## Supplementary Information

## DipM controls multiple autolysins and mediates a regulatory feedback loop promoting cell constriction in Caulobacter crescentus

Izquierdo-Martinez A, Billini M, Miguel-Ruano V, Hernández-Tamayo R, Richter P, Biboy J, Batuecas MT, Glatter T, Vollmer W, Graumann PL, Hermoso JA, Thanbichler M

## Supplementary figures



Supplementary Figure 1. Lack of interaction of DipM with the L,D-transpeptidase LdtD from C. crescentus. Biotinylated LdtD was immobilized on a BLI sensor and probed with $\operatorname{DipM}(20 \mu \mathrm{M})$. The graph shows a representative experiment ( $n=2$ independent replicates).


Supplementary Figure 2. The different interactors compete for binding to DipM. (a) Schematic representation of the BLI-based competition assay used in this study. After immobilization of one of the interactors on the sensor surface, the sensor is probed with DipM alone or with mixtures of DipM and a second interactor. If the two interactors bind to different, non-overlapping sites on DipM, they form a ternary complex on the sensor, leading to an increase in the wavelength shift. Otherwise, the signal remains largely constant or decreases with increasing concentrations of the second interactor, depending on the relative affinities of the interactions. (b-e) Competitive binding of two interactors to DipM. Sensors derivatized with the indicated biotinylated interactor were probed with DipM alone or with a mixture of DipM preincubated with a second interactor at the indicated concentrations. A blue arrow marks the start of the association phase, a green arrow the start of the dissociation phase. All assays were performed at least in duplicate, with similar results obtained throughout.


Supplementary Figure 3. Effect of DipM or DipM ${ }^{\text {LytM }}$ on the activity of the soluble lytic transglycosylase SIt from E. coli. (a) SIt ( $5 \mu \mathrm{M}$ ) was incubated with murein sacculi alone or with an equimolar amount of DipM or DipMLytM and incubated for 30 min . Subsequently, the muropeptides generated by separated by HPLC and identified based on the elution times of reference compounds. Hash signs (\#) mark the peaks of monomeric products, daggers ( $\dagger$ ) those of dimeric products. (b) SIt ( $5 \mu \mathrm{M}$ ) was incubated with murein sacculi in the absence of additional proteins for 2 h prior to muropeptide analysis in order to determine the maximal amount of product that can be achieved. (c) The graphs show the total amount of all muropeptide species obtained in the reactions described in panels a and b ( $\mathrm{n}=2$ independent experiments). Source data are provided as a Source Data file.


Supplementary Figure 4. DipM-dependent stimulation of the amidase activity of AmiC. (a) Overview of the procedure used to assess the activity of AmiC. (b) HPLC chromatograms showing the muropeptides generated by the treatment of sacculi with cellosyl (Control) and changes in the muropeptide profile resulting from the subsequent incubation of these muropeptides with the indicated protein(s). AmiC and DipM/DipM ${ }^{\text {LytM }}$ were used at equimolar ratios. Hash signs (\#) mark the peaks of monomeric products, daggers ( $\dagger$ ) those of dimeric products. Amidase activity is indicated by a decrease in the abundance of these species, because the reaction generates free sugar dimers and peptides, which do not bind to the column under the conditions used.


Supplementary Figure 5. Immunoblot blot analysis of strains producing mutant DipM-msfTurquoise ${ }^{\text {ox }}$ variants. (a) Strains producing the native DipM protein under the control of a xylose-inducible promoter and the indicated DipM-sfmTurquoise2 ${ }^{\circ 0 x}$ variants under the control of a vanillate-inducible promoter (MAB512, MAB501, MAB502, MAB503, MAB513) were grown in PYE medium containing xylose and diluted into PYE medium containing vanillate to deplete DipM and induce the respective DipM-sfmTurquoise2 ${ }^{\circ \times \mathrm{x}}$ fusion. The cells were then incubated for another 18 h prior to immunoblot analysis with an anti-GFP antibody (which also recognizes sfmTurquoise2ox). A culture (MAB512) grown in medium lacking vanillate (-) was analyzed as a control. (b) Immunoblot analysis of the strains described in panel a, grown in PYE medium containing xylose and induced for 3 h with vanillate prior to harvest. The indicated DipM-sfmTurquoise2ox fusions are produced in the presence of the native DipM protein, so that the cells still show wild-type morphology. The Western blot analyses were conducted at least twice, with similar results.


Supplementary Figure 6. Electron density, structural plasticity and B-factor distribution for the DipM ${ }^{\text {LytM }}$ monomer. (a) Superimposition of the four independent molecules (chains A-D) constituting the asymmetric unit. Monomers are shown in cartoon view and colored differently. Variable regions are labeled. (b) Putty tube representation of the B-factor for the DipM ${ }^{\mathrm{LytM}}$ reference chain (chain C). The color of the backbone varies depending on the B-factor of the residues, ranging from blue (lowest) to red (highest). In addition, the diameter of the tube increases with the size of the B-factor. (c) 2 Fo-Fc electron density map for DipM ${ }^{\text {LytM }}$ chain C contoured at $1 \sigma$ (shown as a blue mesh). Relevant regions are labeled.


Supplementary Figure 7. Role of the DipM-specific loop at the C-terminal end of DipM ${ }^{\text {LytM }}$. (a) Structural alignment of the crystal structures of DipM ${ }^{\text {LytM }}$ and the LytM domains of six other proteins, including S. aureus LytM (PDB: 4ZYB) (Grabowska et al., 2015), H. pylori Csd2 (PDB: 5J1L) (An et al., 2016), B. subtilis SpoIIIQ (PDB: 3UZO) (Meisner et al., 2012), V. cholerae ShyA (PDB: 6UE4) (Shin et al., 2020), R. gnavus LytM (PDB: 3NYY) and E. coli EnvC (PDB: 4EH5). For all proteins except for DipM, only the loop following the last $\beta$-sheet of each LytM domain is shown for clarity, represented as colored ribbons without any secondary structural elements. The residues in the KDK motif, which is conserved in $C$. crescentus and close relatives, are shown in stick representation. The orange arrowhead indicates the position at which, in most structures, the loop turns upwards. (b) Functionality of DipM variants with exchanges in the conserved KDKA motif. Shown are phase contrast and fluorescence images of cells producing the indicated DipM-sfmTurquoise2ox variants in place of the native protein (MAB512, MAB515, MAB514) in 2xPYE medium (scale bar: $3 \mu \mathrm{~m}$ ). The native sequence of the conserved loop (orange) and residues exchanged in the mutant variants (red) are given on top of the corresponding images. All microscopic analyses were performed twice, with similar results.
M23 family peptidase - Phenylobacterium zucineum (A0A2W5NS52_9CAUL)
Glycyl-glycine endopeptidase LytM - Staphylococcus aureus (LYTM STAA8) Glycy1-glycine endopeptidase LytM - Staphylococcus aureus (LYTM_ST
LdpB Caulobacter vibrioides (AOAOH3CAE5_CAUVN)
Murein DD-endopeptidase MepM - Escherichia coli K12 (MEPM_ECOLI) Murein DD-endopeptidase MepM - Escherichia coli K12 (MEP Peptidase M23B - Rhodospirillum rubrum - (Q2RT77_RHORT) LdpA - Caulobacter vibrioides (A0AOH3C7T9_CAUVN) Peptidase M24-Phenylobacterium zucineum (AOA2W5R7R0_9CAUL) Murein DD-endopeptidase - Brevundimonas viscosa (AOA116S774_9CAUL) M23 family peptidase - Phenylobacterium soli (A0A32 LdpE - Caulobacter vibrioides (AOAOH3CD72 CAUVN) Murein DD-endopeptidase - Brevundimonas viscosa (A0A116STY8_9CAUL) NIpD - Escherichia coli K12 (NLPD_ECOLI)
Peptidase M23B - Rhodospirillum rubrum (Q2RTH8_RHORT)
Murein DD-endopeptidase - Brevundimonas viscosa (A0A116PXD2_9CAUL)
Cell division protein DipM - Caulobacter vibrioides (DIPM
Cell idion
Peptidase M24-Caulobacter sp. X (A0A2G5R1S2_9CAUL)
Peptidase M23B - Caulobacter sp. K31 (BOT1Q0_CAUSK)
Peptidase M24-Caulobacter flavus (A0A2N5D3AA4_9CAUL) Peptidase M24 - Phenylobacterium soli (A0A328AS16_9CAUL) Peptidase M24 - Phenylobacterium zucineum (A0A2W5NN0
EnvC - Escherichia coli K12 (ENVC_ECOLI)
PO2R11 RHORT) LdpF - Caulobacter vibrioides (AOAOH3CDN2_CAUV̄N) Peptidase M24 - Phenylobacterium soli (A0A328AKC5_9CAUL)

|  | --GRLNPLVVLRV |
| :---: | :---: |
| --STAPHVHFQRMSGC | NQYAVDPTSYLQS |
| --ATGPHLCWRMKWRC | ---NMDPSLLVGA |
| --StGPHLHYEVW | AVNPLTA |
| --StGphlhyevrva | ---PRNPTVFLKA |
| --STGPHLHYEVWV | ---AQNPNRFLKA |
| --StGthlhyevw | ---AQNPGRFL |
| --stgvhlhyev | ---PQNPARFMR |
| --SSGPHLHYEvWLK¢ | RVN |
| ATGPHLHYEIW | RUNPLS |
| SSGSHLHFEIRK | ---PLNPSFFLG- |
| -STGPHLHFEVR | ID |
| ---SStrlhfeiry | -svNPLRYL |
| --VGAPQIHFEIRRNC | ---PIDPTPYLTG |
| --DGRPSMHFETWRM | AVDPLG |
| --vNEPQLHFEMRYAE ${ }^{\text {c/V }}$ | PVDPA |
| --VNEPQLHFEMRYAE TVKDK | PVDPAI |
| --VNEPQLHFEMRYAE TVKDKAK | PVDPGLL |
| --VNEPQLHFEMRYAE TVKDKAK | ---PVDPALL |
| --VTEPQLHFEVRYAE TPKDKAR | ---PVDPGLVLPR |
| --VNEPQLHFEVRYAE TPKDKAK | ---PIDPGLVLP |
| --VAEPQLHFEVRYAE SPLERAR | VDPKLVL |
| --VSEPQLHFEVRYAETPQERAR | PIDPGLVI |
| --QGRPSLYFEIRRQ | VNPQP |
| --DGSPTLYVELRRKC | PINPLPWLTA |
| --SSEPELYMEVRENC | SDPERWLKQ |
| EvR | PVDPARWLKV |

Supplementary Figure 8. Alignment of the C-terminal regions of DipM and other LytM domain-containing proteins. DipM homologs of the genera Caulobacter and Phenylobacterium are shown in green, NIpD homologs of alpha- and gammaproteobacteria in blue, EnvC homologs of alpha- and gammaproteobacteria in olive, and catalytically active LytM domain-containing proteins from alpha- and gammaproteobacteria as well as LytM of S. aureus in red. C. crescentus LdpB, whose catalytic proficiency is still unclear, is shown in black. The conserved loop present in the Caulobacter and Phenylobacterium homologs is highlighted with an orange box and its conserved residues are shown in color.


Supplementary Figure 9. Positive electrostatic surface potential of the putative AmiC binding groove of DipM ${ }^{\text {LytM }}$. Shown is the electrostatic surface potential of (a) the LytM domain of EnvC and (b) DipM ${ }^{\text {LytM }}$, with positive and negative charges colored in blue and red, respectively. Yellow arrows point to the positive electrostatic potential in the binding groove. Loops delimiting the cavity in DipM are labeled.


Supplementary Figure 10. Requirement of the $\mathbf{N}$-terminal region of DipM ${ }^{\text {LytM }}$ for protein stability. (a) Shown is a cartoon representation of DipM ${ }^{\text {LytM }}$. The part of the protein that is recognized by the Hidden Markov Model employed to identify the LytM domain by the Pfam database (Mistry et al., 2021) is shown in grey. The remaining N-terminal region is divided into three parts: residues that are closer to the LytM domain and contact strand $\beta 2$ and adjacent regions (blue), the following segment up to helix $\alpha 2$ (green) and helix $\alpha 2$ (yellow). (b) Bar chart representing the average ( $\pm$ SD) levels of the indicated DipM-sfmTurquoise $2^{\circ x}$ variants ( $n=3$ independent experiments), as determined by Western blot analysis of cells producing the fusion proteins in the wild-type background (AI098, AI123, AI124, Al125). The individual data points from the three replicates are shown as red symbols. The schematics at the bottom of the chart depict the architecture of the different protein variants. Asterisks indicate the statistical significance of differences between the averages obtained, determined by a oneway ANOVA (* $p=0.0143$ and ${ }^{* *} p=0.0073$ ). (c) Structural alignment of the crystal structures of DipM ${ }^{\text {LytM }}$ (in grey) and the LytM domains of six other proteins: S. aureus LytM (PDB: 4ZYB) (Grabowska et al., 2015), H. pylori Csd2 (PDB: 5J1L) (An et al., 2016), B. subtilis SpollIQ (PDB: 3UZO) (Meisner et al., 2012), V. cholerae ShyA (PDB: 6UE4) (Shin et al., 2020), R. gnavus LytM (PDB: 3NYY) and E. coli EnvC (PDB: 4EH5). For all proteins except for DipM, only the N-terminal region adjacent to the LytM domain is shown for clarity, represented as colored ribbons without any secondary structural elements. Source data are provided as a Source Data file.


Supplementary Figure 11. Comparison of the structures of EnvC and DipM. (a) Crystal structure of EnvC bound to the periplasmic domain of FtsX (Fts ${ }^{\text {ED }}$ ). The LytM domain of $E n v C$ ( $E n v C^{L y t M}$ ) and its N -terminal coiled-coil region ( $E n v C^{C C C}$ ) are indicated (PDB: 6TPI) (Cook et al., 2020). (b) Detailed view of the self-inhibitory structure form through interaction of EnvClytM (yellow) with the restraining arm (transparent gray cartoon), highlighted by a black box in panel A. (c) Schematic model of the DipM $\mathrm{M}^{\mathrm{Ly} \mathrm{L}}$-AmiC complex of $C$. crescentus, as predicted by AlphaFold-Multimer (Evans et al., 2022) (detailed in Figure 6c). (d) Surface view of DipM ${ }^{\text {LytM }}$, arranged in the same orientation as EnvC in panel $b$.


Supplementary Figure 12. Evaluation of the model of the DipM ${ }^{\text {LytM }}$-AmiC complex generated by AlphaFold-Multimer. (a) Structural superimposition of the crystal structure of DipM ${ }^{\text {LytM }}$ (chain C, in blue) and a model of DipM ${ }^{\text {LytM }}$ generated by AlphaFold-Multimer (Evans et al., 2022) (in various shades of green). (b) Superimposition of DipM ${ }^{\text {LytM }}$-AmiC complexes predicted by AlphaFold-Multimer. DipM ${ }^{\text {LytM }}$ is shown in green, the different AmiC models in various shades of orange. (c) Magnified view of the predicted interacting regions of Dip ${ }^{\text {LttM }}$ and AmiC.


Supplementary Figure 13. Models of the complexes formed by DipMytM with SdpA, SdpB, CrbA and FtsN. Shown are the top-ranking models of the indicated DipM ${ }^{\text {LytM-interactor complexes generated by AlphaFold-Multimer (Evans et al., 2022). }}$


Supplementary Figure 14. Immunoblot blot analysis of strains producing DipM-msfTurquoise2ox variants with exchanges in the LytM domain. (a) Strains producing the native DipM protein under the control of a xylose-inducible promoter and the indicated DipMsfmTurquoise $2^{0 x}$ variants under the control of a vanillate-inducible promoter (MAB512, MAB505, MAB506, MAB510, MAB504) were grown in PYE medium containing xylose and diluted into PYE medium containing vanillate to deplete DipM and induce the respective DipMsfmTurquoise ${ }^{0 x}$ fusion. The cells were then incubated for another 18 h prior to immunoblot analysis with an anti-GFP antibody (which also recognizes sfmTurquoise20x). (b) Immunoblot blot analysis of the strains described in panel a, grown in PYE medium containing xylose and induced with vanillate for 3 h prior to harvest. The cells produce the indicated DipM-sfmTurquoise20x fusions in addition to the native DipM protein and thus still show wild-type morphology. Under this condition, all fusion proteins accumulate to the same level, indicating that the mutations do not have any adverse effect on protein synthesis or stability. The Western blot analyses were conducted at least twice, with similar results.


Supplementary Figure 15. Localization patterns of different DipM-sfmTurquoise2*x variants in the wild-type and $\Delta s d p A B$ backgrounds. (a) Wild-type or (b) $\triangle s d p A B$ mutant cells carrying genes for the indicated DipM-sfmTurquoise ${ }^{\circ 0 \mathrm{x}}$ fusions under the control of a xyloseinducible promoter (AI063, AI112, AI098, Al121, AI126, Al122) were induced with xylose for 3 h prior to analysis by phase contrast and fluorescence microscopy (scale bar: $3 \mu \mathrm{~m}$ ). The demographs next to the microscopy images show the fluorescence profiles of representative subpopulations of cells ( $\mathrm{n}=250$ ) stacked on top of each other according to cell length. Source data are provided as a Source Data file.


Supplementary Figure 16. Single-molecule mobilities of different DipM variants. Shown is a Gaussian-mixture-analysis of the mobility of the indicated DipM-sfmTurquoise2 ${ }^{\text {ox }}$ variants (measured by single-particle tracking as described in the legend to Figure 9). The probability distributions of the single-step frame-to-frame displacements obtained in the single-particle tracking experiments were fitted to a twocomponent Gaussian function, assuming a slow-moving (red line) and fast-moving (blue line) population.


Supplementary Figure 17. Impaired localization of SdpA-mCherry and SdpB-mCherry in cells producing DipM ${ }^{\text {LytM }}$ in place of the native DipM protein. Wild-type (WT) or dipM $435-458$ cells carrying the gene for (a) SdpA-mCherry or (b) SdpB-mCherry under the control of a xylose-inducible promoter (AM408, AZ127, AI113, AI114) were induced with xylose for 3 h prior to analysis by phase contrast and fluorescence microscopy (scale bar: $3 \mu \mathrm{~m}$ ). The demographs next to the microscopy images show the fluorescence profiles of representative subpopulations of cells ( $n>190$ ) stacked on top of each other according to cell length. Only cells with a length similar to that of wild-type cells were included in the analysis. Source data are provided as a Source Data file.


Supplementary Figure 18. Localization of DipM-sfmTurquoise2 ${ }^{\mathbf{o x}}$ in different ftsN mutant backgrounds. (a) Domain architecture of FtsN. (b) Phenotypes of cells producing different FtsN variants. A vanillate-inducible DipM-sfmTurquoise2ox fusion was produced in cells whose native $f t s N$ gene had been replaced by an allele encoding a truncated FtsN variant lacking the SPOR domain (Al117), which no longer condenses at the cell division site during cell constriction (Möll \& Thanbichler, 2007). The same analysis was performed in strains that additionally produced an FtsN variant whose SPOR domain was replaced by a PG_binding_2 domain, which does not accumulate at midcell (Möll \& Thanbichler, 2007) (MAB496), or by the wild-type FtsN protein (MAB494), each expressed at basal levels under the control of a xylose-inducible promoter (scale bar: $3 \mu \mathrm{~m}$ ). The demographs show the fluorescence profiles of representative subpopulations of cells ( $n \mathbf{2 0 0}$ ) stacked on top of each other according to cell length. Only non-chained cells were included in the analysis. Source data are provided as a Source Data file.

## Supplementary tables

Supplementary Table 1. Data collection and refinement statistics for DipM ${ }^{\text {LytM }}$.

| Data Collection* |  |
| :---: | :---: |
| Space group | P $22{ }_{1} 2_{1}$ |
| Cell dimensions |  |
| $a, b, c$ (Å) | 65.87, 105.84, 108.43 |
| $\alpha, b, v(\mathrm{deg})$ | 90, 90, 90 |
| Wavelength (Å) | 0.979 |
| Resolution (Å) | 49.70-2.25 (2.32-2.25) |
| $R_{\text {merge }}$ | 0.324 (1.512) |
| $R_{\text {pim }}$ | 0.102 (0.474) |
| $\mathrm{CC}_{1 / 2}$ | 0.990 (0.703) |
| Mean I/GI | 8.0 (2.1) |
| Completeness (\%) | 100 (100) |
| Multiplicity | 11.1 (11.1) |
| Refinement |  |
| Resolution (Å) | 49.75-2.25 (2.31-2.25) |
| Unique reflections | 36758 (3319) |
| $R_{\text {work }} / R_{\text {free }}$ | 0.188/0.219 |
| No. of atoms |  |
| Non-hydrogen atoms | 4902 |
| Protein | 4431 |
| Ligands | 0 |
| Ions | 0 |
| Solvent | 471 |
| Ramachandran favored (\%) | 95.85 |
| Ramachandran outliers (\%) | 0.00 |
| Average B, all atoms ( $\AA^{2}$ ) | 25.00 |
| Root-mean-square deviation |  |
| Bond lengths ( $\AA$ ) | 0.010 |
| Bond angles (deg) | 1.569 |
| Protein Data Bank entry | 7QRL |

*Values in parenthesis are for the highest-resolution shell.

Supplementary Table 2. Cells and tracks analyzed in the SMT analysis.

| Strain | Cells | Tracks |
| :--- | :---: | :---: |
| WT - DipM | 50 | 4572 |
| WT - DipM |  |  |
| WT $^{\Delta l y t M}$ | 52 | 4213 |
| $\Delta s d p A B-$ DipM | 51 | 4323 |
| $\Delta s d p A B-$ DipM $^{\Delta \text { LlytM }}$ | 48 | 3976 |
| $\Delta s d p A B-$ DipM $^{\Delta \operatorname{LytM}}$ | 50 | 3365 |

Supplementary Table 3. Strains used in this study.

| Strain name | Genotype | Construction/reference |
| :---: | :---: | :---: |
| E. coli strains |  |  |
| Rosetta(DE3) pLysS | $\mathrm{F}^{-}$ompT $\mathrm{hsd} S_{B}\left(r_{B}{ }^{-} m_{B^{-}}\right)$gal dcm (DE3) pLysSRARE ( $\mathrm{Cam}^{\mathrm{R}}$ ) | Merck Millipore |
| TOP10 | cloning strain | Invitrogen |
| WM3064 | thrB1004 pro thi rpsL hsdS lacZDM15 RP4-1360 $\Delta($ araBAD)567 $\Delta$ dapA1341::[erm pir(wt)] | W. Metcalf (unpublished) |
| AI033 | Rosetta(DE3)pLysS bearing a pET28(a)+ derivative encoding SdpA(21-699)His6 | Transformation of Rosetta(DE3)pLysS with pAIO14 |
| Al041 | Rosetta(DE3)pLysS bearing a pTB146 derivative encoding His 6 -SUMO$\operatorname{dip} \mathrm{M}_{\text {(459-609) }}$ | Transformation of Rosetta(DE3)pLysS with pAIO01 |
| AI046 | Rosetta(DE3)pLysS bearing a pTB146 derivative encoding His 6 -SUMO-SdpB(26-536) | Transformation of Rosetta(DE3)pLysS with pAIO26 |
| AI060 | Rosetta(DE3)pLysS bearing a pTB146 derivative encoding His 6 -SUMO-FtsN(51-266) | Transformation of Rosetta(DE3)pLysS with pAIO36 |
| AI061 | Rosetta(DE3)pLysS bearing a pTB146 derivative encoding His 6 -SUMO-$\mathrm{AmiC}_{(35-395)}$ | Transformation of Rosetta(DE3)pLysS with pAIO37 |
| AI062 | Rosetta(DE3)pLysS bearing a pTB146 derivative encoding His 6 -SUMO-$\operatorname{LdpF}_{(25-351)}$ | Transformation of Rosetta(DE3)pLysS with pAIO25 |
| AI075 | Rosetta(DE3)pLysS bearing a pTB146 derivative encoding His 6 -SUMO$\mathrm{CrbA}_{\text {(371-451) }}$ | Transformation of Rosetta(DE3)pLysS with pAIO49 |
| AM201 | Rosetta(DE3)pLysS bearing a pET28a(+) derivative encoding DipM ${ }_{(26-610)}{ }^{-}$ His6 | Möll et al., 2010 |
| MAB408 | Rosetta(DE3)pLysS bearing a pTB146 derivative encoding His ${ }_{6}$-SUMO- $\operatorname{LdtD}_{(26-502)}$ | Transformation of Rosetta(DE3)pLysS with pMAB150 |
| MAB493 | Rosetta(DE3)pLysS bearing a pET28a(+) derivative encoding the L539S variant of DipM ${ }_{(26-610)}$-His | Transformation of Rosetta(DE3)pLysS with pMAB206 |
| MAB500 | Rosetta(DE3)pLysS bearing a pET28a(+) derivative encoding the L537S L539S variant of DipM ${ }_{(26-610)}-\mathrm{His}_{6}$ | Transformation of Rosetta(DE3)pLysS with pMAB207 |
| MAB516 | Rosetta(DE3)pLysS bearing a pET28a(+) derivative encoding the R589A variant of DipM ${ }_{(26-610)}$-His6 | Transformation of Rosetta(DE3)pLysS with pMAB194 |

## C. crescentus strains

| CB15N | Synchronizable derivative of the wild-type strain CB15 | Evinger and Agabian, 1977 |
| :---: | :---: | :---: |
| AM369 | CB15N $4 / d p F$ | Zielińska et al., 2017 |
| AM376 | CB15N $\triangle$ crbA | Billini et al., 2019 |
| AM399 | CB15N $\Delta s d p A$ | Zielińska et al., 2017 |
| AM3 | CB15N ftsN::ftsNASPOR | Möll and Thanbichler, 2009 |
| AM418 | CB15N $\Delta s d p B$ | Zielińska et al., 2017 |
| AM419 | CB15N $\Delta s d p A \Delta s d p B$ | Zielińska et al., 2017 |
| MT46 | CB15N ftsN::ftsN-gfp | Möll and Thanbichler, 2009 |
| Al018 | CB15N P Pxy 1 : $\mathrm{P}_{\text {xy }}$-dipM-flag | Integration of pAl003 in CB15N |
| Al021 | CB15N $\Delta$ dipM $\mathrm{P}_{x y} 1:$ P $\mathrm{P}_{\text {xy }} 1$-dipM-flag | In-frame deletion of dipM in Al018 using pMT814 |
| Al032 | CB15N 4 sdpA $\mathrm{P}_{x y} 1:$ P $\mathrm{P}_{x y} 1$-sdpA-flag | Integration of pAIO13 in AM399 |
| Al034 | CB15N $\Delta s d p A \mathrm{P}_{x y} 1:$ P $\mathrm{P}_{x y} 1$-sdpA | Integration of pAIO15 in AM399 |
| Al036 | CB15N ${ }^{\text {d/dpF }} \mathrm{P}_{\text {xyl }}$ : $\mathrm{P}_{x y}$-IdpF-flag | Integration of pAIO16 in AM369 |
| Al038 | CB15N $\Delta$ crbA $\mathrm{P}_{x y} 1:$ P $\mathrm{P}_{x y} 1$-crbA-flag | Integration of pAIO18 in AM376 |
| Al039 | CB15N 4 crbA $\mathrm{P}_{x y} 1:$ P $\mathrm{P}_{x y} /-c r b A$ | Integration of pAIO19 in AM376 |
| AI040 |  | Integration of pAZ39 in AM369 |
| Al052 | CB15N P Pyl 1 : $\mathrm{P}_{\text {xy }} 1$-amiC-flag | Integration of pAIO29 in CB15N |
| Al053 | CB15N ammiC $^{P_{x y}} 1: \mathrm{P}_{x y} 1$-amiC-flag | In-frame deletion of amiC in Al052 using pAM123 |
| Al063 | CB15N $\mathrm{P}_{x y} 1: \mathrm{P}_{x y} \mid$-dipM-sfmturquoise2 ${ }^{\text {ox }}$ | Integration of pAIO39 in CB15N |
| Al097 | CB15N dipM::dip ${ }_{(1366-458)}$ | In-frame truncation of native dipM using pAIO72 |
| Al098 |  | Integration of pAI068 in CB15N |
| Al112 | CB15N $\mathrm{P}_{x y}:$ : $\mathrm{P}_{x y} 1$-dipM ${ }_{(\Delta 390-609)-\text { sfmturquoise2 }}{ }^{\text {ox }}$ | Integration of pAI087 in CB15N |
| Al113 | CB15N dipM::dip ${ }_{(\Delta 36-458)} \mathrm{P}_{x y}:$ : $\mathrm{P}_{\text {xyl }} 1$ SdpA-mCherry | Integration of pAM210 in AI097 |
| Al114 | CB15N dipM::dip ${ }_{(\Delta 36-458)} \mathrm{P}_{\text {xyl }}:: \mathrm{P}_{\text {xyl }} 1$-sdpB-mCherry | Integration of pAZ14 in Al097 |
| Al117 | CB15N ftsN::ftsNASPOR $\mathrm{P}_{x y} 1:$ : $\mathrm{P}_{x y} 1$-dipM-sfmturquoise2* | Integration of pAI063 in AM3 |
| Al121 | CB15N $\Delta s d p A \Delta s d p B P_{\text {xyl }}:$ : $\mathrm{P}_{x y}$-dipM-sfmturquoise ${ }^{\text {ax }}$ | Integration of pAI067 in AM419 |
| Al122 | CB15N $\Delta s d p A \Delta s d p B P_{x y}:=\mathrm{P}_{x y l}-$ dip $M_{(\Delta 34-458)-\text {-sfmturquoise }}{ }^{\text {ox }}$ | Integration of pAIO68 in AM419 |

Supplementary Table 3. Strains used in this study (continued).

| Al123 | CB15N $\mathrm{P}_{x y} 1: \mathrm{P}_{\text {xy }} 1$-dip $M_{(\Delta 35-500)-5 f m t u r q u o i s e 2 ~}{ }^{\text {ox }}$ | Integration of pAI081 in CB15N |
| :---: | :---: | :---: |
| Al125 | CB15N $\mathrm{P}_{x y} 1:$ : $\mathrm{P}_{x y} 1$-dipM ${ }_{(\Delta 35-486)-\text { sfmturquoise }{ }^{\text {ox }}}$ | Integration of pAI083 in CB15N |
| Al126 | CB15N $\Delta s d p A \Delta s d p B \mathrm{P}_{x y} 1: \mathrm{P}_{\text {xy } \mid}$-dipM $M_{(\triangle 390-609)}$-sfmturquoise2 ${ }^{\text {ox }}$ | Integration of pAI087 in AM419 |
| MAB203 | CB15N $\Delta$ dipM $\mathrm{P}_{x y} 1:$ P $\mathrm{x}_{x y} /$-sdpA-mcherry | Zielińska et al., 2017 |
| MAB308 | CB15N $\Delta$ dipM $\mathrm{P}_{x y} 1:$ P $\mathrm{x}_{x y} 1$-sdpB-mcherry | Zielińska et al., 2017 |
| MAB360 | CB15N $\Delta$ dipM $\mathrm{P}_{x y} 1:$ : $\mathrm{P}_{x y} 1$-dipM | Zielińska et al., 2017 |
| MAB386 | CB15N $\Delta$ amiC $\mathrm{P}_{x y} 1:$ P $\mathrm{P}_{x y} 1$-amiC | Zielińska et al., 2017 |
| MAB490 | CB15N ftsN::ftsNASPOR $\mathrm{P}_{x y} \mathrm{l}$ : $\mathrm{P}_{x y}$-venus-ftsN | Integration of pAM14 in AM3 |
| MAB492 | CB15N ftsN::ftsNASPOR $\mathrm{P}_{\text {xyl }}:$ : $\mathrm{P}_{\text {xy }} /$-venus-fts $N_{(1-187)}$-podJ $J_{(893-975)}$ | Integration of pAM68 in AM3 |
| MAB494 | CB15N ftsN::ftsNASPOR $P_{x y l}:$ : $\mathrm{P}_{x y}$-venus-ftsN $\mathrm{P}_{\text {van }}:$ : $\mathrm{P}_{\text {van }}$-dipMsfmturquoise $2^{\text {ox }}$ | Integration of pAI041 in MAB490 |
| MAB496 | CB15N ftsN::ftsNASPOR $\mathrm{P}_{x y 1}:: \mathrm{P}_{x y}-$-venus-ftsN $\mathrm{N}_{(1-187)}$-podJ $\mathrm{J}_{(893-975)} \mathrm{P}_{\text {van }}:: \mathrm{P}_{\text {van }}{ }^{-}$ dipM-sfmturquoise ${ }^{\text {ox }}$ | Integration of pAI041 in MAB492 |
| MAB501 | CB15N $\Delta$ dipM $\mathrm{P}_{\text {xy } \mid}:$ : $\mathrm{P}_{\text {xy }} 1$-dipM $\mathrm{P}_{\text {van }}: \mathrm{P}_{\text {van }}-$ dip $M_{(\Delta 34-458)-5 f m t u r q u o i s e ~}{ }^{\text {ox }}$ | Integration of pAI064 in MAB360 |
| MAB502 | CB15N $\Delta$ dipM $\mathrm{P}_{\text {xyl }}:$ : $\mathrm{P}_{\text {xy }} 1$-dipM $\mathrm{P}_{\text {van }}: \mathrm{P}_{\text {van }}-$ dip $M_{(\Delta 34-390)-5 f m t u r q u o i s e 2 ~}{ }^{\text {ox }}$ | Integration of pAl065 in MAB360 |
| MAB503 | CB15N $\Delta$ dipM $\mathrm{P}_{\text {xy }}$ : $: \mathrm{P}_{\text {xyl }}$-dipM $\mathrm{P}_{\text {van }}:$ : $\mathrm{P}_{\text {van }}$-dipM ( $\left.1123-458\right)$-sfmturquoise2 $^{\text {ox }}$ | Integration of pAI066 in MAB360 |
| MAB504 | CB15N $\Delta$ dipM $\mathrm{P}_{x y} 1: \mathrm{P}_{\text {xyl }}$-dipM $\mathrm{P}_{\text {van }}:$ : $\mathrm{P}_{\text {van }}$-dipM(R589A)-sfmturquoise2 ${ }^{\text {ox }}$ | Integration of pAI095 in MAB360 |
| MAB505 | CB15N $\Delta$ dipM $\mathrm{P}_{\text {xyl }}:$ : $\mathrm{P}_{\text {xyl }}$-dipM $\mathrm{P}_{\text {van }}:$ : $\mathrm{P}_{\text {van }}$-dipM(L5375)-sfmturquoise2 ${ }^{\text {ox }}$ | Integration of pMAB195 in MAB360 |
| MAB506 |  | Integration of pMAB198 in MAB360 |
| MAB510 |  | Integration of pMAB203 in MAB360 |
| MAB512 | CB15N 4 dipM $\mathrm{P}_{x y} 1: \mathrm{P}_{\text {xyl }}$-dipM $\mathrm{P}_{\text {van }}:$ : $\mathrm{P}_{\text {van }}$-dipM-sfmturquoise2 ${ }^{\text {ox }}$ | Integration of pAI063 in MAB360 |
| MAB513 | CB15N $\Delta$ dipM $\mathrm{P}_{\text {xy } l}:$ : $\mathrm{P}_{\text {xyl }}$-dipM $\mathrm{P}_{\text {van }}:: \mathrm{P}_{\text {van }}$-dipM ${ }_{(\Delta 390-609)-\text { ffmturquoise2 }}{ }^{\text {ox }}$ | Integration of pAI075 in MAB360 |
| MAB514 | CB15N 4 dipM $\mathrm{P}_{\text {xy }}:: \mathrm{P}_{x y}$-dipM $\mathrm{P}_{\text {van }}:$ : $\mathrm{P}_{\text {van }}$-dipM $\mathrm{M}_{(593-598->G 56)-\text { sfmturquoise2 }}{ }^{\text {ox }}$ | Integration of pAI086 in MAB360 |
| MAB515 | CB15N 4 dipM $\mathrm{P}_{x y}:: \mathrm{P}_{x y} 1-$ dipM $\mathrm{P}_{\text {van }}:$ : $\mathrm{P}_{\text {van }}$-dipM $\mathrm{M}_{(\text {K595A K597A) }}$-sfmturquoise2 ${ }^{\text {ox }}$ | Integration of pAI084 in MAB360 |

Supplementary Table 4. Plasmids used in this study.

| Plasmid | Description | Reference/Construction |
| :---: | :---: | :---: |
| Previously generated plasmids used in this study |  |  |
| pAM14 | Integration plasmid carrying $P_{x y}$-venus-ftsN, Kan ${ }^{R}$ | Möll et al., 2009 |
| pAM68 | Integration plasmid carrying Pxyl-venus-ftsN ${ }_{(1-}$ 187)- $^{- \text {podJ }_{(893-975), ~}^{1}}$ Kan $^{\text {R }}$ | Möll et al., 2009 |
| pAM123 | pNTPS138 derivative to generate an in-frame deletion of amiC, Kan $^{\text {R }}$ | Möll et al., 2010 |
| pAM210 | Integration plasmid carrying $P_{x y}-$-sdpAmCherry, Kan ${ }^{\text {R }}$ | Zielińska et al., 2017 |
| pAZ14 | Integration plasmid carrying $P_{x y} 1-t a t^{S P}$-sdpBmCherry, Kan ${ }^{\text {R }}$ | Zielińska et al., 2017 |
| pAZ37 | Integration plasmid carrying $P_{x y} /-I d p F$, Kan $^{\text {R }}$ | Zielińska et al., 2017 |
| pET28(+) | Vector for overproduction of N-terminal fusions to $\mathrm{His}_{6}, \mathrm{Kan}^{\text {R }}$ | Novagen |
| pMT814 | pNTPS138 derivative to generate an in-frame deletion of dipM, Kan ${ }^{\text {R }}$ | Möll et al., 2010 |
| pNPTS138 | sacB-containing suicide vector used for double homologous recombination, $\operatorname{Kan}^{\mathrm{R}}$ | M.R.K. Alley (unpublished) |
| pTB146 | Vector for overproduction of N-terminal fusions to His6-SUMO, Amp ${ }^{\text {R }}$ | T. Bernhard (unpublished) |
| pVVENN-4 | Integration plasmid to produce fusion proteins carrying an N -terminal Venus tag under the control of $P_{\text {van }}$, Gent ${ }^{R}$ | Thanbichler et al., 2007 |
| pXCFPN-4 | Integration plasmid to produce fusion proteins carrying an N-terminal eCFP tag under the control of $P_{x y}$, Gent ${ }^{R}$ | Thanbichler et al., 2007 |
| pXFLGC-2 | Integration plasmid to produce fusion proteins carrying a C-terminal FLAG tag under the control of $P_{x y}$, Kan $^{R}$ | Thanbichler et al., 2007 |
| pXGFPN-4 | Integration plasmid to produce fusion proteins carrying an N-terminal eGFP tag under the control of $P_{x y l}$, Gent ${ }^{R}$ | Thanbichler et al., 2007 |
| Plasmids generated in this study |  |  |
| pAI001 | pTB146 derivative for the overexpression of his6-SUMO-dipM ${ }_{(459-609)}$, Amp ${ }^{\text {R }}$ | a) Amplification of dipM with oligos PFsumodipm and PRsumodipm. <br> b) Cloning of the fragment into pTB146 via Sapl and BamHI. |
| pAIOO2 | pXFLGC-2 derivative bearing dipM-flag, $\mathrm{Kan}^{\text {R }}$ | a) Amplification of $\operatorname{dip} M$ with oligos AM119 and AM121. <br> b) Cloning of the fragment into pXFLGC-2 via Ndel and EcoRI. |
| pAIOO3 | pAIOO2 derivative, Gent ${ }^{R}$ | a) Restriction of both pAIOO2 and pXGFPC-4 with Ndel and Nhel <br> b) Ligation of the fragment containing the dipM-flag fusion from pAl002 into the open pXGFPCC-4 |
| pAIO13 | pAI003 derivative bearing sdpA-flag, Gent ${ }^{R}$ | a) Amplification of sdpA with primers AM270 and AM329 <br> b) Cloning of the fragment into pAIOO3 via Ndel and EcoRI |
| pAI014 | pET28a(+) derivative bearing $s d p A_{(21-699)}$-his6, $K^{\prime}{ }^{R}$ | a) Amplification of $\operatorname{sdpA}$ with primers OAIO22 and OAIO23. <br> b) Cloning of the fragment into pET28a(+) via EcoRI and Ndel. |
| pAI015 | pXCFPN-4 derivative bearing sdpA, Gent ${ }^{R}$ | a) Amplification of $\operatorname{sdpA}$ with primers OAIO23 and AM329. <br> b) Cloning of the fragment into pXCFPN-4 via Ndel and EcoRI. |
| pAIO16 | pXFLGC-2 derivative bearing IdpF-flag, $\mathrm{Kan}^{\text {R }}$ | a) Amplification of $I d p F$ with primers AM214 and AM215. <br> b) Cloning of the fragment into pXFLGC-2 via Ndel and EcoRI. |
| pAI018 | pXFLGC-2 derivative bearing crbA-flag, $\mathrm{Kan}^{\text {R }}$ | a) Amplification of crbA with primers OAIO26 and OAIO27. <br> b) Cloning of the fragment into pXFLGC-2 via Ndel and EcoRI. |
| pAI019 | pXFLGC-2 derivative bearing crbA, Kan ${ }^{\text {R }}$ | a) Amplification of crbA with primers OAIO26 and OAIO28. <br> b) Cloning of the fragment into pXFLGC-2 via Ndel and EcoRI. |
| pAIO25 | pTB146 derivative for the overexpression of his6-SUMO-IdpF ${ }_{(25-351),} \mathrm{Amp}^{R}$ | a) Amplification of $I d p F$ with primers OAIO38 and OAIO39. <br> b) Cloning of the fragment into pTB146 via SapI and BamHI. |
| pAIO26 | pTB146 derivative for the overexpression of his6-SUMO-sdp $B_{(26-536)}$, Amp $^{R}$ | a) Amplification of $s d p B$ with primers OAIO36 and OAIO37. <br> b) Cloning of the fragment into pTB146 via Sapl and Xmal |
| pAIO29 | pAIOO3 derivative bearing amiC-flag, Gent ${ }^{R}$ | a) Amplification of amiC with primers OAIO47 and OAIO48. <br> b) Cloning of the fragment into pAl003 via Ndel and EcoRI. |

## Supplementary Table 4. Plasmids used in this study (continued).

| pAIO36 | pTB146 derivative for the overexpression of his6-SUMO-ftsN ${ }_{(51-266)}$, Amp $^{R}$ | a) Amplification of $f t s N$ with primers OAIO76 and OAIO77. <br> b) Insertion of the fragment into pTB146 cut with Sacl and BamHI via Gibson assembly. |
| :---: | :---: | :---: |
| pAI037 | pTB146 derivative for the overexpression of his6-SUMO-amiC (35-395), Amp ${ }^{\text {R }}$ | a) Amplification of amiC with primers OAIO74 and OAIO75. <br> b) Insertion of the fragment into pTB146 cut with Sacl and BamHI via Gibson assembly. |
| pAIO38 | pXFLGC-2 derivative that can be used to make C-terminal sfmTurquoise2 ${ }^{0 x}$ fusions under the control of $P_{x y}$, Kan $^{R}$ | a) Amplification of $s f m$ Turquoise $2^{0 x}$ with a multiple cloning site with primers OAI031 OAI032. <br> b) Cloning of the fragment into pXFLGC-2 via Ndel and Nhel. |
| pAI039 | pAI038 derivative bearing dipMsfmTurquoise2 ${ }^{\text {ox, }}$ Kan $^{\text {R }}$ | a) Amplification of $\operatorname{dipM}$ with primers AM119 and AM121. <br> b) Cloning of the fragment into pAIO38 via Ndel and EcoRI. |
| pAI041 | $\mathrm{pVVENN}-4$ derivative bearing dipMsfmTurquoise2 ${ }^{0 x}$, Gent ${ }^{R}$ | a) Restriction of both pAIO39 and pVVENN-4 with Ndel and Nhel. <br> b) Ligation of the fragment from pAIO39 bearing dipM-sfmTurquoise $2^{0 x}$ into the pVVENN-4 |
| pAI049 | pTB146 derivative for the overexpression of his6-SUMO-crbA ${ }_{(371-451)}$, Amp $^{R}$ | a) Amplification of crbA with primers OAI109 and OAI110. <br> b) Insertion of the fragment into pTB146 cut with Sacl and BamHI via Gibson assembly. |
| pAI063 | pAIO41 derivative with Kan ${ }^{\text {R }}$ | a) Restriction of both pAIO41 and pXFLGC-2 with Nhel and Notl. <br> b) Ligation of the fragment from pAIO41 bearing dipM-sfmTurquoise $2^{0 x}$ into pXFLGC-2 |
| pAI064 | Derivative of pAl063 bearing $\operatorname{dip} M_{(\Delta 34-458)^{-}}$ sfmturquoise2 ${ }^{0 x}$, Kan $^{R}$ | Site-directed mutagenesis of pAI063 with primers OAI181 and OAI182 |
| pAI065 | Derivative of pAl063 bearing $\operatorname{dipM}_{(\Delta 34-390)^{-}}$ sfmturquoise2ox, $\mathrm{Kan}^{\mathrm{R}}$ | Site-directed mutagenesis of pAI063 with primers OAI183 and OAI184 |
| pAI066 | Derivative of pAl063 bearing dipM(4123-458)sfmturquoise ${ }^{0 x}$, Kan $^{\text {R }}$ | Site-directed mutagenesis of pAI063 with primers OAI185 and OAI186 |
| pAI067 | Derivative of pXGFPC-4 bearing dipMsfmTurquoise2 ${ }^{2 x}$, Gent ${ }^{R}$ | a) Restriction of both pAIO63 and pXGFPC-4 with Ndel and Nhel. <br> b) Ligation of the fragment from pAI063 bearing dipM-sfmTurquoise2ox into pXGFPC-4 |
| pAI068 | Derivative of pXGFPC-4 bearing $\operatorname{dipM}(\Delta 34-458)^{-}$ sfmTurquoise2 ${ }^{2 x}$, Gent ${ }^{R}$ | a) Restriction of both pAIO64 and pXGFPC-4 with Ndel and Nhel. <br> b) Ligation of the fragment from pAI064 bearing dipM-sfmTurquoise2ox into pXGFPC-4 |
| pAI072 | Plasmid to generate an allele encoding the DipM( $\Delta 36-459)$ variant at the native $\operatorname{dipM}$ locus, $K^{\prime} n^{R}$ | a) Amplification of the upstream and downstream regions from the $C$. crescentus chromosome using primers OAI190/OAl193 and OAI194/OAI195, respectively. <br> b) Insertion of both fragments into pNPTS138 cut with BamHI and EcoRI by Gibson assembly |
| pAI075 | Derivative of pAIO63 bearing $\operatorname{dip} M_{(1390-609)-}$ sfmturquoise2 ${ }^{0 x}$, Kan $^{\text {R }}$ | Site-directed mutagenesis of pAl063 with primers OAI199 and OA200 |
| pAI077 | Derivative of pAl063 bearing $\operatorname{dip} M_{(\Delta 35-500)^{-}}$ sfmturquoise2ox, $\mathrm{Kan}^{\mathrm{R}}$ | Site-directed mutagenesis of pAl063 with primers OAI203 and OA204 |
| pAI078 | Derivative of pAl063 bearing $\operatorname{dipM}_{(\Delta 35-478)^{-}}$ sfmturquoise2ox, $\mathrm{Kan}^{\mathrm{R}}$ | Site-directed mutagenesis of pAl063 with primers OAI205 and OA206 |
| pAI079 | Derivative of pAl063 bearing $\operatorname{dip} M_{(\Delta 35-486)^{-}}$ sfmturquoise ${ }^{0 x}$, Kan $^{\text {R }}$ | Site-directed mutagenesis of pAI063 with primers OAI207 and OA208 |
| pAI081 | Derivative of pXGFPC-4 bearing $\operatorname{dip} M_{(\Delta 35-500)-}$ sfmturquoise2ox, Gent ${ }^{R}$ | a) Restriction of both pAIO77 and pXGFPC-4 with Ndel and Nhel. <br> b) Ligation of the fragment from pAIO63 bearing dipM( $\Delta 35-500)$-sfmTurquoise $2^{0 x}$ into PXGFPC-4 |
| pAI082 | Derivative of pXGFPC-4 bearing $\operatorname{dipM}_{(\Delta 35-478)^{-}}$ sfmturquoise2 ${ }^{\text {ox }}$, Gent ${ }^{R}$ | a) Restriction of both pAIO78 and pXGFPC-4 with Ndel and Nhel. <br> b) Ligation of the fragment from pAl063 bearing $\operatorname{dip} M_{(\Delta 35-478)}$-sfmTurquoise2ox into pXGFPC-4 |
| pAI083 | Derivative of pXGFPC-4 bearing $\operatorname{dipM}_{(\Delta 35-486)^{-}}$ sfmturquoise2ox, Gent ${ }^{R}$ | a) Restriction of both pAIO79 and pXGFPC-4 with Ndel and Nhel . <br> b) Ligation of the fragment from pAIO63 bearing $\operatorname{dip} M_{(\Delta 35-486)-\text {-sfmTurquoise } 2^{\circ x}}$ into PXGFPC-4 |
| pAI084 | Derivative of pAI063 bearing $\operatorname{dip} M_{(K 595 A, ~ K 598 A)-~}^{\text {- }}$ sfmturquoise2ox, $\mathrm{Kan}^{\mathrm{R}}$ | Site-directed mutagenesis of pAl063 with primers OAI213 and OA214 |
| pAI086 | Derivative of pAl063 bearing $\operatorname{dip} M_{(593-598-95 G)^{-}}$ sfmturquoise2 ${ }^{o x}$, Kan $^{R}$ | Site-directed mutagenesis of pAl063 with primers OAI218 and OA219 |
| pAI087 | Derivative of pXGFPC-4 bearing $\operatorname{dip} M_{(\Delta 390-609)^{-}}$ sfmturquoise2*x, Gent ${ }^{R}$ | a) Restriction of both pAIO75 and pXGFPC-4 with Ndel and Nhel . <br> b) Ligation of the fragment from pAIO75 bearing dipM( $\Delta 390-609)$-sfmTurquoise ${ }^{\text {ox }}$ into pXGFPC-4 |
| pAI095 | Derivative of pAI063 bearing $\operatorname{dip}_{(\text {R589A })}{ }^{-}$ sfmturquoise2 ${ }^{\circ x}, \operatorname{Kan}^{R}$ | Site-directed mutagenesis of pA1063 with primers OAI229 and OA230 |

Supplementary Table 3. Plasmids used in this study (continued).
$\left.\begin{array}{|l|l|l|}\hline \text { pMAB150 } & \begin{array}{l}\text { pTB146 derivative for the overexpression of } \\ \text { his6-SUMO-IdtD } \\ (26-502)\end{array}, \text { Amp }^{R}\end{array} \quad \begin{array}{l}\text { a) Amplification of } I d t D \text { with primers MAB401 and MAB397. } \\ \text { b) Insertion of the fragment into pTB146 cut with Sapl and Xhol via Gibson } \\ \text { assembly. }\end{array}\right]$

Supplementary Table 5. Oligonucleotides used in this work.

| Oligonucleotide name | Sequence |
| :---: | :---: |
| PFsumodipm | ggtggtagaagagcaggtcggacgatcatcgagaccgccgc |
| PRsumodipm | ggatcctcagcgcggcagcaccagcgccg |
| OAIO22 | ggcagccatatggctagcgccgctgacgeccagacgacgac |
| OAIO23 | tagaattcgcttaaggctgggcgctggccg |
| OAIO25 | ctgcagctagcttactctatcgcgactcctgtttgagccagc |
| OAIO26 | agacgaccatatggtgtggcggtgcggaaccgc |
| OAIO27 | gttcgaattctccggcttcagcacaatgcagggc |
| OAIO28 | gttcgaattctcctacggcttcagcacaatgcagggc |
| OAI036 | ttggtggtagaagagcacacgccagcgggcttgagcccc |
| OAI037 | cgagcccgggtgacctagggcagctgcgccatcaactggt |
| OAI038 | ggtggtagaagagcacagcgcgccgacgecgccttcg |
| OAI039 | aaggggatccggctttatcgcgactcctgtttgagccagcgc |
| OAI047 | cggagaattcgaacaagacttgcgaagaccegaggag |
| OAI048 | cgaccatatgcctgcatgcgtagaggtctcatcaatttcgct |
| OAI074 | gtagaagagcagagctcggacccgccgcgccogccg |
| OAI075 | gctttgttagcagccggatccctaagacttgcgaagacccgagg |
| OAI076 | gggctttgttagcagccggatcctcactttacgaagcaggatttgccgg |
| OAI077 | ggtggtagaagagcagagctcatgatctatcgcgatggcgtgcgc |
| OAI109 | ggtagaagagcagagctcgcgaagaagcctaagggcgaatg |
| OAI110 | ggctttgttagcagccggatccctacggcttcagcacaatgcagg |
| OAI181 | cttcacgccgggtcggacgatcatcgagaccgc |
| OAI182 | gatcgtccgacceggcgtgaagcgctgaccc |
| OAI183 | cgcttcacgccgcccgacggtttccgcgacaagg |
| OAI184 | gaaaccgtcgggcggcgtgaagcgctgaccega |
| OAI185 | gcaagccccagggtcggacgatcatcgagaccgc |
| OAI186 | cgatgatcgtccgaccetggggcttgccegcgac |
| OAI190 | tctctgcaggatatctggatccggagatcggcaccggc |
| OAI193 | cgtccgaccgaagttcggcgtgaagcgc |
| OAI194 | cacggccgaagctagcgaattcccgctcgcgcgatgtacg |
| OAI195 | gccgaacttcggtcggacgatcatcgagaccg |
| OAI199 | cgcgctgcccgcgaattcgaacgttacgegtcac |
| OAI200 | tcgaattcgcgggcagcgcgatcttctgg |
| OAI203 | gcttcacgccgcagcgcaacgacggcctcaatatccg |
| OAI204 | gttgcgctgcggcgtgaagcgctgacceg |
| OAI205 | ttcacgccgaacggcaagttcgcctggccgctg |
| OAI206 | cgaacttgccgttcggcgtgaagcgctgaccega |
| OAI207 | acgccgaacggcgacatcatctccagctttggcgt |
| OAI208 | atgatgtcgccgttcggcgtgaagcgctgacccga |
| OAI213 | tggcggacgcagccaagccggtcgatccggc |
| OAI214 | gctgcgtccgccaccgtcggcgegtagcge |
| OAI218 | ccgggatcgggtgccaagccggtcgatccggc |
| OAI219 | cttggcacccgatcccggcgegtagcgcatctcga |
| OAI227 | cgcaacgccggcctcaatatccgcg |
| OAI228 | ccggcgttgcgctggccogtg |
| OAI229 | gagatggcctacgcgccgacggtg |
| OAI230 | gcgcgtaggccatctcgaagtgcagctgc |
| OAI231 | tggtcgcgcacgccgacggctg |
| OAI232 | gcgtgcgcgaccagcacgaggttgc |
| OAI233 | ggccagcgcaacaagggcctcaatatccgc |
| OAI234 | tattgaggccettgttgcgctggcccgtgcc |
| AM119 | ttttcatatgaggcagttgtggacgcaagcggc |
| AM121 | tagaattcgcgcgcggcagcaccagcgcc |
| AM124 | aaaccatggcgagccagtcgggtcagcgcttcacgcc |
| AM214 | ttttcatatgtcccgctcgcgactcgtcttgg |
| AM215 | tagaattcgctcgcgactcctgtttgagccagcgc |
| AM270 | tagaattcgcaggctgggcgctggccgtctcggctg |
| AM329 | ttttcatatggtttcaggaatgcgtcgctggc |
| MAB397 | aggctcacagagaacagattggtggtcagtcgcagcgtccgcc |
| MAB400 | tgcagtcacccgggctcgagtcagagtgcggcgatacgctg |

Supplementary Table 5. Oligonucleotides used in this work (continued).

| MAB507 | aggtcccgacattcggcaactccgtgctggtcaagcacgccg |
| :--- | :--- |
| MAB508 | cggcgtgcttgaccagcacggagttgccgaatgtcgggacct |
| MAB509 | gacattcggcaacctcgtgtcggtcaagcacgccgacggct |
| MAB510 | agccgtcggcgtgcttgaccgacacgaggttgccgaatgtc |
| MAB515 | gacattcggcaactccgtgtcggtcaagcacgccgacggct |
| MAB516 | agccgtcggcgtgcttgaccgacacggagttgccgaatgtc |

## Supplementary references

An, D.R., Im, H.N., Jang, J.Y., Kim, H.S., Kim, J., Yoon, H.J., Hesek, D., Lee, M., Mobashery, S., Kim, S.-J., et al. (2016) Structural basis of the heterodimer formation between cell shape-determining proteins Csd1 and Csd2 from Helicobacter pylori. PLoS One 11, e0164243.

Billini, M., Biboy, J., Kühn, J., Vollmer, W. \& Thanbichler, M. (2019) A specialized MreB-dependent cell wall biosynthetic complex mediates the formation of stalk-specific peptidoglycan in Caulobacter crescentus. PLoS Genet. 15, e1007897.
Cook, J., Baverstock, T.C., McAndrew, M.B.L., Stansfeld, P.J., Roper, D.I. \& Crow, A. (2020) Insights into bacterial cell division from a structure of EnvC bound to the FtsX periplasmic domain. Proc. Natl. Acad. Sci. USA 117, 28355-28365.

Evans, R., O’Neill, M., Pritzel, A., Antropova, N., Senior, A., Green, T., Žídek, A., Bates, R., Blackwell, S., Yim, J., et al. (2022) Protein complex prediction with AlphaFold-Multimer. bioRxiv, DOI: 10.1101/2021.10.04.463034.

Evinger, M. \& Agabian, N. (1977) Envelope-associated nucleoid from Caulobacter crescentus stalked and swarmer cells. J. Bacteriol. 132, 294-301.

Grabowska, M., Jagielska, E., Czapinska, H., Bochtler, M. \& Sabala, I. (2015) High resolution structure of an M23 peptidase with a substrate analogue. Sci. Rep. 5, 14833.

Meisner, J., Maehigashi, T., André, I., Dunham, C.M. \& Moran, C.P. (2012) Structure of the basal components of a bacterial transporter. Proc. Natl. Acad. Sci. USA 109, 5446-5451.
Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G.A., Sonnhammer, E.L.L., Tosatto, S.C.E., Paladin, L., Raj, S., Richardson, L.J., et al. (2021) Pfam: The protein families database in 2021. Nucleic Acids Res. 49, D412-D419.
Möll, A., Schlimpert, S., Briegel, A., Jensen, G.J. \& Thanbichler, M. (2010) DipM, a new factor required for peptidoglycan remodelling during cell division in Caulobacter crescentus. Mol. Microbio.l 77, 90-107.
Möll, A. \& Thanbichler, M. (2009). FtsN-like proteins are conserved components of the cell division machinery in proteobacteria. Mol. Microbiol. 72, 1037-1053.

Shin, J.-H., Sulpizio, A.G., Kelley, A., Alvarez, L., Murphy, S.G., Fan, L., Cava, F., Mao, Y., Saper, M.A. \& Dörr, T. (2020) Structural basis of peptidoglycan endopeptidase regulation. Proc. Natl. Acad. Sci. USA 117, 11692-11702.
Thanbichler, M., Iniesta, A.A. \& Shapiro, L (2007) A comprehensive set of plasmids for vanillate- and xylose-inducible gene expression in Caulobacter crescentus. Nucleic Acids Res. 35, e137.

Zielińska, A., Billini, M., Möll, A., Kremer, K., Briegel, A., Izquierdo Martinez, A., Jensen, G.J. \& Thanbichler, M. (2017). LytM factors affect the recruitment of autolysins to the cell division site in Caulobacter crescentus. Mol. Microbiol. 106, 419-438.

