·s-1) and stomatal conductance (Gs; 141 

mmol·m-2·s-1) were measured using a photosynthesis measurement system (LCDpro-SD, 142 

ADC Bioscientific Ltd., Herts, UK) on two sunlit leaves per plot. Steady-state leaf 143 

fluorescence yield (Ft) and a SPAD chlorophyll content indicator were measured on 10 to 144 

15 leaves per plot using a FluorPen FP100 (Photon Systems Instruments, Brno, Czech 145 

Republic) and a chlorophyll meter (SPAD-502, Minolta Corp., Ramsey, NJ, USA), 146 

respectively. The relationship between chlorophyll concentration and SPAD readings for 147 

wheat found by Uddling et al. (2007) was applied to convert SPAD data into chlorophyll 148 

content (µg·cm-2). Total N concentration was determined by the Kjeldhal method (Kjeldahl, 149 

1883)	 on 20-25 sunlit leaves sampled per plot. As in the rest of the physiological 150 

measurements, a random selection of the sunlit leaves was carried out from the central area 151 

of each plot.  152 

 153 

 154 

 155 

 156 

 157 
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Table 1. Field measurements and flight dates during the 2015 and 2016 campaigns.  
 

Year Site Flight 
dates 

Type of flight (a) Field measurements Plots with field 
data 
  

2015 EC 28/05 Noon (T + VNIR 
+SWIR) 

𝜓" , A, Gs, Ft,  SPAD, N 	 12 (b) 

  CA 30/05 Noon (T + VNIR 
+SWIR) 

𝜓" , A, Gs, Ft, SPAD, N  18 (b) 

2016 SA-1 17/03 Noon (T + VNIR 
+SWIR) 

𝜓" , A, Gs,  Ft,  SPAD, N 	 24 (b) and 45(c) 

  SA-2 26/04 Noon (T + VNIR 
+SWIR) 

𝜓" , A, Gs,  Ft,  SPAD, N 	 24 (b) and 50(c) 

 
a T= thermal camera, VNIR = hyperspectral visible and infrared camera (400-885 nm), SWIR = hyperspectral 
near-infrared and short-wave infrared camera (950-1750 nm). 
b number of plots with all leaf measurements 
c number of plots with only measurements of SPAD and total leaf nitrogen. 
 
 
 
 
 
2.3. Airborne hyperspectral imagery 158 

A hyperspectral imager covering the visible and near-infrared region (Micro-Hyperspec 159 

VNIR, Headwall Photonics, Fitchburg, MA, USA) and a second hyperspectral imager 160 

covering the NIR and the SWIR regions (Micro-Hyperspec NIR-100, Headwall Photonics) 161 

were installed in tandem on a Cessna aircraft operated by the Laboratory for Research 162 

Methods in Quantitative Remote Sensing (QuantaLab), Consejo Superior de 163 

Investigaciones Científicas (IAS-CSIC, Spain). Imagery was acquired at 250 m above 164 

ground level with the aircraft flying on the solar plane during the flight campaigns of 2015 165 

and 2016. The campaigns were flown at midday (local time) to minimize differences due to 166 

sun angle effects between flights. 167 

 168 

The micro-hyperspec VNIR was set up with a configuration of 260 spectral bands acquired 169 

at 8 nm/pixel and 12-bit radiometric resolution in the 400–885 nm spectral region, thus 170 
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yielding a 6.4 nm Full Width at Half Maximum (FWHM) with a 25-µm slit. The 171 

acquisition and storage module had a 50 fps frame rate with an integration time of 25 ms. 172 

The 8-mm focal length lens yielded an IFOV of 0.93 mrad and an angular FOV of 50° with 173 

a spatial resolution of 20 cm (Fig. 2a) (further information regarding the setup of 174 

micro-hyperspec VNIR can be obtained from Zarco-Tejada et al., 2016). 175 

 176 

The micro-hyperspec NIR-100 camera was flown with a configuration of 165 spectral 177 

bands and 16-bit radiometric resolution in the spectral region of 950 to 1750 nm, yielding 178 

6.05 nm FWHM with a 25-µm slit and an optical aperture of f/1.4. The FWHM and the 179 

center wavelength for each spectral band were derived after spectral calibration using a 180 

Cornerstone 260 1/4m Monochromator (model 74100; Oriel Instruments, USA) and the 181 

XE-1 Xenon Calibration Light Source (Oceanic Optics, USA). The frame rate on board the 182 

aircraft was set to 50 fps with an integration time of 40 ms. The 12.5-mm focal length lens 183 

yielded an angular FOV of 38.6º with a spatial resolution of 60 cm (Fig. 2b). 184 
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Fig. 2. Sample hyperspectral VNIR (400-800 nm region) (a) and hyperspectral NIR (900-
1700 nm region) (b) imagery acquired during the 2015 and 2016 airborne campaigns 
performed at the trial sites at CA and SA-1, respectively. The central region of the plot was 
used to calculate hyperspectral indices and to quantify chlorophyll fluorescence.  
 
Radiometric calibration of the hyperspectral cameras and ortho-rectification of the imagery 185 

were carried out as described by Zarco-Tejada et al. (2016). Atmospheric correction of the 186 

imagery was performed using aerosol optical depth (AOD) and weather data to simulate the 187 

incoming irradiance using the SMARTS model (Gueymard, 1995; Gueymard et al., 2002), 188 

measured in the field concurrently with the airborne flights. The SMARTS model has been 189 

used in previous studies to calculate reflectance from both multispectral and hyperspectral 190 

imagery (Berni et al., 2009;  Zarco-Tejada et al., 2012, 2016; Calderón et al.,  2013, 2015). 191 

A further step was carried out to apply an empirical line calibration (Smith and Milton, 192 

1999) using field-measured spectra to remove noise. The average radiance and reflectance 193 

values of selected wheat plots from each trial site are shown in Fig. 3. 194 
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Fig. 3. Mean radiance in W·sr-1·m-2·nm-1 (a) and reflectance spectra (b) retrieved from 
hyperspectral cameras at EC (in blue), CA (in black), SA-1(in red) and SA-2 (in Green).  
 

 

2.4. Fluorescence retrieval and calculation of narrow-band indices from the airborne 195 

hyperspectral imagery 196 

The atmospheric O2-A oxygen absorption band at 760.5 nm was used for the fluorescence 197 

retrieval via the in-filling method. In particular, the Solar Induced Fluorescence (SIF) was 198 

quantified from the radiance spectra (Fig. 3a) using the Fraunhofer Line Depth (FLD) 199 

principle (Plascyk, 1975) as described in Zarco-Tejada et al. (2013; 2016). The SIF signal 200 

calculated using the in-filling method was based on two spectral bands in and out the O2-A 201 

feature, as described in Meroni et al. (2010). The FLD2 method used in this study extracted 202 

the radiance Lin (L762 nm) and Lout (L750 nm) from the airborne imagery, and the 203 

irradiance Ein (E762 nm) and Eout (E750 nm) from irradiance spectra concurrently measured 204 

at the time of the flights. Measurements were made using an ASD Field Spectrometer 205 

(FieldSpec Handheld Pro, ASD Inc., CO, USA) with a cosine corrector-diffuser probe for 206 
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the entire 400-1000 nm spectral region. A modelling study by Damm et al. (2011) 207 

quantified the effects of the spectral sampling interval, spectral resolution, signal to noise 208 

ratio (SNR) and the spectral shift on the accuracy of the fluorescence retrieval using the O2-209 

A feature. They demonstrated the feasibility of the SIF retrieval via the FLD methods with 210 

broader spectral bandwidths (i.e., 5-7 nm FWHM) when high spectral sampling (below 2.5 211 

nm) and SNR higher than 300:1 were available. These results agree with the fluorescence 212 

retrievals shown in Zarco-Tejada et al. (2012) and later in Damm et al. (2015) with APEX. 213 

According to these works, the hyperspectral configuration used in this study is suitable for 214 

the SIF retrievals (1.85 nm sampling interval, 6.4 nm bandwidths and SNR of 300:1 with 215 

spatial binning). 216 

 217 

Narrow-band indices were calculated from the average reflectance per plot using the 260 218 

spectral bands acquired by the micro-hyperspec VNIR, and from the 164 spectral bands 219 

acquired by the micro-hyperspec NIR cameras (Fig. 3b). In the SWIR region, the 220 

atmospheric water absorption spectral region (1330–1490 nm) was masked before analysis. 221 

Table 2 groups the vegetation indices (VIs) calculated from the micro-hyperspec VNIR into 222 

four categories related to: 1) structure, 2) chlorophyll concentration, 3) chlorophyll 223 

fluorescence, and 4) nitrogen indices (NIs) using NIR and SWIR spectral domains. 224 
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Table 2. Summary of the vegetation indices using the VNIR (400-800 nm region) and NIR 
(900-1700 nm region) hyperspectral airborne imagery. 

Indices Equation Reference 
Structural indices 
Normalized Diff. Veg. Index NDVI=(R800-R670)/ (R800+R670) Rouse et al. (1973) 
Opt. Soil-Adjusted Veg. Index  OSAVI=(1+0.16)( R800- R670)/( R800+ R670+0.16) Rondeaux et al. (1996) 
Renormalized Diff. Veg. Index RDVI=(R800-R670)/(R800+R670) 0.5 Roujean and Breon (1995) 
MCARI/MTVI2 MCARI/MTVI2 Eitel et al. (2007) 
Chorophyll a+b indices  
Transf. Chl. Absorp. Rfl. Index  TCARI = 3[(R700-R670)-0.2 (R700-R550)(R700/R670)] Haboudane et al. (2002) 
TCARI/OSAVI TCARI/OSAVI  Haboudane et al. (2002) 
Mod. Chl.  Absorp. Rfl. Index MCARI = [(R700-R670)-0.2 (R700-R550)](R700/R670) Daughtry et al. (2000) 
Pig. Spec. Simpl. Ratio Chl. b PSSRb =R800/R635 Blackburn (1998) 
Gitelson and Merzlyak Indices GM1=R750/R550; GM2=R750/R700 Gitelson and Merzlyak (1997) 
Vogelmann Index VOG=R740/R720 Vogelmann et al. (1993) 
Red-edge CI CI=R750/R710 Zarco-Tejada et al. (2001) 
Chlorophyll fluorescence (SIF) 

SIF FLD2=d-Rb;  where d=L762; R=(L762-L750)/(E762 –E750) and b=E762              Moya et al. (2004); Plascyk 
and Gabriel (1975) 

Nitrogen indices (NIs)   
Double-peak C. N  DCNI=(R720- R700)(R700-R670)/(R720- R670)+0.3) Chen et al. 2010 
TCARI1510 nm TCARI1510=3[(R700- R1510)-0.2 (R700- R550)]( R700/ R1510) Herrmann et al. 2010 

TCARI /OSAVI1510 nm  TCARI1510/ OSAVI1510= TCARI1510 /  
[(1+L) (R800- R1510)/ (R800+ R1510+L)] Herrmann et al. 2010 

MCARI1510 nm MCARI1510= [(R700- R1510)-0.2 (R700-R550)]( R700/ R1510) Herrmann et al. 2010 
GnyLi GnyLi=(R900* R1050) (R955* R1220) / (R900*R1050)+(R955*R1220) Gnyp et al. 2014 
Norm. Diff. N. Index NDNI=log(1⁄ R1510)-log(1⁄ R1680)/(log(1⁄ R1510) +log(1⁄R1680) Serrano et al. 2002 
N1645,1715 N1645,1715=(R1645-R1715)/( R1645+ R1715) Pimstein et al. 2011 
N870,1450 N870,1450=(R870- R1450)/(R870+ R1450) Pimstein et al. 2011 
N850,1510 N850,1510=(R850- R1510)/(R850+R1510) This study 

 
 

 

 

 

2.5. Modelling methods 225 

Radiative transfer simulations were carried out with PROSPECT (Jacquemoud and Baret, 226 

1990) linked to the SAILH model (Baret et al., 1992). Biophysical canopy parameters by 227 

means of numerical model inversion were estimated using look-up tables (LUT). The input 228 
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variables and their ranges in PROSPECT and SAILH models are shown in Table 3. The 229 

viewing geometry, defined by the solar zenith and azimuth, and the viewing angles needed 230 

to simulate canopy reflectance were extracted for each flight date.	 In order to minimize the 231 

impact of the viewing geometry at each flight	 date and time, a step of five degrees around 232 

the solar zenith angle during the flights was applied to the PROSPECT-SAILH radiative 233 

transfer model inversions. 234 

 

Table 3. Ranges of the main variables used in the PROSPECT-SAILH radiative transfer 
model inversions. 

 
  Model Symbol Quantity Ranges Step Unit 
PROSPECT N-struct Leaf structure parameter 1.25-1.85  0.1 … 
  Cab Chlorophyll a +b content 10-70 0.5 µg cm-2 
  Cw Equivalent water thickness 0.001-0.05 0. 0005 g cm-2 
  Cm Dry matter content 0.001-0.05 0. 0005 g cm-2 
  Cs Brown pigment content 0 … … 
  Sl Hot-spot parameter 0.001 … … 
SAILH LAI Leaf area index 2-5 0.1 … 
  LADF Leaf inclination distribution function 1,2,3 and 4* … … 
  TV Solar zenith angle 45º,60º,85º 5 deg 
  Phi Viewing zenith angle 0º … deg 
  PSR Relative azimuth angle 0º … deg 
* Canopy types proposed to define LADF: planophile (1), erectophile (2), plagiophile (3) and spherical (4).   
 

 

In this study two standard model inversions and one inversion method by steps were 235 

performed. The range of variation for Cab was determined on the basis of prior field 236 

information. In the standard model inversion method, the chlorophyll a+b, water and dry 237 

matter content were estimated at the same time, while in the inversion method by steps, the 238 

estimation of biophysical canopy parameters required consecutive steps (e.g.; as in Wang et 239 

al., 2015). The spectral range between 400 and 800 nm measured with the micro-hyperspec 240 

VNIR camera was used in the standard model inversion method (named here as INV-1), 241 
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while the entire spectral region (400 to 1700 nm) from both hyperspectral VNIR and NIR-242 

100 cameras was used in the full-range inversion (here called INV-2) and in the inversion 243 

model by steps. In the inversion by steps, the main input parameters were calculated using 244 

specific spectral ranges where the biophysical parameters have the greatest influence on the 245 

reflectance and transmittance. The procedure was conducted as follows: 1) leaf angle 246 

distribution function (LADF) was estimated over the entire spectral domain (400-1750 nm) 247 

with variables Cab, Cw and Cm according to Table 3. LADF was firstly retrieved by model 248 

inversion, given its key role on canopy structure; 2) the mesophyll structure parameter (N-249 

struct) and leaf area index (LAI) were simultaneously determined over the range 960–1300 250 

nm once the LADF had been fixed to the value retrieved in the first step, and with variable 251 

Cab, Cw and Cm according to Table 3; 3) Cab was determined over the range 455–690 nm, 252 

with Cw and Cm according to Table 3, fixing LADF, LAI and N determined in previous 253 

steps; 4) Cw and Cm were concurrently retrieved over 900–1700 nm, where water and dry 254 

matter have the largest absorption effects (Baret and Fourty, 1997; Feret et al., 2008; 255 

Fourty et al., 1996; Jacquemoud et al., 2009, 1996).  256 

 257 

The accuracy of the estimated parameters (LADF, N-struct, LAI, Cab, Cw and Cm) via 258 

model inversion was evaluated by the RMSE calculated between the simulated and 259 

measured canopy spectral reflectance. For each standard model inversion, a total of 500000 260 

inversions were carried in forward mode, whereas a total of 200000 inversions were used 261 

for the inversion method by steps. Finally, the coefficient of determination (r2) was 262 

calculated to investigate the relationship between the retrieved biophysical parameters (Cab, 263 

Cw and Cm) obtained by PROSPECT-SAILH model inversion and the ground-truth 264 

physiological measurements. 265 
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 266 

2.6. Statistical analysis  267 

Stepwise multiple regression analysis using forward mode and leave-one-out-cross-268 

validation (LOOCV) techniques were employed to select the best model to quantify N 269 

concentration using i) biophysical parameters derived from the different model inversion 270 

methods described above, ii) using narrow-band spectral indices calculated from the VNIR 271 

and NIR-100 hyperspectral imagery; and iii) evaluating the performance of the models with 272 

the addition of chlorophyll fluorescence quantified from the hyperspectral imagery. 273 

Therefore, statistical tests were employed to assess the robustness of each regression model 274 

built for nitrogen quantification with and without including solar-induced fluorescence 275 

emission retrieved from hyperspectral imagery. A residual analysis model was used to 276 

assess the independence of the residual, and the Shapiro-Wilk test for homoscedasticity to 277 

verify the normal distribution. The F-test was used to test the significance of the linear 278 

regression model, and Student’s t-test for the significance of individual regression 279 

coefficients. Independent data sets were used for the statistical analysis, using a training 280 

data set to build a multiple regression, and an independent second data set to assess the 281 

performance of each model under rainfed and irrigated conditions. The training data set 282 

comprised the plots located in EC, CA and SA-1, in which the main physiological 283 

measurements were made. The test data set was built by SA-1 and SA-2 plots and separated 284 

under rainfed and irrigated conditions. 	285 

	286 

The mean absolute error (MAE), root mean square error (RMSE), mean percentage error 287 

(MPE), mean absolute percentage error (MAPE) and coefficient of determination (r2) 288 

between the measured leaf nitrogen content and predicted values were used as skill scores 289 
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to validate the performance of each model.	 The statistical analysis was conducted in R 290 

software (R Core Team, 2015). 291 

 

 

 

3. Results 292 

3.1. Field measurements 293 

Mean values of the field physiological measurements and chlorophyll fluorescence 294 

retrieved from the airborne imagery for each field site under rainfed and irrigated 295 

conditions are shown in Table 4. The results revealed wide variations in the crop 296 

physiological status on all sites. As expected, the irrigated plots displayed overall better 297 

water and nutritional status than the rainfed plots. There were differences among the rainfed 298 

plots; average values of mean N concentration, assimilation rate (A), Gs, and SIF were 299 

lower in EC and SA-2 compared to CA and SA-1 (Table 4). The irrigated plots at SA-1, 300 

which were at an earlier stage of growth, and at SA-2, displayed an overall better water and 301 

nutritional status. These data confirmed the water and nutrient stress conditions in rainfed 302 

plots and a large variability among plots. 303 

 

 

 

 

 



19	
	

 

 

 

 

Table 4. Average N concentration (%), chlorophyll content derived from SPAD (Cab; 
µg·cm-2), net assimilation (A; µmol·m-2·s-1), stomatal conductance (Gs; mmol·m−2·s−1), 
leaf-water potential (ψL; MPa) and chlorophyll fluorescence (SIF in	 in Watt·sr-1·m-2·nm-2), 
under rainfed and irrigated conditions at EC, CA, SA-1 and SA-2. The standard deviation is 
also shown. 

  N 
concentration 

Cab 
(SPAD) 

A Gs ψL SIF 

Rainfed             
EC 2.50±0.46 23.4±3.7 7.7± 2.1 61.27±2 -2.3±0.2 3.74±0.62 
CA 3.28±0.34 28.0±3.6 11.3±2.1 71±24.8 -2.5±0.4 4.22±0.25 
SA-1 4.17±0.19 35.0±3.2 17.0±3.3 185.8±56.1 -2.4±0.2 4.88±0.57 
SA-2 2.63±0.32 26.0±2.4 10.0±2.5 121.8±40.5 -2.7±0.2 4.01±0.40 
 
Irrigated             

CA 3.37±0.04 28.5±2.3 14.7±4.1 270.6±65.4 -2.1±0.1 4.38±0.17 
SA-1 4.29±0.28 35.8±4.1 24.4±2.4 354.6±109.4 -1.7±0.2 5.71±0.29 
SA-2 2.95±0.31 29.3±3.9 18.3±2.4 283.2±65.2 -2.2±0.1 5.14±0.28 

 

3.2. Nitrogen concentration and narrow-band hyperspectral indices 304 

The solar induced fluorescence emission and narrow-band reflectance indices calculated 305 

from hyperspectral imagery were assessed against field measurements of nitrogen content, 306 

chlorophyll content measured with SPAD, and net assimilation	 (Table 5). The results 307 

showed that the NIR/SWIR-based NIs were marginally better predictors of nitrogen content 308 

than the VNIR indices, with the MCARI1510 and the NDNI (Fig. 4a) indices yielding the 309 

best correlation with nitrogen content (r2=0.69; p-value ≤ 0.005) as compared to MCARI 310 

(r2=0.63) and PSSRb (r2=0.63). The NIs that were modified to replace the 670nm band by 311 

the 1510 nm band due to its relationship with nitrogen absorption (TCARI1510, MCARI1510, 312 

TCARI/OSAVI1510) performed higher at quantifying canopy nitrogen content than their 313 
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corresponding VNIR-based indices. The N1645/1715 using exclusively reflectance in the 314 

SWIR domain showed significant relationship with N content (r2=0.64, p-value<0.005) but 315 

still marginally inferior to MCARI1510 and NDNI. Table 5 also shows that the indices most 316 

sensitive to canopy structure yielded significant relationships with nitrogen content 317 

(r2=0.57; p-value <0.005; NDVI). However, the structural indices exhibited saturation over 318 

dense canopy, as shown in Fig. 4b for NDVI which tends to saturate due to the higher 319 

canopy density at high nitrogen levels. Among the chlorophyll indices used in this study, 320 

PSSRb (Fig. 4c) obtained the best results for chlorophyll content estimation (r2=0.57, 321 

p-value ≤ 0.0005), yielding better results than NIs. The airborne-quantified chlorophyll 322 

fluorescence was also sensitive to nitrogen content (r2=0.51; p-value ≤ 0.005) and to the 323 

assimilation rate (r2=0.74; p-value ≤ 0.005; Fig. 4d), confirming other studies that 324 

demonstrated the link between airborne-retrieved chlorophyll fluorescence and the 325 

photosynthetic activity. 326 
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Table 5. Coefficient of determination (r2) and level of significance for the narrow-band 
hyperspectral indices and the solar induced chlorophyll fluorescence (SIF; Watt·m-2·sr-1· 
nm-1) quantified from hyperspectral imagery against N concentration, chlorophyll content 
derived from SPAD values (Cab-SPAD; µg·cm-2) and net assimilation (A; micromol/m2/s). 
 

 N concentration  Cab-SPAD Net assimilation (A) 
Indices r2 p-value r2 p-value r2 p-value 

Structural Indices           
NDVI 0.57  < 2.2e-16 0.53  < 2.2e-16 0.55 1.61E-08 
OSAVI 0.56  < 2.2e-16 0.49  < 2.2e-16 0.53 3.23E-08 
RDVI 0.56  < 2.2e-16 0.48  < 2.2e-16 0.53 3.92E-08 
MCARI/MTVI2 0.40 2.14E-13 0.25 2.14E-13 0.46 5.61E-07 
Chlorophyll a+b 
indices           

TCARI 0.54  < 2.2e-16 0.51  < 2.2e-16 0.60 1.02E-09 
TCARI/OSAVI 0.45 1.78E-15 0.30 8.64E-10 0.51 8.59E-08 
MCARI 0.63  < 2.2e-16 0.55  < 2.2e-16 0.57 4.78E-09 
PSSRb 0.63  < 2.2e-16 0.57  < 2.2e-16 0.66 3.72E-11 
GM1 0.36 8.32E-12 0.39 2.90E-13 0.47 3.62E-07 
GM2 0.52  < 2.2e-16 0.47 2.22E-16 0.26 4.79E-04 
VOG1 0.35 4.65E-10 0.32 1.75E-10 0.66 3.72E-11 
CI 0.31 1.31E-11 0.35 1.48E-11 0.47 3.62E-07 
Nitrogen Indices           
DCNI 0.56  < 2.2e-16 0.50  < 2.2e-16 0.59 1.77E-09 
TCARI1510 0.56  < 2.2e-16 0.44 1.78E-15 0.59 1.57E-09 
TCARI/OSAVI1510 0.52 2.35E-18 0.41 7.47E-14 0.63 2.26E-10 
MCARI1510 0.69  < 2.2e-16 0.56  < 2.2e-16 0.43 1.86E-06 
GnyLi 0.31 3.41E-10 0.31 2.36E-10 0.51 7.98E-08 
NDNI 0.69  < 2.2e-16 0.49  < 2.2e-16 0.61 5.75E-10 
N1645 0.64  < 2.2e-16 0.52  < 2.2e-16 0.59 1.57E-09 
N850-1450 0.64  < 2.2e-16 0.55  < 2.2e-16 0.63 2.26E-10 
NI850/1510 0.65  < 2.2e-16 0.53  < 2.2e-16 0.61 5.75E-10 
Fluorescence           
SIF 0.51  < 2.2e-16 0.35 1.37E-11 0.74 1.19E-11 
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Fig. 4. Relationships between N concentration (in %) vs. NDNI (a) and NDVI (b), Cab vs. 
PSSRb (c) and A vs. airborne-quantified SIF (d). For all relationships the significance level 
was p ≤0.0005. 
 

 

3.3. Nitrogen content and plant traits estimated by model inversion 327 

The coefficient of determination (r2) calculated between chlorophyll content (Cab), water 328 

content (Cw) and dry matter content (Cm) estimated by PROSPECT-SAILH model 329 

inversion and leaf-level physiological measurements (nitrogen content, net assimilation rate 330 

and chlorophyll content) are shown in Table 6. These results correspond with the method 331 

proposed in Wang et al. (2015) that used biophysical parameters retrieved by model 332 

inversion to evaluate the retrieval of leaf N concentration. In the present study, Cab 333 

estimated by model inversion by steps correlated with N concentration (r2=0.71; p-value ≤ 334 

0.0005; Fig. 5a), field-measured leaf Cab (r2=0.81; p-value ≤ 0.0005; Fig. 5b) and with the 335 

assimilation rate (r2=0.59; p-value ≤ 0.0005; Fig. 5c). Using this model-inversion approach 336 

by steps, the relationship between estimated and measured Cab content adjusted well with 337 

the 1:1 line for the entire dataset (Fig. 5b), yielding a RMSE=2.04	 µg·cm-2 and 338 
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MAPE=5.44%. The two standard model-inversion methods (INV-1 and INV-2) displayed 339 

quite different behavior; Cab was correctly estimated for plots with N concentration and Cab 340 

values that were higher than 3.5% and 30 µg·cm-2 respectively, while the retrievals failed 341 

for the plots with nitrogen and Cab values below these (see outliers in Fig. 5b). The two 342 

standard model inversion approaches thus yielded weaker results in their estimates of 343 

nitrogen content (RMSE ≥ 6.33	 µg·cm-2 and MAPE ≥ 17.68 %) than the model inversion 344 

by steps. 345 

 

Table 6. Coefficient of determination (r2) between estimated leaf Cab, Cm and Cw 
parameters by PROSPECT-SAILH model inversion by steps and by standard inversion 
methods (INV-1 and INV-2) vs. N concentration, leaf-measured Cab with SPAD, and net 
assimilation (A). 

	 N 
concentration  

Cab 
(SPAD) 

Net  
Assimilation 

(A) 
Chlorophyll content a+b (Cab) 	 	 	
By step	 0.71** 0.81** 0.59** 
INV-1	 0.012 0.008 0.001 
INV-2	 0.004 0.002 0 
Equivalent water thickness (Cw) 	 	 	
By step	 0.66** 0.56** 0.53** 
INV-1	 0.017 0.008 0.008 
INV-2	 0.27** 0.25** 0.19* 
Dry-matter content (Cm) 	 	 	
By step	 0.23** 0.1 0.18** 
INV-1	 0.49** 0.32** 0.30** 
INV-2	    0.38* 0.24** 0.23** 

** p-value < 0.0005; * p-value < 0.02 
 

 

Leaf equivalent water thickness retrieval by model inversion was significantly related to N 346 

concentration (r2=0.66; p-value ≤ 0.0005), while dry matter content showed significant (yet 347 

lower coefficients of determination than for Cw) yielding r2=0.23 (step inversion method) 348 

and r2=0.49 (INV-1 method) (in both cases p-value ≤ 0.0005). In this case, the coefficient 349 
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of determination was significantly affected by outliers, inducing an artificial increase in the 350 

correlation coefficients for INV-1 as compared to the step inversion method. In summary, 351 

the three leaf biochemical parameters Cab, Cw and Cm estimated by radiative transfer model 352 

inversion from the hyperspectral imagery were significantly related to leaf N concentration 353 

(p-value ≤ 0.0005 in all three cases), but Cab and Cw yielded higher relationship with N than 354 

Cm. 355 

 

  
Fig. 5. Chlorophyll content (Cab, µg·cm-2) estimated by model inversions vs. N 
concentration (in %) (a), chlorophyll content derived from SPAD (Cab-SPAD; µg·cm-2) (b), 
and leaf assimilation rate (A, µmol·m-2·s-1) (c). Black points correspond to inversion by 
steps, black crosses using the INV-1 method and open black circles using the INV-2 model 
inversion method. The dashed line is the 1:1 line. 
 
 

3.4. Leaf N estimation from the airborne hyperspectral imagery accounting for 356 

chlorophyll fluorescence 357 

The stepwise multiple regression and LOOCV methods built to estimate N concentration 358 

using the leaf biochemical constituents Cab, Cw and Cm obtained by model inversion, were 359 
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assessed accounting for the contribution of adding chlorophyll fluorescence. The statistical 360 

models built using all input parameters, with and without including SIF as predictor of 361 

nitrogen are shown in Table 7. The homoscedasticity and the normal distribution 362 

requirements were satisfied and passed the statistical test (F-Test). According to the t-test, 363 

the regression coefficients for Cab and SIF were significant at the 5% significance level. In 364 

contrast, Cm and Cw parameters were non-significant in some of the regression models (see 365 

Table 7). 366 

 
Table 7. Statistical tests for the validity of the regression models used to estimate N 
concentration. 

  F-test Shapiro-
Wilk  p-value (t-test) 

 p-value   W p-value Cab Cw Cm SIF 
 
Without Fluorescence             

N=f(Cab)  2.4E-13 0.98 0.55 2.4E-13      
N=f(Cab,Cw)  2.9E-16 0.98 0.64 6.2E-06 0.0003     
N=f(Cab,Cm)  7.5E-17 0.98 0.46 7.6E-14  8.2E-5   
N=f(Cab,Cw,Cm)  6.4E-17 0.98 ≥0.05 8.7E-06 0.5911 0.0906   
 
With Fluorescence              

N=f(Cab, SIF)  8.2E-27 0.97 0.35 7.8E-10 1.1E-14     
N=f(Cab,Cw,SIF)   1.4E-28 0.96 0.17 1.0E-06 0.0059   2.7E-13 
N=f(Cab,Cm,SIF)  1.1E-27 0.97 0.23 1.9E-10  0.0519 7.2E-12 
N=f(Cab,Cw,Cm,SIF)  1.2E-28 0.97 0.2 0.0013 0.0429 0.5395 1.8E-12 
 
 
The ability of each model to predict N concentration was assessed using the LOOCV scores 367 

described earlier, showing the results in Table 8. Based on these statistical scores, the 368 

multiple linear regression models using SIF as predictive variable considerably improved 369 

the accuracy of N estimation	 (r2
LOOCV ≥ 0.92; MAE LOOCV ≤ 0.19 and RMSE LOOCV ≤ 0.23). 370 

As a comparison, regression models without including fluorescence (SIF) reached 371 

significantly lower predictive power (r2
 LOOCV ≤ 0.77; MAE LOOCV ≥ 0.33 and RMSE LOOCV 372 



26	
	

≥ 0.40). The contribution of each variable is shown by standardized coefficients (β0; Table 373 

8). These results show that in models that include SIF as predictor, its contribution to the 374 

retrieval of N was higher than the rest of the predictors, being almost double than the 375 

contribution of Cab. In the models that did not use SIF as predictor, the estimated Cab by 376 

model inversion contributed the highest to N estimation.  377 

  

Regression Models r2 RMSE MAE MAPE Standard. coefficients (β0) 
 
Without Fluorescence     Cab Cw Cm SIF 

N=f(Cab)  0.68 0.47 0.39 12.0% 0.84 … .… … 
N=f(Cab, Cw)  0.74 0.41 0.34 9.9% 0.54 0.41 … … 
N=f(Cab, Cm) 0.77 0.40 0.33 9.7% 0.77 … -0.31 … 
N=f(Cab, Cw, Cm) 0.75 0.41 0.34 10.0% 0.70 0.11 -0.24 … 
 
With Fluorescence         
N=f(Cab, SIF) 0.92 0.23 0.19 5.9% 0.43 … … 0.63 
N=f(Cab, Cw, SIF) 0.92 0.22 0.18 5.6% 0.34 0.17 … 0.57 
N=f(Cab, Cm, SIF) 0.92 0.23 0.19 5.9% 0.44 … -0.10 0.57 
N=f(Cab, Cw, Cm, SIF) 0.93 0.20 0.18 5.5% 0.30 0.23 0.05 0.58 
 
Table 8. Performance of the regression models built to estimate N concentration using r2, 
RMSE, ME, MAE, MAPE and standardized coefficients as performance indicators.  
 

 

According to r2, RMSE, MAE and MAPE, the most accurate estimation was achieved by 378 

the regression model when the predictors were Cab, Cw, Cm and SIF, yielding 379 

r2
LOOCV = 0.93, RMSELOOCV = 0.20, MAELOOCV = 0.18 and the lowest MAPE (Table 8). 380 

Nevertheless, the rest of models with less number of parameters (therefore simpler) 381 

obtained accuracies only marginally lower (e.g. r2=0.93 & RMSE=0.20 for the most 382 

complex model using Cab, Cw, Cm and SIF as compared to r2=0.92 & RMSE=0.23 for the 383 

model using Cab and SIF). Figure 6 shows the scatter plots between the measured and 384 
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predicted N concentrationusing the model without (top plots) and with SIF as predictor 385 

(bottom plots). The models using SIF showed lower RMSE and better performance than the 386 

rest of the models that did not employ fluorescence as predictor.	387 

		 	
Fig. 6. Measured vs. estimated N concentration using the best regression LOOCV models 
without fluorescence (a,b) and with fluorescence (c,d) as a function of Cab (a), Cab, Cw and 
Cm (b), Cab and SIF (c) and Cab, Cw, Cm and SIF (d). The dashed line is the 1:1 line. 
 

Based on these results, the proposed models combining leaf biochemical constituents with 388 

and without SIF were evaluated as predictors for N concentration separately for rainfed and 389 

irrigated conditions. All models showed greater accuracies in predicting N concentration 390 

under rainfed (stress) conditions than under irrigated (non-water stress) conditions (e.g. best 391 

model performance yielded r2=0.93 (rainfed) vs. r2=0.88; (irrigated) (Table 9). As Figure 7 392 

shows, the plots were aligned over the 1:1 line for both cases of rainfed (Fig. 7a) and 393 

irrigated conditions (Fig. 7b). Under rainfed conditions, the models with SIF as predictor 394 
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yielded significantly higher scores (r2 ≥ 0.89, RMSE ≤ 0.26 and MAPE ≤ 6.8 %) than 395 

models without SIF as predictor (r2 ≥ 0.78, RMSE ≤ 0.37 and MAPE ≤ 9.46 %). 396 

 
Table 9. Statistics for r2, RMSE, ME, MAE, MPE and MAPE between measured and 
predicted N concentration under rainfed and irrigated conditions.  

 r2 RMSE MAE MPE MAPE 

Rainfed conditions      
 

Without Fluorescence      
N = f(Cab)  0.78 0.37 0.29 -1.44% 9.46% 
N = f(Cab, Cm)                      0.81 0.34 0.27 -1.12% 8.50% 
N = f(Cab, Cw)        0.86 0.36 0.23 -0.92% 7.54% 
N = f(Cab, Cw, Cm)         0.86 0.29 0.23 -0.84% 7.24% 
With Fluorescence      
N=f(Cab, SIF) 0.89 0.26 0.21 -0.65% 6.89% 
N = f(Cab, Cm, SIF)   0.89 0.26 0.22 -0.64% 6.86% 
N = f(Cab, Cw, SIF)         0.92 0.23 0.18 -0.45% 5.68% 
N = f(Cab, Cw, Cm, SIF)         0.93 0.22 0.18 -0.45% 5.65% 

Irrigated conditions      
 
 

Without Fluorescence      
N = f(Cab)         0.48 0.51 0.44 -2.03% 12.56% 
N = f(Cab, Cm)        0.59 0.45 0.37 -1.65% 10.50% 
N = f(Cab, Cw)                      0.76 0.35 0.29 -0.89% 8.05% 
N = f(Cab, Cw, Cm)        0.77 0.34 0.28 -0.85% 7.68% 
With Fluorescence      
N=f(Cab, SIF) 0.65 0.42 0.36 -1.41% 10.6% 
N = f(Cab, Cm, SIF)   0.77 0.34 0.27 -0.93% 7.89% 
N = f(Cab, Cw, SIF)        0.84 0.28 0.34 -0.58% 6.77% 
N = f(Cab, Cw, Cm, SIF)         0.88 0.25 0.20 -0.47% 5.63% 

 397 

Under irrigated conditions, the models that used SIF as predictor also showed the best 398 

performance. The model built with Cab and SIF displayed better accuracy in predicting 399 

nitrogen concentration (r2 = 0.65, RMSE = 0.42 and MAPE ≤ 10.6 %) than the model with 400 

Cab only (r2 = 0.48, RMSE = 0.51 and MAPE ≤ 12.56 %), indicating that the contribution of 401 

SIF was highly significant under both irrigated and non-irrigated conditions. 402 
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Fig. 7. Measured vs. estimated N concentration for rainfed (a) and irrigated conditions (b) 
using the model built with Cab, Cm and Cw biochemical constituents (estimated by model 
inversion) including fluorescence.	The solid line is the 1:1 line. 

 

These modelling methods enabled the quantification of N concentration from the 403 

hyperspectral imagery to show its spatial distribution in the context of precision agriculture 404 

and plant phenotyping experiments. Figure 8 shows the spatial distribution of N 405 

concentration using Cab, Cw, Cm and SIF as predictors (Figure 8a) over plots under rainfed 406 

(Figure 8b) and irrigated conditions (Figure 8c) at the SA field site during the 2016 407 

campaign. Higher values of nitrogen concentration (blue color) from the rainfed plots 408 

indicate a better physiological status, while low N values (red color) indicate stress levels 409 

as consequence of the rainfed conditions. In comparison with irrigated conditions, the N 410 

map clearly showed the lower values obtained in the rainfed fields, with average values of 411 

3.1± 0.18%; under irrigated conditions the average N concentration was higher (4.2± 412 

0.3%). This methodology enables an operational quantification of canopy N concentration 413 
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at the field level using high resolution hyperspectral remote sensing imagery and radiative-414 

transfer model inversion methods. 415 

 

Fig. 8. Map showing the spatial distribution of N concentration estimated using the model 
built with chlorophyll a+b (Cab), water content (Cw), dry matter content (Cm) and solar 
induced chlorophyll fluorescence (SIF) estimated from hyperspectral imagery (a) and used 
as predictors under irrigated (b) and rainfed (c) conditions at SA field site during the 2016 
airborne campaign. 
 
 416 

4. Discussion 417 

Several studies have focused on the estimation of canopy N concentration using remote 418 

sensing techniques. The main problem encountered is that N does not absorb radiation with 419 

distinct features to enable its direct quantification with reflectance data. Instead, proxies 420 

physiologically related to N which are potentially retrievable from remote sensing spectra 421 
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are proposed as the only feasible way of detecting nitrogen levels under nutrient-deficiency 422 

conditions. An example is the widely used SPAD meter, a hand held instrument that 423 

measures chlorophyll content and generally accepted to track N concentration at the leaf 424 

level (Ravier et al., 2017). Most of the studies that assess the retrieval of N through non-425 

destructive methods have been traditionally based on empirical models with spectral 426 

indices (i.e. spectral proxies) calculated from the visible (VIS) and near-infrared (NIR) 427 

regions (Clevers and Kooistra, 2012; Li et al., 2014), while only a few studies focused on 428 

radiative transfer model inversions and the relationships between retrieved parameters (i.e. 429 

biophysical parameters and biochemical constituents as proxies) and nitrogen (Thorp et al., 430 

2012; Wang et al., 2015). The present study evaluated these standard hyperspectral remote 431 

sensing techniques for the estimation of N concentration using narrow-band indices 432 

combining the VNIR and the SWIR region, but focusing on the potential contribution of a 433 

new indicator such as the radiance-based fluorescence SIF for improving the performance 434 

of N estimation. According to the results obtained by the regression models built with Cab, 435 

Cw, Cm and SIF from the stepwise multiple regression and LOOCV methods, the solar 436 

induced chlorophyll fluorescence quantified from the hyperspectral imagery significantly 437 

increased the performance for the estimation of N. This result confirms the findings of 438 

other studies that suggested a close link between fluorescence emission and nitrogen (Corp 439 

et al., 2003; Schächtl et al., 2005; Cendrero-Mateo et al., 2016). The contribution of SIF to 440 

predict N concentration was higher than that of Cab and leaf biochemical parameters such as 441 

dry matter and equivalent water thickness. In fact, models containing fluorescence emission 442 

among their predictors produced the most reliable nitrogen estimation when compared to 443 

models without SIF. The results indicated that SIF retrieval by the FLD method from high 444 

resolution hyperspectral imagery demonstrated its value for monitoring N concentration 445 
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under both rainfed and irrigated conditions in the context of precision agriculture and plant 446 

phenotyping studies. The solar induced chlorophyll fluorescence provides a potential new 447 

tool to estimate canopy N concentration, due to their close link with photosynthetic 448 

parameters such as the maximum rate of carboxilation and with plant functioning. These 449 

results agree with recent studies that showed the ability of such methods to evaluate crop 450 

physiological status under conditions of water stress, compared to hyperspectral narrow-451 

band indices (Herrmann et al., 2010; Ranjan et al., 2012; Gonzalez-Dugo et al., 2015; 452 

Zarco-Tejada et al., 2016).  This study also demonstrates that the biophysical parameters 453 

retrieved from a radiative transfer model at canopy scale are needed for better N 454 

concentration estimation due to the more robust quantification of the parameters as 455 

compared to single narrow-band hyperspectral indices. This agrees with Wang et al. (2015) 456 

who demonstrated that the combination of biophysical parameters (leaf chlorophyll, dry 457 

matter and water content) retrieved via PROSPECT model inversion provided a reliable 458 

tool to estimate N at leaf scale. They found a higher correlation between leaf nitrogen 459 

content and dry matter and water content than with chlorophyll. Our results indicate that, in 460 

the absence of chlorophyll fluorescence as predictor, chlorophyll a+b was the parameter 461 

most related with nitrogen. This result is in agreement with other studies that indicate that 462 

the chlorophyll is the most widely used proxy for N estimation (Herrmann et al., 2010; 463 

Homolová et al., 2013). In this regard, this study displayed that Cw and Cm contributions for 464 

predicting nitrogen concentration were lower than Cab and SIF in both rainfed and irrigated 465 

conditions. However, it was observed that under irrigated conditions the models showed 466 

lower accuracy at predicting N concentration, especially when Cab was the only predictor. 467 

Under the conditions of this experiment, the lower performance obtained for irrigated vs. 468 

rainfed conditions was likely due to the smaller range of variability found for the predictors 469 
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in the irrigated than in the rainfed plots. The results of this study showed that the 470 

contribution of SIF (which can be also derived from VNIR cameras) is superior than the 471 

contribution of the NIR-SWIR camera used here to estimate dry matter and equivalent 472 

water thickness. Considering the cost, complexity of operation, and the lower resolution 473 

generally obtained by SWIR cameras, the interest of retrieving SIF and chlorophyll content 474 

from a single VNIR camera outperforms the SWIR under the conditions and objectives of 475 

the present study. 476 

 477 

This work also demonstrates that the model inversion by steps yields more reliable 478 

retrievals than traditional inversions, which used the entire VNIR up to 1700 nm region to 479 

retrieve all parameters simultaneously. This result shows that model inversions conducted 480 

by steps reduced the ill-posed inverse problems (Combal et al., 2003; Wang et al., 2007; 481 

Yebra and Chuvieco, 2009; Li and Wang, 2011) and improves the parameter retrievals. Our 482 

results also confirm findings by Li and Wang (2011) regarding this issue.  483 

 484 

Another important result obtained in this study shows that the regression models built with 485 

parameters obtained by model-inversion yielded superior results than simple linear models 486 

based on spectral indices (Herrmann et al., 2010; Pimstein et al., 2011; Bao et al., 2013; 487 

Mahajan et al., 2014; Gnyp et al., 2014). This conclusion was true even when using 488 

narrow-band indices centered at 1510 and 850 nm, which are highly correlated with N 489 

concentration. Regarding hyperspectral indices, our results confirmed findings reported by 490 

Herrmann et al. (2010) that the use of the SWIR domain significantly improved the 491 

estimation of nitrogen concentration when compared to the visible and near-infrared region 492 

of the spectrum. In our case, the use of the SWIR spectral range to determine NIs provided 493 
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better quantification of N concentration than when only the VNIR region was used, in 494 

particular when using indices from bands centered at 1510 nm (Herrmann et al., 2010; 495 

Serrano et al., 2002). Among all indices, the NIs that combined 1510 nm and VNIR bands 496 

yielded the highest agreement with N concentration (e.g. r2=0.69 for MCARI1510 and 497 

r2=0.65 for NI1850/1510). However, these simple relationships obtained between N 498 

concentration and chlorophyll indices are affected by structure and the underlying soil. By 499 

contrast, the structural indices (e.g. NDVI) tend to saturate their values under dense 500 

canopies and with high nitrogen levels (Fig. 4b). Nevertheless, none of the hyperspectral 501 

index combinations outperformed the results obtained by model inversion when adding 502 

fluorescence (i.e. Cab+Cm+Cw+SIF), which was by far the best model for N estimation. 503 

 504 

An additional important topic is that the methodology used here for the airborne retrieval of 505 

chlorophyll fluorescence from radiance imagery is based on the work presented in previous 506 

studies (e.g.: Damm et al., 2015; Zarco-Tejada et al., 2016), confirming that the use of 507 

hyperspectral imagery acquired at broader spectral bands (i.e. with FWHM 2-7 nm) retains 508 

sufficient chlorophyll fluorescence signal to yield the most significant relationships against 509 

field-measured assimilation rates among all other image-derived indicators.  510 

 511 

An issue observed in this work is the potential limitations of the plot sizes normally used by 512 

plant breeders during their experimental designs. The plot dimension should be compatible 513 

with the spatial resolution of the imagery acquired by remote sensing. When the plots are 514 

too small, soil and background effects may play a critical role due to the mixing of the 515 

different components (i.e. soil and shadows) with the vegetation. This issue is important in 516 

the case in of the coarser resolution generally obtained by SWIR cameras. New sensors 517 
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carried on board drones and low-altitude manned aircraft can potentially obtain high- and 518 

ultra-high resolutions, which are compatible with the standard phenotyping and plant 519 

breeding experiments. Nevertheless, plant breeding experimental design should be 520 

compatible with the spatial resolutions of the remote sensing sensors to be flown over the 521 

study sites. In this way, a line of at least 1/2 to 1 pixel as edge around the center of the plot 522 

is recommended.  523 

 524 

5. Conclusions  525 

The present study demonstrates that the airborne-quantified solar induced chlorophyll 526 

fluorescence (SIF) is a critical predictor for the estimation of N concentration under 527 

semi-arid and arid conditions when combined with chlorophyll a+b content and leaf 528 

parameters dry matter (Cm) and equivalent water thickness (Cw) plant traits retrieved by 529 

radiative transfer model inversion. When the models were built with airborne-quantified 530 

SIF, N estimation performance improved under both rainfed (water-stress) and irrigated 531 

conditions. Additionally, the models that combined SIF and chlorophyll a+b content 532 

performed better than standard empirical methods based on simple linear relationships with 533 

narrow-band hyperspectral indices. In addition, this work demonstrates that SWIR-based 534 

indices centered at 1510 nm yield more reliable agreements with N concentration (r2=0.69) 535 

than traditional chlorophyll indices (TCARI/OSAVI r2=0.45) proposed as proxy for N 536 

quantification. 537 

 538 

 539 

 540 
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