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ABSTRACT

Adequate read filtering is critical when processing
high-throughput data in marker-gene-based studies.
Sequencing errors can cause the mis-clustering of
otherwise similar reads, artificially increasing the
number of retrieved Operational Taxonomic Units
(OTUs) and therefore leading to the overestimation
of microbial diversity. Sequencing errors will also re-
sult in OTUs that are not accurate reconstructions of
the original biological sequences. Herein we present
the Poisson binomial filtering algorithm (PBF), which
minimizes both problems by calculating the error-
probability distribution of a sequence from its quality
scores. In order to validate our method, we quality-
filtered 37 publicly available datasets obtained by se-
quencing mock and environmental microbial commu-
nities with the Roche 454, Illumina MiSeq and Ion-
Torrent PGM platforms, and compared our results to
those obtained with previous approaches such as
the ones included in mothur, QIIME and USEARCH.
Our algorithm retained substantially more reads than
its predecessors, while resulting in fewer and more
accurate OTUs. This improved sensitiveness pro-
duced more faithful representations, both quantita-
tively and qualitatively, of the true microbial diver-
sity present in the studied samples. Furthermore, the
method introduced in this work is computationally in-
expensive and can be readily applied in conjunction
with any existent analysis pipeline.

INTRODUCTION

High-throughput sequencing of marker genes, such as the
16S ribosomal RNA, has become an invaluable tool for
microbial ecologists, since it allows for a previously un-
reachable level of detail in the analysis of complex micro-
bial communities. Many studies have used platforms such as

the Roche 454, Illumina or IonTorrent sequencers to thor-
oughly characterize and compare microbial communities at
an affordable cost (1–5), while others have taken advantage
of their very high yield in order to analyze the structure and
composition of the rare biosphere (6). However, the cor-
rect assessment of sequencing artifacts is critical in obtain-
ing representative results. Reads derived from the same bio-
logical template may differ due to sequencing errors, which
can cause them to be assigned to different clusters and
therefore result in the overestimation of microbial diver-
sity (7). The most common software tools and packages in-
clude sequence clustering into OTUs in their recommended
pipelines (8–15, see (15) for a comparison of several molec-
ular ecology pipelines). Alternatives to traditional cluster-
ing have been recently proposed, such as distribution-based
clustering (16) or a clustering-free approach (17). These
novel methods are specially suited for subpopulation level
studies, but work only for moderate-to-high abundance se-
quences, being unsuitable for population-level alpha or beta
diversity studies (17). Moreover, even although they can
remove likely erroneous sequences and resolve subpopula-
tions based on dynamic information, they nevertheless rely
on a quality filtering step for the preprocessing of raw reads
(17).

Amplicon denoising (18,19) is a widespread method for
filtering Roche 454 pyrosequencing reads that can also be
applied to IonTorrent data. It works on flowgrams rather
than sequences, which allows for a more natural modeling
of the homopolymer read errors that are characteristic of
pyrosequencing and ion semiconductor sequencing. How-
ever, it is platform specific and computationally expensive.

For Illumina systems, there is no consensus approach to
quality filtering, with the authors of mothur (20), QIIME
(21) and UPARSE (15) proposing different solutions. All
those heuristic approaches were published as parts of their
respective pipelines, but to the best of our knowledge they
have not been thoroughly compared to each other.

The lack of a rigorous method for incorporating qual-
ity scores in the analysis of marker-gene sequences has also
led some authors to advocate for a stringent filtering in or-
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der to reduce the retrieval of spurious diversity (3). How-
ever, overstringent filtration will result in an undesired loss
of sensitivity and will have an impact on the observed tax-
onomic distribution (21). Therefore, an accurate algorithm
that overcomes these problems is desirable.

Herein we present and validate the Poisson binomial fil-
tering (PBF) method, which is able to determine the error-
probability distribution of any sequence with associated
quality scores, by using a simple statistical approach. Phred
quality scores, which represent the probability that a given
base call is mistaken, can be derived from the raw output
of every sequencing platform. Reading a single base can be
likened to tossing a coin: the base is either right or wrong,
and both chances can be determined from its quality score.
In fact, the number of errors present in a given base fol-
lows a Bernoulli distribution, i.e. a binomial distribution
with a single trial. For a sequence of nucleotides with po-
tentially non-equal error probabilities, we sum their associ-
ated Bernoulli random variables in order to obtain the esti-
mated probability that the sequence has accumulated more
than k errors, where k is the maximum number of errors that
still allows for a correct clustering (Supplementary Note 1).
When compared with the filtering approaches included in
mainstream molecular ecology pipelines such as mothur,
QIIME or UPARSE, Poisson binomial filtering proved to
be the most accurate algorithm for filtering marker-gene se-
quences. Additionally, PBF is based on simple statistical
principles and, since it only requires Phred quality scores
as an input, it is expected to work robustly regardless of
the sequencing platform, assuming that the quality scores
are acceptable predictors of the true error probabilities, and
that errors are independent. Finally, our algorithm is com-
putationally efficient, scales linearly with the number of se-
quences, and has a low memory fingerprint, making it useful
even in low-performance desktop environments.

MATERIALS AND METHODS

The Poisson binomial filtering algorithm

Let us suppose we have 1 sequence of length N nucleotides
(nt), each nucleotide with a potentially non-equal probabil-
ity pi of being erroneous and a probability (1-pi) of being
correct. Our target is to obtain the probability of this se-
quence of having j erroneous nucleotides, for j = 0, 1, 2,. . . ,
N (see example in Figure 1a,b). Statistically, our problem
can be analyzed as the probability distribution of the num-
ber of successes in a sequence of N independent yes/no ex-
periments with success probabilities p1, p2,. . . , pN. This is
equivalent to the sum SN of N independent Bernoulli dis-
tributed random variables X1, X2, . . . , XN such that SN =
N∑

i=1
Xi , where

P(Xi = j ) = 1 − pi for j = 0,
P(Xi = j ) = pi for j = 1,
P(Xi = j ) = 0 for j > 1,

(1)

and P(Xi = j) stands for the probability of obtaining j errors
in nucleotide i. The stochastic variable SN follows a Poisson
binomial distribution (Supplementary Note 1), from where
we name the method presented here.

While the probability of obtaining a sequence with j er-
rors in a sequence, for all values of j, can be expressed ex-
plicitly (see Eq. (SN1.2) and its derivation in section Sup-
plementary Note SN1.1), it becomes useless in practice for
moderate values of j. We explain here an alternative algo-
rithm inspired by (22) that allows us to calculate the error-
probability distribution P(SN = j) for all j in a simple and
efficient way.

First, note that if we have two random variables Y and Z,
each of them taking discrete values 0, 1, 2,. . . , the probabil-
ity of the sum Y+Z of taking value j is

P(Y + Z = j ) =
j∑

i=0

P(Y = i )P(Z = j − i ). (2)

The algorithm results:

1. Obtain P(X1 = j) from Equation (1). Let U = X1.
2. For i = 2, 3,. . . , N, the distribution is obtained by follow-

ing (a–c) recursively.
(a) Calculate P(Xi = j) from Equation (1).
(b) Calculate P(Y+Z = j) from Equation (2), being Y =

U and Z = Xi.
(c) Let U = Y+Z.

3. The estimated probability for the sequence under study
of having j errors, P(SN = j), is given by U when i = N.

4. The steps (1–3) must be repeated for j = 0, 1, 2, . . . ,
jmax, where jmax is the lowest value of j that satisfies

j∑
r=0

P(SN = r ) ≥ ξ and 0 < ξ < 1 is a confidence coef-

ficient (in our case ξ = 0.995). Let jξ be the number such
that the sequence has a probability ξ of having less than jξ
errors. It is obtained interpolating the accumulated error
probability of the sequence between the values r = jmax-1
and r = jmax to obtain its exact value in r = jξ . A linear
interpolation yields

jξ = jmax − 1 +
ξ −

jmax−1∑
r=0

P(SN = r )

P(SN = jmax)
.

5. Let jtol be the maximum tolerable number of errors per
sequence, that is, the maximum number of errors allowed
for a correct clustering. In our calculations, we have fixed
jtol at 1% of the trimmed sequence length (that is, at 2.5
for the 454 and Illumina datasets, and at 2 for the Ion-
Torrent datasets). The sequence under study is discarded
if jξ > jtol, and accepted otherwise (Figure 1b,c). At this
moment, the calculation for this particular sequence is
finished, and it is time to repeat the whole algorithm for
the rest of the sequences of the population.

jξ is therefore the predicted maximum number of errors of
a given sequence, with a confidence coefficient of ξ . Under
the parameters used in this study, a sequence has an alpha
= (1 - ξ ) = 0.005 probability of having more than jξ errors
(assuming that Q scores accurately reflect true error proba-
bilities, see discussion for more details). In practice, this also
means that jξ will be an overestimation of the actual number
of errors. This can be easily avoided by the users by setting
a different confidence coefficient. However, we also want to
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Figure 1. Poisson binomial filtering accurately discriminates between good and erroneous sequences. (A, B): Error probability distribution (A) and accu-
mulated error probability distribution (B) of two example nucleotide sequences, as calculated from their quality scores by the Poisson binomial filtering
algorithm. jξ stands for the 99.5th percentile of the error probability (i.e. a sequence has a probability � = 0.995 of having less than jξ errors). jtol is the
maximum tolerable number of errors (1% of the sequence length in our case). Sequences with jξ > jtol are discarded in the filtering step. (C) Zoom of
(B), sketching the calculation of jξ for the high quality sequence. (D) Comparison between the predicted maximum errors jξ calculated by the Poisson
binomial algorithm and the true number of errors for all sequences from the Even1T mock community dataset. Dots represent unique sequences. True
mock community sequences are plotted in blue, contaminant sequences are plotted in gray, and chimeric sequences are plotted in red. The blue background
represents sequence abundance (note that few unique sequences may have a high number of representatives, and vice versa). Red lines indicate our error
cut-off of 2.5 errors per sequence (jtol). The plot is thus divided in four quadrants corresponding to correctly retained sequences (lower left), correctly
discarded sequences (upper right), incorrectly discarded sequences (upper left) and incorrectly retained sequences (lower right). The percentage of true
mock community sequences present on each quadrant is also indicated. PBF correctly classified 96% of the non-chimeric/non-contaminant sequences
present in the Even1T dataset. The graph is plotted in logarithmic scale (the 0 in the x-axis is added for clarity).

note that our recommended parameters provide a clear up-
per bound to the number of errors which is unlikely to be
trespassed, and nonetheless result in a very high proportion
of correctly classified sequences (see results and Figure 1d).

Finally, as our problem corresponds to the sum of N bi-
nomial distributions of probabilities pi and number of trials
n = 1, it can be approximated to a Poisson distribution as far
as N is high and pi <<1. The Poisson approximated proba-
bility for the sequence under study of having j errors, P(SN
= j), becomes

P(SN = j ) = λ j exp(−λ)
j !

,

where

λ =
N∑

i=1

pi .

While this approximation is reasonably accurate and
quicker to compute, it may fail even for high-quality se-
quences, provided they contain one or more low-quality
bases. This occurrence is not uncommon in real datasets,
and can lead to significant differences between the Poisson
binomial filtering algorithm and its Poisson approximation
(Supplementary Note SN1.5).

A more detailed explanation of the Poisson binomial fil-
tering algorithm presented above and its Poisson approxi-
mation can be found in Supplementary Note 1.

Algorithm implementation

Both C and Python implementations of the Poisson bi-
nomial filtering algorithm are available in GitHub (http:
//github.com/fpusan/moira), and as a pip-installable python
package (which can be installed by typing ‘pip install moira’
in a linux, mac or windows command line). The execu-
tion time of the Poisson binomial algorithm and its Pois-
son approximation for increasing numbers of sequences and
for sequences of increasing length can be found in Supple-
mentary Note 8. Full documentation is available at https://
github.com/fpusan/moira/blob/master/README.md. The
Poisson binomial filtering algorithm has also been included
in the LotuS OTU processing pipeline (23, http://psbweb05.
psb.ugent.be/lotus/).

The moira filtering pipeline

The script moira.py contains an implementation of the Pois-
son binomial filtering algorithm and performs the following
tasks:
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� If required, it assembles contigs from paired reads (–
paired). The assembler is an implementation of mothur
make.contigs command (http://www.mothur.org/wiki/
Make.contigs), and includes a modified version of the
Needleman-Wunsch global aligner and a consensus se-
quence constructor. Our implementation also returns
consensus quality scores, which are simply the highest
quality scores for each position of the alignment.

� It truncates sequences to a fixed length (–truncate), dis-
carding the sequences that are smaller than the cut-off.

� It applies the Poisson binomial algorithm to calculate the
predicted maximum number of errors of each remaining
sequence, with a given confidence coefficient (settable by
the –alpha parameter) and discards the ones that have
more errors per nucleotide than the specified cut-off (–
uncert). The alpha parameter is defined as 1 - ξ , and
represents the probability of underestimating the errors
present on a given sequence.

� It collapses identical sequences and chooses the one with
the least predicted maximum errors as the group rep-
resentative for filtering (–collapse). We assumed that, in
spite of differences in quality, identical sequences should
have the same origin, as it is unlikely that two biologically
unrelated sequences become identical due to sequencing
errors. Thus, if one of them has good quality, the rest
should be considered as true biological sequences and
be allowed into the final dataset. We have demonstrated
that collapsing sequences prior to quality filtering actu-
ally helps to mitigate an important source of taxonomic
bias during sequence processing (Supplementary Note
2).

16S mock community data

Two synthetic mock microbial communities designed by
the Human Microbiome Project (24, http://www.hmpdacc.
org/HMMC) were used for evaluating the different filter-
ing methods. Genetic DNA from 22 different organisms (20
bacterial, 1 archaeal and 1 eukaryotic) was mixed in known
amounts, based on qPCR of the small subunit (SSU) rRNA
gene, in order to generate two different mixtures: an Even
mock community, in which there is a similar amount of
SSU rRNA copies for each organism, and a Staggered mock
community, in which the amounts of SSU rRNA of each or-
ganism are different.

The data used in this study come from publicly available
libraries generated by sequencing the Even and Staggered
mock communities with the Roche 454 GS FLX Titanium,
the Illumina MiSeq and the IonTorrent PGM platforms.
References for all the datasets used in this study are given
in Supplementary Note 3.

Validation of Poisson binomial filtering on mock community
data

The script moira.py was used to predict the number of er-
rors present on each sequence for all the six Roche 454 GS
FLX Titanium, the four Illumina MiSeq and the two Ion-
Torrent PGM mock community datasets. For the MiSeq
datasets, contigs were first assembled from paired-end reads
by applying the –paired flag. The –alpha parameter, which

indicates the probability of a read having more errors than
reported, was left as its default value of 0.005. Identi-
cal reads were collapsed and the sequence with the small-
est number of errors was chosen as the group represen-
tative, as described above. These predicted maximum val-
ues were compared to the true number of errors of each
sequence, which was obtained by using the mothur com-
mand seq.error. Briefly, the sequences were aligned to a ref-
erence database made up from the true biological sequences
present in the mock community (which can be found in
http://www.mothur.org/wiki/454 SOP). Sequences with less
than 80% alignment coverage were discarded at this step.
The resulting alignment was then used to determine the
true number of errors present on each sequence, as well as
whether that sequence was chimeric or not, bearing in mind
that chimeras cannot be identified with absolute certainty.
Likely non-chimeric sequences that nevertheless showed
less than 95% similarity to their best hit in the mock ref-
erence database were aligned again against mothur’s SILVA
16S reference alignment (25, version 98). In case said se-
quence showed a pairwise identity and an alignment cov-
erage equal or greater to 95% to any sequence in the 16S
reference alignment, it was considered to be a contaminant.

Quality filtering of 16S reads

USEARCH. Trimming of reads by quality values was per-
formed by using the USEARCH fastq filter command, as
employed by (15). Reads (for 454/IonTorrent data) or con-
tigs (for paired Illumina data) were truncated at the first po-
sition with a quality score below 15 (–fastq trunqual 15).
After that, sequences were truncated to a length of 250
nucleotides (200 nucleotides for IonTorrent data), and se-
quences smaller than 250 nt (200 nt for IonTorrent data)
were discarded (–fastq trunclen 250/200).

We also tested a different method implemented in
the USEARCH fastq filter command, as suggested in
the author’s web page (http://drive5.com/usearch/manual/
uparse cmds.html). Briefly, reads (for 454 data and Ion-
Torrent) or contigs (for paired MiSeq data) with more
than 0.5 expected errors (–fastq maxee 0.5) were discarded.
After that, sequences were truncated to a length of 250
nt (200 nt for IonTorrent data), and sequences smaller
than 250 nt (200nt for IonTorrent data) were discarded
(–fastq trunclen 250/200). NOTE: During the review pro-
cess of this manuscript, more details on the USEARCH
expected errors method were published in (26). We now
discuss the differences and similarities between the USE-
ARCH expected errors filter and our own in Supplementary
Note 9.

Mothur. Denoising of 454 and IonTorrent reads was per-
formed using the mothur command shhh.flows, which is
an implementation of the PyroNoise algorithm, as rec-
ommended in the mothur SOP (www.mothur.org/wiki/
Analysis examples) After denoising, mothur command
trim.seqs was used to truncate the denoised sequences to a
length of 250 nt, and to discard sequences smaller than 250
nt (200 nt in both cases for IonTorrent data).

Additionally, paired Illumina reads were assembled and
filtered according to mothur’s MiSeq SOP (http://www.
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mothur.org/wiki/MiSeq SOP). After filtering, mothur com-
mand trim.seqs was used to truncate the contigs to a length
of 250 nt, and to discard sequences smaller than 250 nt.

QIIME. Paired Illumina reads were assembled with QI-
IME’s join paired ends.py script, using the default parame-
ters. QIIME’s script split libraries fastq.py was used to filter
the resulting contigs, as recommended by the authors (-r 3
-p 0.75 -q 3 -n 0) in (21).

Poisson binomial filtering. The script moira.py was used
to perform Poisson binomial filtering on 454/IonTorrent
reads or contigs assembled from Illumina paired reads (–
paired), as described above. Before filtering, sequences or
contigs were truncated to 250 nt, and the sequences smaller
than 250 nt (200 nt in both cases for IonTorrent reads) were
discarded (–truncate 250/200). Identical 454/IonTorrent
reads or Illumina contigs were clustered together prior to
quality control (–collapse) and the sequence with the high-
est quality was chosen as the group representative for qual-
ity control. 0.01 or less errors per nucleotide were tolerated
(–uncert 0.01) with a 0.005 chance of error underestimation
(–alpha 0.005).

For each method, paired Illumina reads were assembled
as recommended by its authors.

Note that, for consistency, we have chosen the 250 nt cut-
off recommended by (15) as the fixed length for the rest
of the filtering methods, for the 454 and Illumina datasets.
Since read length may have an effect in clustering and OTU
accuracy, we believe that equalizing it results in more valid
comparisons between the different filtering methods. In a
similar fashion, the 200 nt cutoff proposed in http://www.
brmicrobiome.org/#!16sprofilingpipeline/cuhd was applied
to all the filtering methods for the IonTorrent datasets.

The full list of commands used for each method can be
found in Supplementary Note 10.

Common processing pipeline for the filtered reads

Regardless of the filtering method, the filtered sequences
were subjected to a common pipeline based in mothur’s rec-
ommended SOP that included the following steps:

� Sequence alignment to mothur’s SILVA Reference Align-
ment.

� Optimization of the alignment space by removing the se-
quences that failed to align correctly, in order to ensure
that all the remaining sequences overlap at the same re-
gion of the SILVA Reference Alignment.

� Pre-clustering of similar sequences.
� Removal of chimeras with UCHIME.
� Taxonomic classification and removal of non-bacterial

and unclassified sequences.
� Library size standardization (see below).
� Clustering of the remaining sequences using mothur’s de-

fault average neighbor algorithm, with an OTU distance
cut-off of 0.03.

� Accuracy classification of the resulting OTUs (see be-
low).

For each sample, the libraries obtained after filtering the
raw reads with the different methods were standardized

to a similar size by random sub-sampling. Total number
of retrieved OTUs and singleton OTUs, as well as accu-
racy assessment of the OTU representative sequences, were
obtained by averaging the results from 100 independent
rounds of random library size standardizations followed by
clustering of the resulting reads.

The full list of commands can be found in Supplementary
Note 10.

OTU accuracy assessment on mock communities

The accuracy of the obtained OTU representative se-
quences was evaluated by aligning them to a reference
database made up from the true biological sequences
present in the sample, as previously described by (15). Se-
quence alignment was performed with mothur align.seqs
command. If the pairwise identity of an OTU representa-
tive sequence to any sequence in the reference database was
100%, the OTU was classified as ‘Perfect’. If the pairwise
identity was smaller than 100%, but greater or equal to 99%,
the OTU was classified as ‘Good’. If the pairwise identity
was smaller than 99% but greater or equal to 97%, the OTU
was classified as ‘Noisy’. If the pairwise identity was lower
than 95%, the OTU representative sequence was aligned
to mothur’s SILVA bacterial 16S reference alignment (ver-
sion 98). If said sequence showed a pairwise identity and
an alignment coverage equal or greater to 95% to any se-
quence in the 16S reference alignment, the OTU was classi-
fied as ‘Contaminant’. When none of the above conditions
applied, the OTU was considered to be the result of either
an undetected chimera, a mock community sequence with
more than 3% errors or a novel contaminant sequence with
more than 5% errors, and was classified as ‘Other’.

OTU accuracy assessment on environmental communities

OTU representative sequences from environmental commu-
nities were aligned with mothur’s SILVA bacterial 16S refer-
ence alignment (25). For each dataset and filtering method,
the average similitude of the OTU representative sequences
to their best hits in the SILVA alignment was calculated.
This was taken as an indicator of the overall accuracy of
the resulting OTUs, under the assumption that sequencing
errors are more likely to decrease OTU similitude to known
sequences than to increase it.

References for all the environmental datasets used in this
study are given in Supplementary Note 3.

Assessment of the taxonomic bias caused by the different fil-
tering methods

Taxonomic bias was assessed by comparing the taxonomic
composition of the sample before and after performing
quality filtering. Sequences were classified by using the clas-
sify.seqs command implemented in mothur and mothur’s
RDP 16S rRNA reference database (version 9). Then, taxo-
nomic composition was obtained by calculating the propor-
tion of sequences that were assigned to each phylotype at
the genus level with an 80% confidence cut-off (40% for the
environmental communities). Finally, taxonomic bias was
calculated as the Bray-Curtis dissimilarity between the fil-
tered and unfiltered sequence communities. In the 454 and

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/44/4/e40/1852442 by C

SIC
 - Instituto D

e G
anaderia D

e M
ontana user on 25 January 2024

http://www.mothur.org/wiki/MiSeq_SOP
http://www.brmicrobiome.org/#!16sprofilingpipeline/cuhd


e40 Nucleic Acids Research, 2016, Vol. 44, No. 4 PAGE 6 OF 11

IonTorrent libraries from the environmental communities,
a high proportion of sequences did not get classified at the
genus level. Therefore, the taxonomic composition of those
libraries was instead calculated at the class level.

RESULTS

We validated the Poisson binomial filtering algorithm and
compared it with the different filtering approaches recom-
mended by the authors of mothur (8,13,20), USEARCH-
UPARSE (10,15,26) and QIIME (21) by quality-filtering
datasets obtained by sequencing different mock and envi-
ronmental microbial communities with the Roche 454 GS
FLX Titanium, the Illumina MiSeq and the IonTorrent
PGM platforms. In order to evaluate the different methods
on equal grounds, filtered reads were processed with a com-
mon downstream pipeline that included chimera-filtering
with UCHIME (27), sample size standardization and OTU
clustering.

PBF accurately discriminates between good and erroneous se-
quences

When applying our default cut-off of 1% errors allowed
per sequence, our algorithm accurately classified 96% of the
mock community sequences from the Even1M dataset (Fig-
ure 1d). Three percent of the sequences were incorrectly dis-
carded while, remarkably, only 1% of the sequences were in-
correctly retained. Moreover, most of those incorrectly re-
tained sequences had only three true errors (1.2% errors per
sequence), meaning that they would likely cluster correctly
when applying the standard 3% OTU distance cut-off. The
rest of the Illumina datasets rendered similar results. The
accuracy of our method was slightly lower for the 454 and
IonTorrent datasets, but it nevertheless resulted in a mini-
mum of 88% (for 454) and 79% (for IonTorrent) correctly
classified sequences (Supplementary Figure SN4.1).

Performance of the different filtering methods on mock com-
munity datasets

Publicly available datasets from even and staggered mock
communities from the Human Microbiome Project (24)
were filtered with PBF, mothur, USEARCH and QIIME
(Figure 2, Supplementary Note 4). These artificial commu-
nities contain known amounts of 16S rRNA gene copies
from 20 different bacterial organisms. The fact that both
the qualitative and quantitative composition of the sam-
ples are known beforehand allowed us to thoroughly com-
pare the effects of the different filtering methods in terms
of OTU accuracy, alpha diversity and community compo-
sition. OTU accuracy was defined as the maximum simi-
larity of its representative sequence to the 16S sequences
of the microorganisms used to build the mock community,
as previously described in (15). We were also interested in
determining how the different filtering processes affected
the observed community composition. The taxonomic bias
in community composition caused by any given filtering
method was calculated as the Bray-Curtis dissimilarity be-
tween the raw and the filtered datasets, after taxonomically
classifying their reads down to the genus level.

In the even datasets, which contain the same number of
16S rRNA gene copies for each organism, all methods re-
sulted in more than 20 OTUs after clustering. This was
not surprising, since contaminations, PCR errors and se-
quencing errors were expected to inflate the observed diver-
sity. In the staggered communities, in which the number of
16S rRNA gene copies varied by several orders of magni-
tude between the different organisms, the observed diversity
was generally lower, due to some species being present at
very low abundances. The total number of reported OTUs
greatly varied between filtering methods, with Poisson bino-
mial filtering consistently resulting in values that were the
closest to the true diversity of the samples.

PBF also produced the highest proportion of accurate
OTUs in all the 16S mock datasets for both sequencing
platforms, while minimizing the number of singletons and
spurious OTUs retrieved (Figure 2a,b). In the 454 and Ion-
Torrent datasets, it also discarded the smallest number of
reads and resulted in the smallest taxonomic bias (Figure
2c,d). In the Illumina datasets QIIME retrieved a larger
number of reads, while both QIIME and mothur caused
smaller taxonomic biases than our method. (Figure 2c,d -
Illumina). In the case of QIIME, we believe that this was
the result of a too shallow filtering, since it produced a re-
markably lower proportion of accurate OTUs and a larger
number of OTUs and singletons (Figure 2a,b – Illumina).
As for mothur, their method filters sequences based on the
presence of mismatches of similar quality scores in aligned
paired reads (20), which likely makes it less susceptible to
biases in quality distribution between different taxonomic
groups (Supplementary Note 2).

The two filtering algorithms included in the USEARCH
suite showed an intermediate performance in terms of the
number and accuracy of the OTUs retrieved for both the
454 and Illumina platforms. Quality trimming yielded the
smallest number of reads and resulted in the highest tax-
onomic bias, which supports the idea that over-stringent
filtering may lead to undesirable effects. In the IonTorrent
datasets, USEARCH filtering performed below Poisson bi-
nomial filtering for all the studied benchmarks (Figure 2 -
IonTorrent). Finally, the mothur implementation of the Py-
roNoise algorithm (12) showed lower OTU accuracy than
the other methods tested for filtering 454 reads. It has been
previously described that the denoising process can intro-
duce minor alterations in the original reads (28), a phe-
nomenon that might explain these results. It must be noted
that, albeit a pipeline for filtering IonTorrent reads with Py-
roNoise has been described, the IonTorrent mock commu-
nity datasets were only available in Fastq format (S. Sali-
pante, personal communication), which precluded the use
of flowgram denoising algorithms. However, this limita-
tion was not present for the environmental datasets, and a
comparison of quality filtering algorithms for IonTorrent
datasets that includes PyroNoise can therefore be found in
Supplementary Figure SN5.3.

It should be noted that both the QIIME and USEARCH-
UPARSE pipelines include specific post-clustering steps
that would have improved the results obtained by their fil-
tering methods alone. QIIME recommends to apply a post-
hoc OTU size cut-off to reduce the retrieval of spurious di-
versity (21) at the cost of sensitivity. USEARCH-UPARSE,
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Figure 2. Comparison of filtering methods on 16S mock communities sequenced with the 454 GS FLX Titanium, Illumina MiSeq platforms and IonTorrent
PGM platforms. (A) Pie charts constructed by averaging the fraction of OTUs on each accuracy category along the six 454 or the four Illumina samples. (B,
D) Number of singletons (B, bars), total species (B, symbols) and reads (D) retrieved after filtering the raw reads with the different methods and performing
chimera removal and clustering with a common pipeline. OTU and singleton numbers were obtained by averaging the results from 100 independent library
size standardizations. (C) Taxonomic bias caused by the different filtering methods, measured as the Bray-Curtis dissimilarity between the raw and the
filtered read communities.
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in turn, maps the unfiltered reads to the OTU representa-
tive sequences after clustering in order to make an OTU
table, and recovers reads with low predicted quality that
are inferred to be good by comparison with high-quality
sequences (15), increasing the number of retrieved reads.
These steps are unrelated to quality-filtering per se, and can
be applied independently of the method used to filter the se-
quences. Therefore, they were not included in our common
post-filtering pipeline.

Performance of the different filtering methods on environmen-
tal datasets

The performance of the different filtering methods was also
evaluated by quality-filtering publicly available datasets ob-
tained by sequencing environmental communities (Supple-
mentary Note 5). The results were similar to the ones ob-
tained with the mock communities, with Poisson binomial
filtering being the most consistent method in producing the
smallest number of OTUs and singletons. Additionally, the
OTUs obtained with PBF were overall the most similar to
the 16S sequences present in the SILVA 16S reference align-
ment (25), which suggests that they contained the smallest
number of errors. In the environmental 454 datasets, Py-
roNoise showed better results than in the 454 mock com-
munities, but did it in an irregular fashion, especially in
terms of OTU accuracy (Supplementary Figure SN5.1d).
This inconsistency may be again due to the alteration of
the original reads, and suggests that PyroNoise requires a
finer parameter optimization than other approaches in or-
der to be fully effective. In the environmental IonTorrent
datasets PyroNoise discarded the smallest number of reads,
but resulted in the highest number of singletons and OTUs,
which also borne the least similarity to the reference align-
ment. USEARCH showed an intermediate performance be-
tween PyroNoise and Poisson binomial filtering (Supple-
mentary Figure SN5.3). Finally, in the environmental Illu-
mina datasets all filtering methods showed a similar behav-
ior to that in the mock communities (Supplementary Figure
SN5.2).

Quality-filtering is an additional source of taxonomic bias in
microbial ecology studies

Even though the major sources of taxonomic biases in
marker-gene-based studies are often related to differences in
rRNA operon copy number, PCR and library construction
(29–33), the read filtering process can increase this prob-
lem (Supplementary Note 2). We found significant biases in
length and quality distribution between raw reads coming
from different taxa in the mock 454 datasets (Figure 3a–
c). Trimming them to a fixed length generated an artificial
enrichment of the taxa with longer reads (Figure 3b), but
since there is a decrease in quality at the end of 454 reads
(see 15), it also resulted in a lower average read quality for
the taxa with smaller raw reads (Figure 3d). This led to the
generation of further taxonomic bias during the quality-
filtering step (Figure 3f, Supplementary Note 2). Similar bi-
ases have been previously found in IonTorrent reads (34),
and were confirmed during this study (Supplementary Note
2). Biases in read quality distribution between different taxa

were also found for the mock Illumina datasets, although
to a lesser extent. Such biases were remarkably higher than
those due to the random removal of reads (Supplementary
Note SN2.1, Supplementary Note 6). We solved this prob-
lem by collapsing identical reads and choosing the one with
the highest quality as a representative for filtering, in or-
der to decide whether the whole group was discarded or al-
lowed into the filtered dataset. This procedure reduced the
effect of quality distribution biases, as even low abundance
sequences are expected to have a high quality representa-
tive. Our solution rendered similar quality distributions for
the different taxa, even after length trimming (Figure 3e,f),
and significantly lower taxonomic biases than other filter-
ing approaches, especially for 454 data (Figure 2c). Every
method that relies on quality scores for sequence filtering
will be affected by this source of bias. We therefore propose
the approach described above as a general solution to this
problem, since its simplicity makes it very easy to integrate
into any filtering pipeline.

DISCUSSION

In this work, we have presented and validated the Poisson
binomial algorithm for filtering sequence reads based on
their error probability distributions. We have also demon-
strated that Poisson binomial filtering is especially useful
in the context of gene-marker-based studies, such as the
study of microbial populations by amplifying and sequenc-
ing their 16S rRNA gene.

We compared our algorithm with other five quality-
filtering methods that are included as defaults in main-
stream pipelines such as mothur, QIIME or USEARCH,
by analyzing mock and environmental datasets generated
with three different sequencing platforms. Our results show
that, when coupled to a standard analysis pipeline that in-
cluded chimera removal and clustering, PBF proved to be
the most accurate algorithm for filtering marker-gene se-
quences. While retaining a large number of sequences, it also
resulted in OTUs that were the closest to the true biologi-
cal species present in the studied samples, and minimized
the generation of spurious diversity and taxonomic biases.
These metrics are useful for algorithm benchmarking, espe-
cially when coupled to the analysis of mock communities,
but they are not the typical end result of molecular ecol-
ogy studies. Instead, users are typically interested in features
such as relative community richness, or patterns of commu-
nity composition. In Supplementary Note 7 we show that
the choice of filtering method can also have substantial ef-
fects on the retrieved relative community richness, poten-
tially affecting the final ecological interpretation obtained
from a given dataset.

Remarkably, this algorithm does not rely on any particu-
lar error model. Instead, it just derives the error probability
distribution of a given sequence from the quality scores of
its individual bases. The only assumptions that our algo-
rithm makes are that for any given sequencing platform, se-
quencing errors will be independent and the quality scores
obtained during base calling will truly represent the proba-
bilities of that base being wrong. This conceptual simplicity
is one of its main advantages: as long as accurate quality
scores are provided, Poisson binomial filtering will work in
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Figure 3. Addressing the taxonomic bias generated during the pre-processing and quality filtering of raw sequences. (A, B): Raw reads from Streptococcus
and Staphylococcus, the two most abundant genera in sample Even3T, show different length distributions. The dashed vertical lines in (A) indicate the
average read lengths. The arrows in (B) indicate the fraction of reads from each taxon removed after discarding sequences shorter than lmin = 250 nt. (C,
D, E): Errors per base distributions of Streptococcus and Staphylococcus reads in the (C) raw dataset, (D) after trimming the reads to 250 nt and discarding
the ones shorter than the cut-off, and (E) after collapsing the trimmed reads. The dashed lines indicate average errors per base. Note that length trimming
substantially increases the difference between the Streptococcus and Staphylococcus error distributions (D) when compared to that of the raw reads (C).
Filtering at this point would cause a 56.2% overrepresentation of Streptococcus versus Staphylococcus (see text and Supplementary Note 2). Collapsing
identical reads prior to filtering solves this problem (E), reducing the overrepresentation to 1%. (F): Compositional bias generated during the pre-processing
and filtering of the six 454 mock community samples, measured as the Bray-Curtis dissimilarity between the raw and the processed read communities. This
shows that results in (C, D, E) can be generalized to all the taxa present in all the samples.

any present or future sequencing platform, with no need for
further modifications.

In practice, quality-score calling ultimately depends on
the sequencing platform manufacturer (454 quality-scores,
e.g., do not predict per-base error probabilities, but the
probability of overestimating the homopolymer length),
and its accuracy is also influenced by the choice of primers
and library preparation methods (35,36). Nonetheless, we
have shown that, for the three sequencing platforms studied
in this work, Poisson binomial filtering was able to correctly
discriminate between good and erroneous sequences based
solely on quality score information.

The fact that our method only relies on quality scores
means that it will only account for sequencing errors, but
not other errors such as PCR substitutions. However, it has
been described that sequencing errors are responsible for
the majority of singletons generated in molecular ecology
studies (15,17). PCR chimeras are other source of spurious
diversity, but dedicated algorithms such as UCHIME are
able to accurately detect a large majority of them (see 15 for
a more thorough discussion on this subject).

During the course of this research, we have also focused
on a source of taxonomic bias that may have affected the

results of many molecular ecology studies. Notwithstand-
ing the fact that upstream processes might introduce large
biases in the amplicon pool to be sequenced, most of the
methods used for filtering and analyzing marker-gene reads
operate under the implicit (or even explicit, see 17) assump-
tion that the probability of having j errors is the same for all
reads, regardless of their origin. However, sequences from
different taxa may have different length (for 454 and Ion-
Torrent) and quality (for 454, IonTorrent and Illumina) dis-
tributions. This leads to the artificial enrichment of some
taxa versus others during the quality filtering step, po-
tentially compromising the quantitative interpretation of
molecular ecology results obtained by high-throughput se-
quencing of marker-gene sequences. These biases are likely
originated during base/quality calling: for instance, 454
reads show a systematic decrease in quality after homopoly-
mer regions (37), which will penalize the taxa with longer
homopolymer stretches on its 16S gene. We have nonethe-
less demonstrated that collapsing identical reads before the
quality-filtering step greatly mitigates this issue.

In summary, the methodologies presented in this work
substantially improve the existing filtering approaches in
terms of OTU accuracy, observed alpha diversity and ob-
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served community composition, delivering a more faith-
ful representation of the original microbial communities
present in the studied samples. Our algorithm is fast, easy to
implement and works for every sequencing platform, con-
stituting a valuable addition to all the existing pipelines for
analyzing microbial ecology data.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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