Introducing Axial Chirality into Mesoionic 4,4’-Bis(1,2,3-triazole) Dicarbenes

Jesus M. Aizpurua,* ${ }^{\text {a }}$ Maialen Sagartzazu-Aizpurua, ${ }^{\text {a }}$ Zaira Monasterio, ${ }^{\text {a }}$ Itxaso Azcune, ${ }^{a}$Claudio Mendicute, ${ }^{\text {a }}$ Jose I. Miranda, ${ }^{\text {a }}$ Eva García-Lecina, ${ }^{\text {b }}$ Ainhoa Altube, ${ }^{\text {b }}$ Raluca M. Fratila ${ }^{\text {c }}$${ }^{\text {a }}$ Departamento de Química Orgánica-I, Universidad del País Vasco UPV/EHU, Joxe Mari Korta R\&D Center, AvdaTolosa-72, 20018 San Sebastián, Spain${ }^{\text {b }}$ Departamento de Tratamientos de Superficie, CIDETEC-ik4, Paseo Miramón-196, 20009 San Sebastián, Spain${ }^{\text {c }}$ Faculty of Science and Technology, SupraMolecular Chemistry \& Technology (SMCT), University of Twente,7500 AE Enschede, The Netherlands
\#jesusmaria.aizpurua@.ehu.es
SUPPORTING INFORMATION
page

1. Preparation Details and Physical and Spectroscopic Data of Compounds 3a-c, 4a-c
1.1. General P2
1.2. Synthesis of 1,2,3-triazolium tetrafluoroborates 4b-c P2
1.3. Synthesis of 4,4’-bis($1 \mathrm{H}-1,2,3$-triazol-5,5'-diylidene)di[rhodium(I)(cod)chloride] complexes 3a-c P4
1.4. Determination of the Tolman Electronic Parameter for dicarbene complex 3a $\left[\mathrm{M}=\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]$ P6
1.5. Optical purity (chiral HPLC) of complexes 3a-c. P8
2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Compounds 3a-c $[\mathrm{M}=\mathrm{Ag}]$ and 3a-b $[\mathrm{M}=\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}]$. P9
3. Proton Affinity (PA1) Calculations for Mesoionic Carbenes 5-7 P17
3.1. Computational methods P17
3.2. Cartesian coordinates for structures $\mathbf{5 - 7}$ and protonated analogs $\mathbf{5}\left(\mathrm{H}^{+}\right) \mathbf{- 6}\left(\mathrm{H}^{+}\right)$ P18
4. Cyclic Voltammetry P21
4.1. General P21
4.2. Voltammograms of 3-methyl-1,2,3-triazolium salts (additional data) P22
5. X-Ray Crystal Analysis P24
5.1. Crystal structure determination for 3a-c P24
5.2. ORTEP plots of the crystal structures of compounds $\mathbf{3 a} \cdot \mathbf{C H}_{2} \mathbf{C l}_{2}, \mathbf{3 b}-\mathbf{c}$ P26

1. Preparation Details and Physical and Spectroscopic Data of Compounds

 3a-c, 4a-c1.1. General. All reactions were carried out under an atmosphere of nitrogen in oven or flame-dried glassware with magnetic stirring. Solvents were distilled prior to use. Acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ and dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ were distilled from calcium hydride. Methanol (MeOH) was dried over magnesium metal and iodine. Purification of reaction products was carried out by flash chromatography using silicagel 60 (230-400 mesh, from Merck 60F PF254). Analytical thin layer chromatography was performed on 0.25 mm silica gel $60-\mathrm{F}$ plates. Melting points were measured with a Büchi SMP-20 melting point apparatus and are uncorrected. Infrared spectra were recorded on a Bruker Alpha-P spectrophotometer. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance DPX300 and Bruker Avance500 spectrometers and are reported as δ values (ppm) relative to residual $\mathrm{CHCl}_{3} \delta \mathrm{H}(7.26 \mathrm{ppm})$ and $\mathrm{CDCl}_{3} \delta \mathrm{C}(77.16 \mathrm{ppm})$ as internal standards, respectively. Mass spectra were obtained with an Agilent HP 5973 mass spectrometer using a TOF analyzer (GCT Micromass). The preparation of some bis(1,2,3-triazole) compounds was previously reported: $\mathbf{4 a},{ }^{1} \mathbf{8 a}{ }^{2}$ and $\mathbf{9 a}{ }^{1}$.

1.2. Synthesis of $\mathbf{4 , 4}$ '-bis($\mathbf{1 H - 1 , 2 , 3 - t r i a z o l i u m})$ tetrafluoroborates 4b-c

Compound 4b: $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(0.15 \mathrm{mmol}, 37 \mathrm{mg})$ and sodium ascorbate ($0.30 \mathrm{mmol}, 59 \mathrm{mg}$) were added to a solution of 1-benzyl-4-ethynyl- $1 H-1,2,3$-triazole ${ }^{2}(0.76 \mathrm{mmol}, 105 \mathrm{mg})$ and (R) - α methylbenzyl azide ($1.14 \mathrm{mmol}, 168 \mathrm{mg}$) in $\mathrm{H}_{2} \mathrm{O}:^{t} \mathrm{BuOH}$:THF $1: 1: 1$ $(9 \mathrm{~mL})$ and the mixture was stirred at room temperature overnight. The solvent was evaporated in vacuo, the residue was suspended in aqueous $10 \% \mathrm{NH}_{3}$ and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was evaporated under reduced pressure to afford the intermediate 1-benzyl-1'-

[^0](R)- α-methylbenzyl-4,4'-bis-1H-1,2,3-triazole [Yield: 190 mg (76\%); m.p. $=172.1-173.3^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}=-19.52^{\circ}\left(\mathrm{c}=1.04, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$ IR $\left(\mathrm{cm}^{-1}\right): 1455(\mathrm{trz}) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{~s}$, $2 \mathrm{H}), 7.42-7.30(\mathrm{~m}, 10 \mathrm{H}), 5.88(\mathrm{q}, J=6.8,1 \mathrm{H}), 5.58(\mathrm{~s}, 2 \mathrm{H}), 2.02(\mathrm{~d}, J=7.0,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.6,140.0,139.5,134.3,129.2,129.1,128.9,128.7,128.2,126.6,120.5$, 119.4, 60.4, 54.3, 21.2; HRMS (ESI+): $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{6}{ }^{+}$: 331.1671; found: 331.1665]. To this material ($0.30 \mathrm{mmol}, 100 \mathrm{mg}$) dissolved under nitrogen atmosphere in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$, was added trimethyloxonium tetrafluoroborate ($1.20 \mathrm{mmol}, 228 \mathrm{mg}$) and the reaction mixture was stirred at room temperature overnight. The solvent was evaporated and the product was purified by crystallization from $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$ as a white powder. Yield: 140 $\mathrm{mg}(87 \%) ;$ m.p. $=77.1-78.2^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=-6.70^{\circ}\left(\mathrm{c}=1.68\right.$, acetone); IR $\left(\mathrm{cm}^{-1}\right): 1455$ (trz), 1065 $\left(\mathrm{BF}_{4}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 9.46(\mathrm{~s}, 1 \mathrm{H}), 9.45(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 10 \mathrm{H}), 6.40(\mathrm{q}, J=$ $6.9,1 \mathrm{H}), 6.02(\mathrm{~s}, 2 \mathrm{H}), 4.35(\mathrm{~s}, 3 \mathrm{H}), 4.34(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~d}, J=7.0,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO) $\delta 137.3,133.0,132.5,131.8,129.5,129.4,129.1,129.0,127.2,127.0,64.4,56.8,39.5$, 20.1; HRMS (ESI+): $m / z\left[\mathrm{M}-2 \cdot \mathrm{BF}_{4}-\mathrm{H}\right]^{+}$calcd: 359.1984; found: 359.1982.

Compound 4c: To a solution of 1,4-bis(trimethylsilyl)-1,3butadiyne ($1.37 \mathrm{mmol}, 266 \mathrm{mg}$) and (R)- α-methylbenzyl azide ($2.87 \mathrm{mmol}, 422 \mathrm{mg}$) in $\mathrm{H}_{2} \mathrm{O}:{ }^{t} \mathrm{BuOH} 1: 1(20 \mathrm{~mL}), \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ $(1.15 \mathrm{mmol}, 402 \mathrm{mg})$, sodium ascorbate $(2.30 \mathrm{mmol}, 456 \mathrm{mg})$, pyridine ($13.70 \mathrm{mmol}, 1.10 \mathrm{~mL}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.74 \mathrm{mmol}, 379 \mathrm{mg})$ were added and the reaction mixture was stirred vigorously for 24 hours. The solvent was evaporated in vacuo, the residue was suspended in aqueous $10 \% \mathrm{NH}_{3}(10 \%)$ and it was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was evaporated under reduced pressure to afford the intermediate $1,1^{\prime}$-bis $[(R)-\alpha$-methylbenzyl]-4,4’-bis-1H-1,2,3-triazole [Yield: 414 mg (88%); m.p. $=168.8^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}=-37.8^{\circ}\left(\mathrm{c}=1.05, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); IR (cm^{-1}): 1456 (trz); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{~s}, 2 \mathrm{H}), 7.43-7.30(\mathrm{~m}, 10 \mathrm{H}), 5.89(\mathrm{q}, J$ $=7.1,2 \mathrm{H}$), $2.09-1.97(\mathrm{~d}, J=7.1,6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.5,129.0,128.6$, 126.5, 119.4, 60.4, 21.2; HRMS (ESI+): $m / z[M]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{6}{ }^{+}$: 331.1671; found: 331.1665]. To this material ($1.08 \mathrm{mmol}, 371 \mathrm{mg}$) dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11 \mathrm{~mL})$, was added trimethyloxonium tetrafluoroborate ($4.31 \mathrm{mmol}, 838 \mathrm{mg}$) and the reaction mixture was stirred at room temperature overnight. The solvent was evaporated and the product was purified
by crystallization from $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$ as a white powder. Yield: 325 mg (55%); m.p. $=148.1-$ $148.9^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=-81.85^{\circ}\left(\mathrm{c}=0.56\right.$, acetone); IR $\left(\mathrm{cm}^{-1}\right): 1459$ (trz), $1050\left(\mathrm{BF}_{4}\right) .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO) $\delta 9.47(\mathrm{~s}, 2 \mathrm{H}), 7.59-7.41(\mathrm{~m}, 10 \mathrm{H}), 6.41(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.36(\mathrm{~s}, 6 \mathrm{H}), 2.07$ (d, $J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 137.3,131.9,129.4,129.1,127.1,64.4,39.5$, 20.1; HRMS (ESI+): $m / z\left[\mathrm{M}-2 \cdot \mathrm{BF}_{4}-\mathrm{H}\right]^{+}$calcd: 373.2141 ; found: 373.2145.

1.3. Synthesis of $4, \mathbf{4}^{\prime}$-bis($\mathbf{1 H - 1 , 2 , 3 - t r i a z o l - 5 , 5}$ '-diylidene)di[rhodium(I)(cod)chloride] complexes 3a-c

General procedure: To a solution of the corresponding 4,4'-bis(1H-1,2,3-triazolium) ditetrafluoroborate 4a-c (1.0 mmol) in anhydrous $\mathrm{MeCN}(15 \mathrm{~mL})$ was added $\mathrm{Ag}_{2} \mathrm{O}(3.0 \mathrm{mmol})$ and the mixture was refluxed for 24 hours at $80^{\circ} \mathrm{C}$. The suspension was filtered through a celite pad, washed with anhydrous methanol ($3 \times 5 \mathrm{~mL}$) and the combined filtrate was evaporated in vacuo to afford the corresponding intermediate $\operatorname{Ag}(\mathrm{I})$ dicarbene complex. The product was used in the next reaction without further purification. Dimer complex $[\mathrm{Rh}(\mathrm{I}) \mathrm{Cl}(\operatorname{cod})]_{2}(2.0 \mathrm{mmol})$ and tetramethylammonium chloride (2.0 mmol) were added to a solution of the corresponding $\mathrm{Ag}(\mathrm{I})$ dicarbene complex $(1.0 \mathrm{mmol})$ in dried $\mathrm{MeCN}(15 \mathrm{~mL})$ and the mixture was stirred for 2 hours at room temperature. Upon completion, it was filtered through a celite pad, which was rinsed with dichloromethane and the filtrate was evaporated in vacuo. The product was purified by column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 95: 5$) to afford a yellow solid.

Compound 3a: The general procedure 1.3. was followed starting from 3,3'dimethyl-1,1'-dibenzyl-4,4'-bis-1H-1,2,3-triazolium ditetrafluoroborate $\mathbf{4 a}(0.31 \mathrm{mmol}, 160 \mathrm{mg})$ and $\mathrm{Ag}_{2} \mathrm{O}(1.23 \mathrm{mmol}, 284$ mg) in anhydrous acetonitrile (5.30 mL). [Intermediate dicarbene $\mathrm{Ag}(\mathrm{I})$ complex: yellowish oil, yield: 187 mg (94\%); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 7.27-7.09(\mathrm{~m}, 10 \mathrm{H}), 5.57(\mathrm{~d}, J=14.2,2 \mathrm{H}), 5.41$ $(\mathrm{d}, J=14.3,2 \mathrm{H}), 4.22(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) δ 169.8 (carbene Ag-C), $137.4,134.2,128.9,128.4,128.2,58.1,37.7]$. The $\operatorname{Ag}(\mathrm{I})$ dicarbene complex ($0.02 \mathrm{mmol}, 10 \mathrm{mg}$) was reacted with the dimer complex $[\mathrm{Rh}(\mathrm{I}) \mathrm{Cl}(\mathrm{cod})]_{2}(0.02 \mathrm{mmol}, 8$
$\mathrm{mg})$ and tetramethylammonium chloride $(0.03 \mathrm{mmol}, 3 \mathrm{mg})$ in acetonitrile $(0.50 \mathrm{~mL})$. Yield: 11 mg (85%); m.p.: $140^{\circ} \mathrm{C}$ dec. $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ pentane); IR (cm $\left.{ }^{-1}\right): 2921$ (cod), 1455 (trz); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56-7.40(\mathrm{~m}, 10 \mathrm{H}), 6.56(\mathrm{~d}, J=14.5,2 \mathrm{H}), 5.77(\mathrm{~d}, J=14.5,2 \mathrm{H}), 5.10-5.02$ $(\mathrm{m}, 2 \mathrm{H}), 4.95-4.87(\mathrm{~m}, 2 \mathrm{H}), 4.82(\mathrm{~s}, 6 \mathrm{H}), 2.37-2.24(\mathrm{~m}, 4 \mathrm{H}), 2.09-2.04(\mathrm{~m}, 4 \mathrm{H}), 1.85-1.82$ $(\mathrm{m}, 2 \mathrm{H}), 1.71-1.53(\mathrm{~m}, 8 \mathrm{H}), 1.35-1.34(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.9\left(\mathrm{~d},{ }^{1} J_{R h C}=\right.$ 46.3), 135.5, 133.2, 128.8, 128.45, 128.3, 98.8 (d, $J=6.8$), 96.3 ($\mathrm{d}, J=7.3$), $69.7(\mathrm{~d}, J=14.6$), $68.1(\mathrm{~d}, J=14.3), 58.3,40.4,34.0,31.8,29.0,27.8$; HRMS (ESI +): $m / z[\mathrm{M}-\mathrm{Cl}]^{+}$calcd for: 801.1426; found: 801.1454.

Compound 3b: The general procedure 1.3. was followed starting
 from 3,3'dimethyl-1-benzyl-1'-(R)- α-methylbenzyl-4,4'-bis- $1 H$ -1,2,3-triazolium ditetrafluoroborate 4b ($0.19 \mathrm{mmol}, 100 \mathrm{mg}$) and $\mathrm{Ag}_{2} \mathrm{O}(0.63 \mathrm{mmol}, 146 \mathrm{mg})$ in anhydrous acetonitrile (5.30 mL). [Intermediate dicarbene $\mathrm{Ag}(\mathrm{I})$ complex: yellowish oil, yield 125 mg (72%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 7.27-7.00(\mathrm{~m}, 10 \mathrm{H}), 5.89$ $(\mathrm{m}, 1 \mathrm{H}), 5.55(\mathrm{~d}, J=15.2,2 \mathrm{H}), 5.41(\mathrm{~d}, J=13.5,2 \mathrm{H}), 4.23(\mathrm{~s}, 6 \mathrm{H})$, $1.90(\mathrm{~d}, J=6.8,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 170.1,168.4$ (carbene Ag-C), 138.6, 137.9, $137.4,134.5,129.2,128.7,128.5,128.1,127.5,63.7,58.4,38.0,20.4]$. The $\operatorname{Ag}(\mathrm{I})$ dicarbene complex ($0.04 \mathrm{mmol}, 30 \mathrm{mg}$) was reacted with the dimer complex $[\mathrm{Rh}(\mathrm{I}) \mathrm{Cl}(\operatorname{cod})]_{2}(0.04 \mathrm{mmol}$, $18 \mathrm{mg})$ and tetramethylammonium chloride ($0.07 \mathrm{mmol}, 8 \mathrm{mg}$) in acetonitrile (1.50 mL). Yield: 27 mg (87%); m.p.: $160^{\circ} \mathrm{C}$ dec. $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]_{\mathrm{D}}{ }^{20}=-128.6^{\circ}\left(\mathrm{c}=0.65, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR $\left(\mathrm{cm}^{-1}\right)$: 2921 (cod), 1455 (trz); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56-7.37(\mathrm{~m}, 10 \mathrm{H}), 7.08(\mathrm{q}, J=6.7,1 \mathrm{H})$, $6.56(\mathrm{~d}, J=14.5,1 \mathrm{H}), 5.76(\mathrm{~d}, J=14.5,1 \mathrm{H}), 5.06(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{~m}, 2 \mathrm{H}), 4.86(\mathrm{~s}, 3 \mathrm{H}), 4.83(\mathrm{~s}$, $3 \mathrm{H}), 2.43-2.23(\mathrm{~m}, 4 \mathrm{H}), 2.08(\mathrm{~d}, J=6.9,3 \mathrm{H}), 2.05-1.97(\mathrm{~m}, 4 \mathrm{H}), 1.89-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.49$ $(\mathrm{m}, 8 \mathrm{H}), 1.40-1.28(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.7\left(\mathrm{~d},{ }^{1} J_{R h C}=46.1\right), 172.2\left(\mathrm{~d},{ }^{1} J_{R h C}\right.$ $=46.2), 142.2,136.0,133.7(\mathrm{~d}, J=3.0), 133.0(\mathrm{~d}, J=3.0), 129.2,129.1,128.9,128.7128 .5$, 127.0, 99.2 (d, $J=6.9$), $99.1(\mathrm{~d}, J=6.8), 96.7(\mathrm{~d}, J=7.4), 96.5(\mathrm{~d}, J=7.4), 70.2(\mathrm{~d}, J=14.6)$, $70.0(\mathrm{~d}, J=14.7), 68.6(\mathrm{~d}, J=14.3), 68.3(\mathrm{~d}, J=14.4), 66.4,58.8,41.0,40.8,34.4,34.2,32.2$, 32.1, 29.6, 29.4, 28.3, 28.2, 23.0; HRMS (ESI+): $m / z[\mathrm{M}-\mathrm{Cl}]^{+}$calcd: 815.1583; found: 815.1584.

Compound 3c: The general procedure 1.3. was followed starting
 from 3,3'dimethyl-1,1'-bis((R)- α-methylbenzyl)-4,4'-bis-1H-1,2,3triazolium ditetrafluoroborate $\mathbf{4 c}(0.18 \mathrm{mmol}, 100 \mathrm{mg})$ and $\mathrm{Ag}_{2} \mathrm{O}$ ($0.54 \mathrm{mmol}, 125 \mathrm{mg}$) in anhydrous acetonitrile (4 mL). [Intermediate dicarbene $\mathrm{Ag}(\mathrm{I})$ complex: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}\right) \delta 7.22-7.01(\mathrm{~m}, 10 \mathrm{H}), 5.89(\mathrm{q}, J=7.0,2 \mathrm{H}), 4.25(\mathrm{~s}, 6 \mathrm{H})$, $1.90(\mathrm{~d}, J=7.0,6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 138.6,137.7$, $\left.128.5,128.0,127.5,63.7,38.0,20.4^{3}\right]$. The $\mathrm{Ag}(\mathrm{I})$ dicarbene complex ($0.04 \mathrm{mmol}, 30 \mathrm{mg}$) was reacted with dimer complex $[\mathrm{Rh}(\mathrm{I}) \mathrm{Cl}(\mathrm{cod})]_{2}(0.04 \mathrm{mmol}, 18 \mathrm{mg})$ and tetramethylammonium chloride $(0.07 \mathrm{mmol}, 8 \mathrm{mg})$ in acetonitrile $(1.5 \mathrm{~mL})$. Yield $=30 \mathrm{mg}(98 \%), \mathrm{m} . \mathrm{p} .=222^{\circ} \mathrm{C} \mathrm{dec}$. $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]_{\mathrm{D}}{ }^{20}=+364.4^{\circ}\left(\mathrm{c}=0.56, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR $\left(\mathrm{cm}^{-1}\right): 2926(\mathrm{cod}), 1454(\mathrm{trz}) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56-7.29(\mathrm{~m}, 10 \mathrm{H}), 7.07(\mathrm{q}, J=7.0,2 \mathrm{H}), 5.10-5.03(\mathrm{~m}, 2 \mathrm{H}), 4.94-4.87(\mathrm{~m}$, $2 \mathrm{H}), 4.85(\mathrm{~s}, 6 \mathrm{H}), 2.41-2.16(\mathrm{~m}, 4 \mathrm{H}), 2.08(\mathrm{~d}, J=7.1,6 \mathrm{H}), 2.06-1.94(\mathrm{~m}, 4 \mathrm{H}), 1.69-1.48(\mathrm{~m}$, $10 \mathrm{H}), 1.38$ - $1.25(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.3\left(\mathrm{~d},{ }^{1} J_{R h C}=46.2\right), 141.8,132.7$ (d, $J=2.6$), 128.8, 128.1, 126.6, $98.7(\mathrm{~d}, J=7.0), 96.1(\mathrm{~d}, J=7.5), 69.7(\mathrm{~d}, J=14.6), 68.0(\mathrm{~d}, J=$ 14.4), 66.0, 40.6, 33.9, 31.8, 29.2, 27.9, 22.6; HRMS (ESI+): m/z [M-Cl] ${ }^{+}$calcd: 829.1739; found: 829.1743.

1.4. Determination of the Tolman Electronic Parameter in dicarbene complex 3a $[\mathrm{M}=$ $\left.\mathbf{R h}(\mathbf{C O})_{2} \mathrm{Cl}\right]$

Dimer complex 3a $[\mathrm{M}]: \mathrm{Rh}(\mathrm{Cod}) \mathrm{Cl}(8 \mathrm{mg}, 10 \mu \mathrm{~mol})$ was dissolved in ca. 1 mL of dichloromethane and CO was bubbled though it for 1 hour, after which time the volume was reduced in vacuo and a light yellow precipitate appeared upon addition of hexane. The solid was decanted, further washed with hexane and dried in vacuo. Yield: $5.9 \mathrm{mg}(79 \%)$; IR (cm^{-1}): 2077, 2069, 1999 (C=O); ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.50-7.15(\mathrm{~m}, 10 \mathrm{H}), 6.17(\mathrm{~d}, J=14.4,2 \mathrm{H}), 5.80(\mathrm{~d}, J=14.4,2 \mathrm{H}), 4.45(\mathrm{~s}, 6 \mathrm{H})$.

[^1]The TEP value for 3a [$\left.\mathrm{M}=\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]$ was calculated from equation (1), ${ }^{4}$ correlating the Tolman parameter with the carbonyl stretch frequency $v_{\text {average }}(\mathrm{CO}) \operatorname{Ir}$ in $\mathrm{LIr}(\mathrm{CO})_{2} \mathrm{Cl}$ complexes, and equation (2), ${ }^{5}$ correlating the stretch frequencies $v_{\text {average }}(\mathrm{CO})$ Ir and $v_{\text {average }}(\mathrm{CO}) \mathrm{Rh}$.

Figure S1. FT-IR spectrum of compound $\mathbf{3 a}\left[\mathrm{M}=\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]$

The TEP values for $4,4^{\prime}$ '-bis ($1 H-1,2,3$-triazole- $5,5^{\prime}$ 'ylidene) ligand in the complex $\mathbf{3 a}$ were very similar to previously reported $1 H-1,2,3$-triazole-5-ylidenes $\left(\approx 2047 \mathrm{~cm}^{-1}\right)$ or 1,3-imidazole-2ylidenes $\left(\approx 2049 \mathrm{~cm}^{-1}\right) .{ }^{6}$

[^2]
1.5. Optical purity (chiral HPLC) of complexes 3a-c

Analytical HPLC was performed on a Waters-600E chromatograph (diode array UV detector), using a Daicel Chiralpak OD-H column. Eluent: $\mathrm{iPrOH} /$ hexane $30 / 70 ; 0.5-1 \mathrm{~mL} / \mathrm{min}, \lambda=227 \mathrm{~nm}$.

Figure S2. HPLC chromatograms of compound 3a-c [$\mathrm{M}=\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}]$

2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Compounds 3a-c $[\mathrm{M}=\mathrm{Ag}]$ and 3a-c[M= $\mathbf{R h}(\mathbf{c o d}) \mathrm{Cl}]$

The transient formation of the $\mathrm{Ag}(\mathrm{I})$-complexed intermediate cation carbene $\mathbf{6 a}$ is evidenced by ${ }^{1}$ H-NMR spectroscopy (Figure S3). Spectrum 1 (reaction time 0h); Spectrum 2 (reaction time 3 h); Spectrum 3 (reaction time 24h). Benzylic protons in $\mathbf{4 a}$ are magnetically equivalent (singlet at $\delta 5.89 \mathrm{ppm}$). Benzylic protons in $\mathbf{6 a}$ are also magnetically equivalent for each methylene group (singlet at $\delta 5.92 \mathrm{ppm}$; broad singlet at $\delta 5.65 \mathrm{ppm}$;). Benzylic protons in 3a are not magnetically equivalent (double doublet at $\delta 5.50 \mathrm{ppm}$), proving the creation of a chiral axis around the $\mathrm{C} 4-$ C4' bond. The chemical shift of the triazole CH protons (around 8.7-8.9 ppm) and N -methyl groups (4.0-4.2 ppm) are also consistent.

Figure S3. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectra $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ of the conversion of $\mathbf{4 a}$ into the $\mathrm{Ag}(\mathrm{I})$ complex of $\mathbf{3 a}[\mathrm{L}=\mathrm{MeCN}]$. The transient cation carbene complex $\mathbf{6 a}$ is formed.

The thermodynamic equilibration of the diastereomeric $\operatorname{Ag}(\mathrm{I})$ dicarbene complexes $\mathbf{3 b}-(R)$ and 3b-(S) checked by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy (Figure S4). Spectrum 1 (reaction time 8h); Spectrum 2 (reaction time 24h). Benzylic CH_{2} diastereotopic protons of $\mathbf{3 b}-(R)$ and $\mathbf{3 b}-(S)$ show as double doublets around $\delta 5.50 \mathrm{ppm}$. Benzylic $\mathrm{CH}(\mathrm{Me}) \mathrm{Ph}$ protons appear at 5.90 ppm for $\mathbf{3 b}-(R)$ and 5.70 ppm for 3b-(S). Slightly different methyl groups bonded to the triazole nitrogen appear at 4.2 ppm . After 24 h , the peaks of $\mathbf{3 b}-(S)$ vanished to give only diastereomer $\mathbf{3 b}-(R)$.

Figure S4. ${ }^{1} \mathrm{H}$-NMR Spectra $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right.$) of a mixture of the diastereomers $\mathbf{3 b}-(R)$ and $\mathbf{3 b}-(S)$ (spectrum 1) and thermodynamically equilibrated isomer $\mathbf{3 b}-(R)$ (spectrum 2) $[\mathrm{M}=\mathrm{Ag} ; \mathrm{L}$ $=\mathrm{MeCN}$] including insets of the benzylic protons and N -Me protons.

Figure S5. ${ }^{1} \mathrm{H}$-NMR Spectrum $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ of compound $\mathbf{3 a}[\mathrm{M}=\mathrm{Ag}]$

Figure S6. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 a}[\mathrm{M}=\mathrm{Rh}(\mathrm{cod}) \mathrm{Cl}]$

Figure S7. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ of compound $\mathbf{3 b}[\mathrm{M}=\mathrm{Ag}]$

Figure S8. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 b}[\mathrm{M}=\mathrm{Rh}(\mathrm{cod}) \mathrm{Cl}]$

Figure S9. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ of compound $\mathbf{3 c}[\mathrm{M}=\mathrm{Ag}]$

Figure S10. ${ }^{1} \mathrm{H}$-NMR Spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{3 c}[\mathrm{M}=\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}]$

Figure S11. ${ }^{13} \mathrm{C}$-NMR Spectrum ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of compound $\mathbf{3 a}[\mathrm{M}=\mathrm{Ag}]$

Figure S12. ${ }^{13} \mathrm{C}-\mathrm{NMR} \operatorname{Spectrum}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{3 a}[\mathrm{M}=\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}]$

Figure S13. ${ }^{13} \mathrm{C}$-NMR Spectrum ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of compound $\mathbf{3 b}[\mathrm{M}=\mathrm{Ag}]$

Figure S14. ${ }^{13} \mathrm{C}-\mathrm{NMR} \operatorname{Spectrum}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 3b $[\mathrm{M}=\mathrm{Rh}(\mathrm{cod}) \mathrm{Cl}]$

Figure S15. ${ }^{13} \mathrm{C}$-NMR Spectrum ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of compound $\mathbf{3 c}[\mathrm{M}=\mathrm{Ag}]$

Figure S16. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 c}[\mathrm{M}=\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}]$

3. Proton Affinity (PA1) Calculations for Mesoionic Carbenes 5-7

3.1. Computational Methods: Geometry optimizations without symmetry constraints were carried out using the Gaussian09 ${ }^{7}$ optimizer energies and gradients at the $\mathrm{BP} 86^{8} /$ def2-SVP ${ }^{9}$ level of theory (BP-I). Stationary points were characterized as minima and thermodynamic corrections were derived by calculating the Hessian matrix analytically at such level of theory. Kohn-Sham orbitals were also taken from these calculations. The standard state for all thermodynamic data is 298.15 K and 1 atm. Single-point energies have been calculated with BP86 and MP2 using the def2-TZVPP ${ }^{10}$ basis set (BP-II, MP2-II). The NBO 11 analyses were carried out with the internal module of Gaussian 09 at BP-II and without using the resolution of the identity approximation.

The PA1 protonation affinities (in kcal. mol^{-1}) and HOMO/LUMO orbital energies (in Hartrees) computed for carbene structures 5-7 are collected in Figure (S17).

Figure S17. Protonation reactions of 4,4'-bis(1,2,3-triazole)-5-ylidenes 5-7

[^3]
3.2. Cartesian coordinates for structures $5-7$ and protonated analogs $5\left(\mathrm{H}^{+}\right)-\mathbf{6}\left(\mathrm{H}^{+}\right)$

$\mathrm{E}($ RB-P86 $)=-600.715218588$

H	-4.95069	-0.00085	-0.00440
H	4.27187	-1.62924	-0.90042
H	4.27185	-1.62906	0.90077
H	4.93458	-0.19948	0.00006
N	1.49433	1.23250	-0.00001
C	1.07974	2.63446	-0.00003
H	0.48996	2.85986	-0.91075
H	1.99386	3.25418	0.00000
H	0.48988	2.85987	0.91064
N	-1.40735	-1.20805	-0.00000
C	-0.91119	-2.59056	-0.00001
H	-0.27634	-2.75230	0.88982
H	-0.27663	-2.75241	-0.89003
H	-1.80087	-3.24525	0.00016

$E($ RB-P86 $)=-640.393911372$

$\mathrm{E}($ RB-P86 $)=-639.95882817$

5(H^{+})			
C	0.61300	-0.07241	-0.00001
C	-0.82853	-0.20530	-0.00002
c	-1.89893	0.70044	-0.00012
N	-1.34966	-1.48263	-0.00017
H	-1.97364	1.79215	-0.00023
C	1.55640	-1.10418	-0.00005
H	1.41202	-2.18974	-0.00006
N	-2.64671	-1.41444	0.00037
N	-2.99853	-0.09935	-0.00001
C	-4.41284	0.27182	-0.00001
N	2.68125	0.83131	-0.00012
N	2.77400	-0.48803	-0.00002
C	4.10091	-1.11723	-0.00003
H	-4.49866	1.37310	-0.00026
H	-4.90204	-0.14251	0.90235
H	-4.90215	-0.14292	-0.90213
H	4.21050	-1.74202	-0.90687
H	4.21042	-1.74223	0.90667
H	4.85466	-0.31070	0.00009
N	1.37270	1.08013	0.00004
C	0.92001	2.47114	0.00014
H	0.31959	2.66828	-0.90936
H	1.81808	3.11372	0.00013
H	0.31966	2.66819	0.90970

$\mathrm{E}(\mathrm{RB}-\mathrm{P} 86)=-601.167982597$

C	4.22763	-0.74724	-0.87887
H	-4.27915	0.77006	-1.98426
H	-4.39762	1.75879	-0.46277
H	-4.97183	0.03770	-0.47533
H	4.27839	-0.77269	-1.98412
H	4.39844	-1.75798	-0.46052
H	4.97170	-0.03661	-0.47728
N	1.49823	0.96663	0.51852
C	1.05705	2.10245	1.34723
H	0.74440	2.94202	0.69562
H	1.91732	2.41653	1.96586
H	0.22149	1.78066	1.99576
N	-1.49821	-0.96656	0.51867
C	-1.05701	-2.10226	1.34754
H	-0.74436	-2.94191	0.69604
H	-1.91727	-2.41627	1.96623
H	-0.22145	-1.78037	1.99601

$E($ RB-P86 $)=-640.694415875$

4. Cyclic Voltammetry

4.1. General: Electrochemical experiments were performed with a multi-channel potentiostat (VMP3, Bio-Logic-Science Instruments, France) using a conventional three-electrode electrolytic cell at room temperature. To minimize contamination, a double-junction system consisting of a $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode separated from the measured solution by a second solution (supporting electrolyte) was selected. A Pt wire was used as counter electrode, separated from the bulk solution by a porous frit. All potentials were reported against the ferrocene/ferrocenium $\left(\mathrm{Fc} / \mathrm{Fc}+\right.$) redox couple $\left(\mathrm{E}^{\mathrm{o}}=0.508 \mathrm{~V}\right.$ vs $\left.\mathrm{Ag} / \mathrm{AgCl}\right)$.

The working electrode consisted on a rod of glassy carbon (SIGRADUR® G, HTW, 5 mm diameter) with $0.2 \mathrm{~cm}^{2}$ of exposed geometric area (lower surface of the glassy carbon rod). The working electrode was polished, sonicated, rinsed with ethanol and dried prior to each experiment. All glass material was washed in piranha solution ($3: 1 \mathrm{H}_{2} \mathrm{SO}_{4}: \mathrm{H}_{2} \mathrm{O}_{2}$) to remove organic residues and dried in an oven $\left(90^{\circ} \mathrm{C}, 1\right.$ hour) before each set of experiments.

The supporting electrolyte was a N,N-dimethylformamide (DMF, Sigma Aldrich) solution of 0.1 M tetrabutylammonium hexafluorophosphate (TBAFP, Fluka). The DMF used in the experiments was of Biotech grade, purchased in sure-sealed containers under nitrogen. The TBAFP was dried at $120^{\circ} \mathrm{C}$ for 12 hours before use. The electrolytes were prepared in a controlled environment (e.g. glove box), purged with nitrogen for 30 min previous to the onset of
the experiment and maintained under a positive pressure of nitrogen throughout the entire electrochemical test.
4.2. Voltammograms of 3-methyl-1,2,3-triazolium salts (additional data): The cyclic voltammetry analysis of monoheterocyclic triazolium compounds 11a-c (Figure S18) was conducted to compare their redox behaviour to the $4,4^{\prime}$-bis-($1,2,3$-triazolium) salts $\mathbf{4 a}$ and $\mathbf{9 a}$ (Figure 3, main text). Compounds 11a-c showed very similar and well defined cathodic carbene (1a-1c) formation peaks between -1.58 V and -1.61 V , irrespective of the electrodonating or electron-withdrawing nature of the Ar substituents. Triazole 10a remained unchanged within the potential interval tested.

Figure S18. Cyclic voltammetry analysis of triazolium tetrafluoroborates 11a-c

Compounds 10a ${ }^{12}$ and 11a ${ }^{13}$ were previously known. Novel triazolium tetrafluoroborates 11b-c were prepared from their parent triazoles $\mathbf{1 0 b}^{14}$ and $\mathbf{1 0 c}{ }^{15}$ following the General Procedure 1.2.2.

Compound 11b: Yield $=85 \%$; M.p. $=102.2-103.0^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{cm}^{-1}\right): 3066,2929,1500$ (trz), 1049 $\left(\mathrm{BF}_{4}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.50(\mathrm{~s}, 1 \mathrm{H}), 7.68-7.36(\mathrm{~m}, 7 \mathrm{H}), 7.23-7.13(\mathrm{~m}, 2 \mathrm{H}), 5.72$ ($\mathrm{s}, 2 \mathrm{H}$), $4.20(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 164.4(\mathrm{~d}, J=254.0), 142.5,131.9(\mathrm{~d}, J=$

[^4]9.0), 131.1, 129.8, 129.6, 129.34, 128.2, 118.0, 116.9 (d, $J=22.3$), 57.4, 38.4. HRMS (ESI+): $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{~F}^{+}: 268.1250$; found 268.1245.

Compound 11c: Yield=70\%; M.p. $=144.4-145.3^{\circ} \mathrm{C}$. IR $\left(\mathrm{cm}^{-1}\right): 3133,1502($ triz $), 1014\left(\mathrm{BF}_{4}\right)$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.53(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.40(\mathrm{~m}, 7 \mathrm{H}), 7.03(\mathrm{~d}, J=8.8,2 \mathrm{H}), 5.77(\mathrm{~s}$, $2 \mathrm{H}), 4.23(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.29,143.61,131.29,130.96$, 129.97, 129.74, 129.49, 127.97, 115.20, 113.62, 57.63, 55.53, 38.31. HRMS (ESI+): $m / z[M]^{+}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}^{+}$: 280.1450; found 280.1451.

5. X-Ray Analysis

5.1. Crystal structure determination for 3a-c: Crystals were grown by slow vapor diffusion of pentane into a solution of $\mathbf{3 a - c}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature. The quality of the crystals of compounds $\mathbf{3 a} \cdot \mathbf{C H}_{2} \mathbf{C l}_{2}, \mathbf{3 b} \mathbf{- c}$ was checked under the polarizing miscroscope and a fragment of adequate dimensions was mounted on a Mitegen Micromesh ${ }^{\mathrm{TM}}$ using inert oil. Data collection for sample $\mathbf{3 a} \cdot \mathbf{C H}_{2} \mathbf{C l}_{\mathbf{2}}$ was carried out on a Oxford Diffraction (now Agilent) Xcalibur 2 diffractometer equipped with a Sapphire2 CCD area detector at 50 mm from the crystal, using graphite-monochromated Mo $K \alpha$ radiation ($\boldsymbol{\lambda}=0.71073 \AA, 0.5 \mathrm{~mm}$ collimator); and for $\mathbf{3 b} \mathbf{- c}$, on an Agilent Supernova diffractometer equipped with an Atlas CCD area detector at 55 mm from the crystal, using a microfous $\mathrm{Cu} K \alpha$ source ($\lambda=1.54148 \AA, 0.25 \mathrm{~mm}$ FWHM). All data collections were performed at $100(1) \mathrm{K}$ using an Oxford Cryosystems Cryostream 700 cooler.

Data reduction was performed with CrysAlisPro ${ }^{16}$. The intensities were corrected for Lorentz and polarization effects; and for absorption, using an analytical numeric absorption correction with a multifaceted crystal model. ${ }^{17}$ The structures were solved using the charge-flipping

[^5]algorithm as implemented in Superflip, ${ }^{18}$ which revealed the positions of all non-hydrogen atoms. The non-hydrogen atoms were refined anisotropically. All hydrogen atoms were located in the positions indicated by a difference electron density map, and were placed in geometrically calculated positions and refined using a riding model. The refinement of the structures was carried out on F^{2} against all reflections, by using full-matrix least-squares procedures with the SHELXL97 ${ }^{19}$ program. The Flack parameter values for compounds 3b and 3c, $-0.012(4)$ and $0.035(7)$ respectively, indicate that the absolute structure has been determined correctly. ${ }^{20}$

The $-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$ groups of one of the cyclooctadiene ligands in compound $\mathbf{3 a} \cdot \mathbf{C H}_{2} \mathbf{C l}_{2}$ are disordered over two positions with occupancy factors in the aproximate ratio 70:30, so that the cod ligand displays two different conformations. In the crystal structure of compound 3b there are two molecules in the asymmetric unit $\left(Z^{\prime}=2\right)$. Both of them are disordered between two molecular orientations which can be regarded as being related by rotation about the pseudo 2-fold axis passing through the midpoint of the $\mathrm{C} 4-\mathrm{C} 4$ ' chiral axis. Both molecular orientations have about equal populations, with the Bn group of one orientation and the $(R)-\mathrm{CHMePh}$ of the other occupying the same sites. This disorder affects the intra- and intermolecular interactions, extends to whole molecules, and makes all thermal ellipsoids (ADPs) larger and more elongated than expected, mainly those of the phenyl groups.

[^6]Table S1. Crystal data and structure refinement.

	3a. $\mathrm{CH}_{2} \mathrm{Cl}_{\mathbf{2}}$	3b	3c
CCDC deposit number	851376	851377	851378
Empirical formula	$\mathrm{C}_{36} \mathrm{H}_{44} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{Rh}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{C}_{37} \mathrm{H}_{46} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{Rh}_{2}$	$\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{Rh}_{2}$
Formula weight [$\mathrm{g} \mathrm{mol}^{-1}$]	922.42	851.52	865.54
Temperature [K]	100(1)	100(1)	100(1)
Wavelenght [\AA]	0.71073	1.54184	1.54184
Crystal colour, habit	yellow, prism	yellow, prism	yellow, prism
Crystal dimensions [mm]	$0.32 \times 0.24 \times 0.23$	$0.25 \times 0.21 \times 0.15$	$0.22 \times 0.18 \times 0.17$
Crystal system	triclinic	orthorhombic	orthorhombic
Space group	$P-1$	$\mathrm{P} 22_{1} 2_{1}{ }_{1}$	$\mathrm{P} 22_{1} 2_{1}$
a [\AA]	11.2161(2)	11.5888(1)	12.2404(1)
$b[\AA]$	11.3765(2)	20.8645(2)	16.9563(1)
$c[\AA]$	16.4230(4)	29.5473(3)	17.6791(1)
$\alpha\left[{ }^{\circ}\right]$	80.240(4)	90	90
$\beta\left[{ }^{\circ}\right]$	79.998(2)	90	90
$\gamma\left[{ }^{\circ}\right]$	65.672(2)	90	90
$V\left[\AA^{3}\right]$	1869.23(7)	7144.38(12)	3669.33(4)
Z, Z^{\prime}	2,1	8,2	4, 1
$F(000)$	936	3472	1768
$D_{x}\left[\mathrm{~g} \mathrm{~cm}^{-3}\right]$	1.639	1.583	1.567
$\mu\left[\mathrm{mm}^{-1}\right]$	1.205	9.123	8.892
Data collection 2θ range [${ }^{\circ}$]	1.98-30.5	2.59-75.0	3.61-75.0
$(\mathrm{hkl})_{\text {min }},(\mathrm{hkl})_{\text {max }}$	(-16-16-23),(16 1623)	(-14-23-36),(14 2636)	(-11-20-22),(15 2121)
Total reflections measured	41426	45967	26162
Symm. independent reflections, $R_{\text {int }}$	11403, 0.033	14537, 0.043	7495, 0.024
Reflections with $I>2 \sigma(I)$	9515	13502	7448
Parameters refined, restraints	481, 130	876,24	438, 0
Final $R(F)[I>2 \sigma(I)$, all data]	$0.0261,0.0346$	$0.0379,0.0425$	$0.0167,0.0168$
Final $w R\left(F^{2}\right)[I>2 \sigma(I)$, all data $]$	0.0666, 0.0690	$0.0797,0.0828$	0.0421, 0.0422
Goodness of fit	1.039	1.033	1.036
Final $(\Delta / \sigma)_{\text {max }},(\Delta / \sigma)_{\text {mean }}$	$0.001,0.000$	0.001, 0.000	0.002, 0.000
$\Delta \rho(\max , \min)\left[\mathrm{e} \AA^{-3}\right]$	0.83, -0.67	$1.03,-1.09$	0.39, -0.38
Flack parameter	-	-0.035(7)	-0.012(4)
$\left.\sigma\left(d_{(} \mathrm{C}-\mathrm{C}\right)\right)[\AA]$	0.0033	0.0089	0.0031

5.2. ORTEP plots of the crystal structures of compounds $3 \mathrm{a} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{3 b}-\mathrm{c}$:

Figure S19. ORTEP plot of $\mathbf{3 a} \cdot \mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$.

Figure S20. ORTEP plot of 3b.

Figure S21. ORTEP plot of 3c.

[^0]: ${ }^{1}$ Aizpurua, J. M.; Sagartzazu-Aizpurua, M.; Monasterio, Z.; Azcune, I.; Miranda, J. I.; García-Lecina, E.; Fratila, R. M. Synthesis, 2011, 2737-2742.
 ${ }^{2}$ Monkowius, U.; Ritter, S.; König, B.; Zabel, M.; Yersin, H. Eur. J. Inorg. Chem., 2007, 4597-4606.

[^1]: ${ }^{3}$ Carbene signal not observed. For similar examples, see Garrison, J. C.; Youngs, W. J. Chem. Rev. 2005, 105, 39784008.

[^2]: ${ }^{4}$ Kelly III, R. A.; Clavier, H.; Giudice, S.; Scott, N. M.; Stevens, E. D.; Bordner, J.; Samardjiev, I.; Hoff, C. D.; Cavallo, L.; Nolan, S. P. Organometallics, 2008, 27, 202-210.
 ${ }^{5}$ Wolf, S.; Plenio, H. J. Organomet. Chem., 2009, 694, 1487-149.
 ${ }^{6}$ Mathew, P.; Neels, A.; Albrecht, M. J. Am. Chem. Soc. 2008, 130, 13534-13535.

[^3]: ${ }^{7}$ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
 8 (a) Becke, A. D. Phys. Rev. A 1988, 38, 3098. (b) Perdew, J. P. Phys. Rev. B 1986, 33, 8822-8824.
 9 Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
 ${ }^{10}$ Weigend, F.; Phys. Chem. Chem. Phys. 2006, 8, 1057-1065.
 ${ }^{11}$ Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899-926.

[^4]: ${ }^{12}$ Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V. Org. Lett., 2004, 6, 2853-2855.
 ${ }^{13}$ Kilpin, K. J.; Paul, U. S. D.; Lee, A.-L.; Crowley, J. D. Chem. Commun., 2011, 47, 328-330.
 ${ }^{14}$ Park I. S.; Kwon, M. S.; Kim, Youngkwon; Lee, J. S.; Park, J. Org. Lett., 2008, 10, 497-500.
 ${ }^{15}$ Asano, K.; Matsubara, S. Org. Lett., 2010, 12, 4988-4991.

[^5]: ${ }^{16}$ Oxford Diffraction (2011). CrysAlisPro software, Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
 ${ }^{17}$ Clark, R. C.; Reid, J. S. Acta Cryst. A 1995, 51, 887-897.

[^6]: ${ }^{18}$ Palatinus L.; Chapuis G. J. Appl. Cryst. 2007, 40, 786-790.
 ${ }^{19}$ (a) Sheldrick, G.M. SHELXL97, Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1997. (b) Sheldrick, G. M. Acta Cryst. A 2008, 64, 112-122.
 ${ }^{20}$ (a) Flack, H. D. Acta Cryst. A, 1983, 39, 876-881. (b) Flack, H.D.; Bernardinelli, G. Acta Cryst. A 1999, 55, 908915.; (c) Flack, H.D.; Bernardinelli, G. J. Appl. Cryst. 2000, 33, 1143-1148.

