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1.1. LISTERIA MONOCYTOGENES 

1.1.1. History, biological characteristics and classification 

L. monocytogenes was discovered by EGD Murray in 1924 following an epidemiy that 

affected rabbits and guinea pigs in animal care houses in Cambridge (Murray et al., 1926). It 

was firstly described as a pathogen in 1929 and initially considered as an animal pathogen 

with rare human cases, L. monocytogenes emerged as a “new” human pathogen in the 1980s, 

with several food-associated listeriosis outbreaks. The case fatality rate is about 20-30%. In 

the US, listeriosis accounts for approximately 28% of the deaths and the highest 

hospitalization rate (91%) caused by known food-borne infections.  

Prior to the 1980s the origins of human infections caused by Listeria monocytogenes were 

uncertain. However, at the end of the 1970s and the start of the 1980s, the number of reports 

on Listeria isolations began to increase and in 1983, the first human listeriosis outbreak 

directly linked to the consumption of Listeria contaminated foodstuffs was reported (Schlech 

et al., 1983). From 1983 onwards, a series of epidemia outbreaks in humans in North America 

and Europe clearly established listeriosis as a severe food-borne infection (Farber and 

Peterkin, 1991; Fleming et al., 1985; James et al., 1985; Schlech et al., 1983), and thereby L. 

monocytogenes as a food-borne pathogen.  

The genus Listeria consists of a group of Gram-positive bacteria of low G+C content 

closely related to Bacillus and Staphylococcus (Sallen et al., 1996). It includes six species: L. 

monocytogenes, L. ivanovii, L. seeligeri, L. innocua, L. welshimeri and L. grayi (Sallen et al., 

1996). Two of them, L. monocytogenes and L. ivanovii, are pathogenic. While L. ivanovii is 

mainly pathogenic for animals, L. monocytogenes can infect humans, and domestic and wild 

animals (Seeliger and Jones, 1986). A third species, L. seeliegeri, is considered avirulent, 

although it has been isolated from at least one case of human listeriosis (Rocourt et al., 1986).  

Listeria monocytogenes is a Gram positive facultative anaerobic bacterium (Seeliger and 

Jones, 1986) that can resist acid pHs, low Aw, low O2 concentrations and low temperatures 

(Kathariou, 2002; Ross et al., 2000). Morfologically, L. monocytogenes are non-spore 

forming rods of 0.4 μm in diameter and 0.5 – 2 μm in length. They are motile by means of 

peritrichous flagella when cultured below 25 °C (Seeliger and Jones, 1986). L. 
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monocytogenes can grow over the temperature range of 0.5-45 °C with an optimum between 

30 °C and 37 °C. However, its growth at temperatures below 4 °C is generally very slow and 

the lag phase can be very long. As the temperature increases above 4 °C, the growth rate of L. 

monocytogenes increases and the lag phase time decreases considerably; consequently, 

storage at slightly abusive temperatures (e.g. 7 to 10 °C) of refrigerated ready-to-eat (RTE) 

greatly increases the risk that L. monocytogenes, if present, will reach numbers that could 

cause human disease (ILSI Research Foundation/Risk Science Institute Expert Panel on L. 

monocytogenes in Foods, 2005; International Commission on Microbiological Specifications 

for Foods, 1996). Freezing at −18 ºC, and even repeated freezing, has little effect on the 

survival of L. monocytogenes; these conditions are more likely to injure than to inactivate this 

organism.  

L. monocytogenes is very well equipped to survive typical hurdles applied in food 

preservation. It grows across a broad pHs range (4.3-9.8), but depends on the acid type and 

temperature, L. monocytogenes can grow at pHs as low as 4.0 (Lado and Yousef, 2007, 

Martin and Fisher, 1999). L. monocytogenes grow in complex medium containing up to 10% 

(w/v) NaCl, but some strains can tolerate up to 20 % (w/v) NaCl, so it can resist very low 

water activities (aw 0.91) (Lado and Yousef, 2007, Seeliger and Jones, 1986). Moreover, it 

can grow in aerobic modified atmospheres also with competitive microorganisms 

(Wimpfheimer et al., 1990).  

L. monocytogenes has been classified under different criteria: 

1. According to the presence of O (somatic) and H (flagelar) antigens L. monocytogenes is 

classified in 13 serovars (Seeliger and Höhne, 1979; Seeliger and Jones, 1986): 1/2a, 1/2b, 

1/2c, 3a, 3b, 3c, 4a, 4ab, 4b, 4c, 4d, 4e, 7. Although human listeriosis may be caused by all 13 

serovars of L. monocytogenes, 1/2a, 1/2b, 1/2c and 4b serovar cause at least 95% of the cases 

(Doumith et al., 2004; Farber and Peterkin, 1991; Swaminathan and Gerner-Smidt, 2007). 

Among the outbreaks of invasive listeriosis, serovar 4b strains have caused the majority of the 

outbreaks worldwide from 1980-2005, whereas strains of serovar 1/2 have caused the 

majority of the non-invasive, gastrointestinal listeriosis outbreaks worldwide from 1993-2001 

(Swaminathan and Gerner-Smidt, 2007). However, among food isolates, serotype 1/2 is the 

most frequently found (Farber and Peterkin, 1991; Jacquet et al., 2002).  
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2. According to the genotypic analyses: whereas enzyme electrophoresis (Piffaretti et al., 

1989), pulsed-field gel electrophoresis (PFGE) (Brosch et al., 1994) and ribotyping (Graves et 

al., 1994) can divide L. monocytogenes into two major subgroups, virulence gene analysis 

have grouped L. monocytogenes into three groups: lineage I, II and III (Rasmussen et al., 

1995; Wiedmann et al., 1997). At the same time, each lineage includes several serotypes: 

lineage I, comprising serotypes 1/2b, 3b, 3c and 4b; lineage II, comprising serotypes 1/2a, 

1/2c and 3a, and lineage III comprising serotypes 4a and 4c (Nadon et al., 2001). Invasive 

listeriosis is primarily caused by lineage I strains, whereas lineage II strains are most 

frequently isolated from food. In comparison, serotypes belonging to lineages II and III are 

less significant, being rarely associated with foodborne listeriosis.  

Typing studies involving L. monocytogenes isolates from clinical, food and food 

processing sources led to the consensus of considering the division of L. monocytogenes in 

those three lineages (Harvey and Gilmour, 1992).  

 

1.1.2. Natural niches 

Although L. monocytogenes is ubiquitous, its prevalence in the outdoor environment is not 

high (Porsby et al., 2008). Listeria spp. are isolated from a diversity of environmental sources, 

including soil, water, effluents, a large variety of foods, and the feces of humans and animals 

(Barbuddhe et al., 2009). It is thought to be widespread, being a saprophytic organism adapted 

to the plant-soil environment (Weis and Seeliger, 1975). The bacteria is widely present in 

plants, soils, sediments and surface water samples, and has also been found in sewage, human 

and animal faeces (MacGowan et al., 1994; Weis and Seeliger, 1975). Generally, the 

proportion of positive samples is low in the outdoor environment, between 0 and 6%, but 

studies indicate that the prevalence increases with the degree of human activity (Hansen et al., 

2006; MacGowan et al., 1994; El Marrackchi et al., 2005). Animals are susceptible to 

listeriosis but can carry L. monocytogenes asymptomatically. Fecal carriage of L. 

monocytogenes in livestock animals such as cattle beef, dairy, poultry and horses has been 

found with varying frequency around 0-13%, and in wildlife up to 40% (Lyautey et al., 2007). 

Prevalence of L. monocytogenes has also been reported in wild life animals like deer, moose 

and birds (Hellström et al., 2008; Lyautey et al., 2007). Similarly, humans can be 
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asymptomatic carriers of L. monocytogenes, but generally with prevalence below 1% 

(MacGowan et al., 1994; Sauders et al., 2005). 

1.1.3. The disease: clinic, invasiveness and virulence  

The invasive disease is fatal in 30% of cases although it can be treated with amoxicillin 

antibiotics if early caught (Williams and Nadel, 2001). Clinical manifestations range from 

febrile gastroenteritis to more severe invasive forms, including sepsis, meningitis, 

rhombencephalitis, perinatal infections, and abortions (Allerberger et al., 2010). In pregnant 

women, listeriosis may lead to spontaneous abortion, stillbirth or fetal death.  

Recent outbreaks demonstrated that L. monocytogenes can cause gastroenteritis in 

otherwise healthy individuals and more severe invasive disease in immunocompromised 

patients. Common symptoms include fever, watery diarrhea, nausea, headache, and pains in 

joints and muscles. As it is shown in Figure 1.1.1, the intestinal tract is the major portal of 

entry for L. monocytogenes, whereby strains penetrate the mucosal tissue either directly, via 

invasion of enterocytes, or indirectly, via active penetration of the Peyer's patches. 

Additionally, some evidences have shown that listeriolysin (a protein directly involved in the 

infectiveness of L. monocytogenes, as described below) can act as an extracelular virulent 

factor that caused gastroenteritis in the host (Richter et al., 2009). 

 

Figure 1.1.1: Schematic representation of the physiopathology of L. monocytogenes 

infection (taken from Liu 2008) 
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Although all the strains belonging to this species are assumed to be pathogenic, 

epidemiological evidence indicates that strain-to-strain differences in virulence. Thus, only 4 

of the 13 Listeria serotypes—namely, 1/2a, 1/2b, 1/2c, and 4b—account for 95–98% of all 

cases of human and animal listeriosis worldwide. Of these, serovar 1/2c is found in a minority 

of clinical isolates (2–4%) but predominates among food isolates. Similarly, serovar 4b, 

belonging to one of the two major genetic lineages of L. monocytogenes, predominates among 

clinical isolates (>50% of listeriosis cases), whereas it is much less frequently found among 

food isolates than serogroup ½ (i.e., serovars 1/2a, 1/2b, and 1/2c) strains. Moreover, a 

restricted number of 4b strains, representing distinct genotypes, are responsible for most food-

borne outbreaks of human listeriosis world-wide, which suggests that certain clones of L. 

monocytogenes may be more pathogenic for humans (Liu, 2008). 

Virulence heterogeneity among L. monocytogenes isolates—often associated to natural 

attenuating mutations in key virulence loci—is also supported by experimental evidence. 

However, the most critical factor is the underlying condition and immunological status of the 

host as this determines the susceptibility to a given strain of L. monocytogenes. The vast 

majority of listeriosis patients have a physiological or pathological condition that impairs the 

capacity to mount an effective cellular immune response. Three major population groups at 

risk for invasive listeriosis are the neonates, elderly (>60 years) and pregnant woman. In 

neonates and elderly, that risk is due to the inmature or declining immune system. In pregnant 

woman is associated with depression of cell-mediated immunity to prevent rejection of the 

fetoplacental allograft. In nonpregnant adults, almost all cases of listeriosis have been found 

in individuals with chronic, debilitating illnesses or subjected to immunosuppressive therapy. 

Specific risk groups in the intermediate-age band include cancer and organ transplant patients, 

HIV-infected and AIDS patients, and individuals with chronic liver disease (alcoholism and 

cirrhosis), diabetes and lupus (Liu, 2008). 

In immunocompetent individuals with no predisposing condition, ingestion of low to 

moderate doses of L. monocytogenes (≤105 CFUs) has no effect other than boosting 

antilisterial protective immunity, whereas ingestion of large doses of the bacteria (≥106 CFUs, 

sometimes doses as high as 1011) may cause acute febrile gastroenteritis within 24 h of 

consumption of the contaminated food due to massive invasion of the intestinal mucosa. 

Depending on the pathogenicity of the strain, some healthy nonpregnant adults exposed to a 

large L. monocytogenes inoculum may develop invasive listeriosis. In immunocompromised 
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individuals, however, invasive disease is facilitated by the inefficient mobilization of the host 

defenses and the blood-borne dissemination of L. monocytogenes from the primary infectious 

foci in the liver and spleen (silent phase of infection). In those cases, bacteremia may lead to 

meningoencephalitis if bacteria traverse the brain microcapillaries, to abortion or perinatal 

septicemia if they traverse the placental barrier, or to septicemic disease in cases of severe 

immunosuppression (Figure 1.1.2). 

 

Figure 1.1.2: Clinical and pathological features of Listeria monocytogenes infection. (A) 

Fetomaternal listeriosis. Stillborn fetus with septicemic invasion (“granulomatosis 

infantiseptica”). (B) Liver from the stillborn fetus in (A) showing typical disseminated 

pyogranulomatous necrotic foci. (C) Histopathological image of the liver from an 

experimentally infected sheep with milliary listerial pyogranulomatous hepatitis 

(hematoxilin/eosin-stained). (D) Meningoencephalitis due to L. monocytogenes in a cow. 

(E) Section of the brainstem of a sheep with listerial rhombencephalitis showing 

inflammatory lesions in the nerve tissue. (F) Parenchymal inflammatory infiltration of the 

brainstem in (E) showing typical perivascular cuffing (arrow) indicative of blood-borne 

invasion of the brain tissue by L. monocytogenes. Clinical and pathological 

manifestations of listeriosis are essentially similar in humans and animals. (taken from Liu 

2008 Pag. 99) 

1.1.4. Virulence mechanism 

Macrophages and epithelial cells are widely used to study the interaction of L. 

monocytogenes with mammalian host cells. However, it was shown that also neutrophils, 
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dendritic cells, hepatocytes, fibroblasts, endothelial cells, or glial cells may become infected 

with, and serve as host cells for L. monocytogenes in vitro and in vivo.  

 

Figure 1.1.3: Stages of listerial intracellular parasitism. (A) Scheme of the intracellular life 

cycle of pathogenic Listeria spp. (B–H) Scanning and transmission electron micrographs 

of cell monolayers infected with L. monocytogenes. (B) Numerous bacteria adhering to 

the microvilli of a Caco-2 cell (30 min after infection). (C) Two bacteria in the process of 

invasion (Caco-2 cell, 30 min postinfection). (D) Two intracellular bacteria soon after 

phagocytosis, still surrounded by the membranes of the phagocytic vacuole (Caco-2 cell, 

1 h postinfection). (E) Intracellular Listeria cells free in the host cell cytoplasm after 

escape from the phagosome (Caco-2 cell, 2 h postinfection). (F) Pseudopod-like 

membrane protrusion induced by moving Listeria  cells, with the bacterium being evident 

at the tip (brain microvascular endothelial cell, 4 h postinfection. (G) Section of a 

pseudopod-like structure in which a thin cytoplasmic extension of an infected cell is 

protruding into a neighboring noninfected cell, with the protrusion being covered by two 

membrane layers (Caco-2 cell, 4 h postinfection). (H) Bacteria in a double membrane 

vacuole formed during cell-to-cell spread (Caco-2 cell, 4 h postinfection). (Taken from 

Vazquez-Boland et al., 2001. 
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Macrophages actively engulf L. monocytogenes spontaneously, but internalization of the 

bacterium by normally nonphagocytic cells is triggered by L. monocytogenes-specific factors. 

Aside from the internalization step, the intracellular life cycle (Figure 1.1.3 A) of the 

bacterium in phagocytes or normally nonphagocytic mammalian cells is, however, essentially 

identical. L. monocytogenes induces its own internalization without an extensive remodeling 

of the host cell surface. Entry occurs via zipper-like phagocytosis, characterized by the 

emission of small pseudopods that firmly entrap the bacteria and the intimate contact of the 

bacterial surface with the host cell plasma membrane. Upon uptake, the pathogen appears in a 

membrane-bound vacuole (Figure 1.1.3 D), which is subsequently lysed by the combined 

action of the pore-forming hemolysin, listeriolysin (LLO), and two phospholipases (see 

below). The bacteria that are released into the cytoplasm begin to replicate while making use 

of specific transporters to gain carbohydrates from the host cell, whereas those remaining in 

the phagosome are killed and digested. 

Concomitant with the onset of intracellular replication, L. monocytogenes induces the 

expression of the surface protein ActA which, through the activation of the cellular rp2/3 

complex, induces the nucleation of host actin filaments. The formation of a polar tail and the 

permanent polymerization of F-actin at the interface between the bacteria and the actin tails 

produce a propulsive force, which moves the bacteria through the cytoplasm. Those bacteria 

that in their random movement reach the plasma membrane push outwards inducing the 

formation of pseudopod-like structures with the bacterium at the tip. These invading 

pseudopods or “listeriopods” are taken up by the neighboring cells, in which the bacteria 

become entrapped within a double membrane. This vacuole is again lysed by LLO and the 

phospholipases, a broad-specificity phospholipase, releasing the bacteria into the cytoplasm of 

the newly infected host cell where they initiate a new cycle of replication and actin-based 

motility. This direct cell-to-cell invasion mechanism allows the bacteria to spread through 

host tissues without leaving the host cytosolic compartment, protected from the humoral 

effectors of the immune system and phagocytosis (Liu, 2008)  

L. monocytogenes has become not only an important paradigm for immunological 

investigation but also an important model system for analysis of the molecular mechanisms of 

intracellular parasitism (Vázquez-Boland, 2001) 
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1.2. BIOFILM FORMATION BY L. MONOCYTOGENES 

1.2.1. What is a biofilm? History and definition 

Although bacteria grow preferentially in the biofilm mode in industrial and natural systems 

(Blaschek et al., 2007), studies on bacteria in laboratories are still generally carried out in 

planctonic cells. The vast majority of microorganisms tested end up by forming biofilms, on 

practically any surface and any environmental conditions, although their adhesion and growth 

rates, extracellular polymeric substances (EPS) yields and final structure is highly variable 

(Watnick and Kolter, 2000). 

During the last 25 years, definitions of biofilms have been proposed by several authors 

(Marshall, 1976; Costerton et al., 1978; Costerton et al., 1987; Characklis and Marshall, 1990; 

Costerton et al., 1995; Costerton and Lappin-Scott, 1995; Davies and Geesey, 1995; Prigent-

Combaret and Lejeune, 1999). Finally, the following definition is widely accepted: “Biofilm 

is a microbially derived sessile community characterized by cells that are irreversively 

attached to a substratum or interface or to each other, embedded in a matrix of extracellular 

polymeric substances that they have produced, and with an altered phenotype with respect to 

growth rate and gene transcription (Donlan and Costerton, 2002)”. 

1.2.2. Some important consequences of biofilm formation 

1.2.2.1. Transference of gases and nutrients 

Diffusion limitations create gradients of nutrients and oxygen from the top to the bottom of 

biofilms that are associated with decreased bacterial metabolic activity and increased doubling 

times of the bacterial cells. Anaerobic conditions may be present in the centre of the biofilm. 

Likewise, growth, protein synthesis and metabolic activity are stratified in biofilms, i.e. a high 

level of activity at the surface and a low level and slow or no growth in the centre. In fact, this 

is one of the explanations for the reduced susceptibility of biofilms to antibiotics (Høiby et al., 

2010). Such gradients will increase in extent as biofilms thicken and will become particularly 

marked in aged biofilms (Gilbert et al., 2002). A major contributor towards the failure of 

biofilms to rapidly succumb to antimicrobial treatments must, therefore, be associated with its 

physiological heterogeneity (Allison et al., 2000; Gilbert et al., 2002).  
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1.2.2.2. Cell disposition in the biofilm 

Bacterial cells have the ability to aggregate into particular three-dimensional assemblages, 

differentiate, divide labor within these assemblages, and then disperse as part of their life 

cycle (Davey and O´Toole, 2000). The structures that form in biofilms contain channels in 

which nutrients can circulate. The complexity of biofilm structure and metabolism has led to 

the analogy of biofilms to tissues of higher organisms. The complex biofilm architecture 

provides an opportunity for metabolic cooperation and could imply the generation of niches 

where antimicrobial-resistant phenotypes are formed within the spatially well-organized 

system (Davies, 2003; Klapper et al., 2007). 

So, beside the individual cell changes, intercellular interactions and communication are 

required for biofilm development and persistence. Dissecting these interactions provides one 

of the future challenges in biofilm research. Particularly challenging is the attempt to 

understand the complexity of the interactions within the biofilm community. Communication 

between species may include extracellular compounds whose sole role is to influence gene 

expression, metabolic cooperativity and competition (possibly encompassing global changes 

in gene expression and metabolism), physical contact, and the production of antimicrobial 

exoproducts. One or all of these interactions may be occurring simultaneously (Davey et al, 

2000). 

1.2.2.3. Resistance to external stimulus: implications in medicine and in food industry. 

Biofilms constitute a protected mode of growth that allows survival in a hostile 

environment (Costerton et al., 1999) under changing environmental conditions and hostile 

chemical or physical agents: predators, host cells, innate defense compounds, antibiotics and, 

in the food industry, antimicrobial additives and cleaning and disinfection agents. Biofilm-

embedded cells can stand up to 100-1000 times higher biocide concentrations than planktonic 

cells. As a consequence, bacterial cells persist in biofilm form, causing problems mainly in 

the medical ambit and in the food industry.  

Concerning the medical ambit, the US National Institutes of Health estimates that upwards 

of 75% of microbial infections that occur in the human body are underpinned by formation 

and persistence of biofilms. Some examples are recopilated in Table 1.2.1. Biofilms increase 

the tolerance to antibiotics and disinfectant chemicals in association with medical devices as 
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well as resisting phagocytosis and other components of the body's defence system (Campanac 

et al., 2002, Costerton et al., 1999, Høiby et al., 2010). Biofilms are the most likely 

environmental nidus of resistance development and selection that might relate to active efflux 

of the treatment agent or to others less well-understood mechanisms (Gilbert et al., 2002).  

Table 1.2.1: Some human infections involving biofilms (taken from Costerton et al., 1999).  
Infection disease Common biofilm bacterial species 

Dental caries Acidogenic Gram-positive cocci (e.g., Streptococcus) 

Periodontitis Gram-negative anaerobic oral bacteria 

Otitis media Nontypable strains of Haemophilus inßuenzae 

Musculoskeletal infections Gram-positive cocci (e.g., staphylococci) 

Necrotizing fasciitis Group A streptococci 

Biliary tract infection Enteric bacteria (e.g., Escherichia coli ) 

Osteomyelitis Various bacterial and fungal species often mixed 

Bacterial prostatitis E. coli and other Gram-negative bacteria 

Native valve endocarditis Viridans group streptococci 

Cystic fibrosis pneumonia P. aeruginosa and Burkholderia cepacia 

Meloidosis Pseudomonas pseudomallei 

Nosocomial infections  

ICU pneumonia Gram-negative rods 

Sutures Staphylococcus epidermidis and S. aureus 

Exit sites S. epidermidis and S. aureus 

Arteriovenous shunts S. epidermidis and S. aureus 

Schleral buckles Gram-positive cocci 

Contact lens P. aeruginosa and Gram-positive cocci 

Urinary catheter cystitis E. coli and other Gram-negative rods 

Peritoneal dialysis (CAPD) peritonitis A variety of bacteria and fungi 

IUDs Actinomyces israelii and many others 

Endotracheal tubes A variety of bacteria and fungi 

Hickman catheters S. epidermidis and C. albicans 

Central venous catheters S. epidermidis and others 

Mechanical heart valves S. aureus and S. epidermidis 

Vascular grafts Gram-positive cocci 

Biliary stent blockage A variety of enteric bacteria and fungi 

Orthopedic devices S. aureus and S. epidermidis 

Penile prostheses S. aureus and S. epidermidis 

Conventional resistance mechanisms such as chromosomal beta-lactamase, upregulated 

efflux pumps and mutations in antibiotic target molecules in bacteria also contribute to the 

survival of biofilms (Høiby et al., 2010). Proposed explanations for the observed resistance of 

biofilm communities include diffusional resistance of the extracellular matrix, augmented by 

chemical/enzymatic modification of the agent (reaction-diffusion limitation), physiological 

changes due to slow growth rate and starvation responses and the induction of attachment-

specific drug resistant physiologies (Allison et al., 2000; Gilbert and Allison, 1999). Whilst 

there is evidence to support each of these explanations no single mechanism can account for 



12 Introduction 
 
 

 

the general observation of resistance. Rather, these mechanisms act in concert within the 

biofilm and amplify the effect of small variations in phenotype susceptibility. 

In the food industry, it is generally admitted that L. monocytogenes can be present in food 

processing environments and some strains are persistently present (see section 1.2.6). These 

resident strains are expected to form biofilms on food processing equipment, on conveyor 

belts, in pipes, on floors, and in drains. Since biofilms are generally more difficult to eradicate 

than planktonic cells during disinfection treatments (Mah and O'Toole, 2001; Robbins et al., 

2005), the capability of L. monocytogenes to form biofilms poses a major concern for the food 

industry. However, to our knowledge, none of the reported outbreaks have been related with 

contamination from biofilms. 

1.2.3. Biofilm development in L. monocytogenes 

In general, as suggested by Donlan and Costerton (2002), several factors should be 

considered in the development of a biofilm: i) the medium (composition, temperature, 

presence of antimicrobial agents), ii) the inoculum (identity of organism, number of cells), iii) 

hydrodynamics (flow rate, presence of shear, batch versus open system, retention time), and 

iv) the type of substratum (roughness, chemistry, conditioning films). These factors can 

influence the different steps of biofilm formation: initial attachment, maduration and 

dettachment (Campanac et al., 2002).  

1.2.3.1. Initial attachment  

1.2.3.1.1. Effect of external conditions: nutrients, type ofsurface, pH. 

The development of a biofilm is initiated by planctonic (freely moving) bacteria that 

reversibly attach to a surface, which may be covered by a layer of, for example, proteins (a 

pellicle). At this stage, the bacteria are still susceptible to antibiotics (Høiby et al., 2010). All 

the factors previously enumerated are determinant in this initial phase of biofilm formation. 

Here we describe the most relevant according with previous works:  

Nutritional conditions: Contradictory results concerning the influence of nutritional 

conditions on the initial adherence of L. monocytogenes were found. Whereas several authors 

observed that attachment of L. monocytogenes ATCC 19111 to stainless steel surface was 
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greater when cultivated in a rich medium (Hood and Zottola, 1997; Mai and Corner, 2007; 

Stepanovic et al., 2004; Takhistov and George, 2004), the studies of Jaradat and Bhunia 

(2002), observed that nutrient-rich media and high glucose concentration suppressed Listeria 

adhesion protein (LAP) expression. Folsom et al. (2006) demonstrated that the formation of 

biofilms at different nutrient levels in tryptic soy broth (TSB) or in a 1:10 dilution of TSB 

(DTSB) for 24 h at 32 ºC on stainless steel by Listeria monocytogenes was genotype 

dependent. They found that serotype 4b strains produced more biofilm in TSB than did 

serotype 1/2a strains, whereas serotype 1/2a strains produced more biofilm in DTSB than did 

serotype 4b strains. These results indicate that strains of serotype 1/2a and serotype 4b differ 

in the regulation of their biofilm phenotype. By the way, the poor biofilm accumulation of 

serotype 4b isolates when grown in DTSB could be a factor in the predominance of serogroup 

1/2 strains in food processing plants, where nutrients may be limited. Finally, the contribution 

of nutrients to biofilm formation may differ from their roles in attachment, reinforcing the 

distinction between attachment and biofilm growth.  

Type of surface: Most of the published results reached the consensus that material nature 

determines the level of adherence in bacteria (Blackman and Frank, 1996; Di Bonaventura et 

al., 2008; Krysinski and Brown 1992; Meylheuc et al., 2001; Rodríguez et al. 2008; Saá et al., 

2009; Sinde and Carballo, 2000; Somers and Wong, 2004; Smoot and Pierson, 1998; Teixeira 

et al., 2008). In fact, we could only found one previous work (Gamble and Muriana, 2007) in 

which strongly adherent strains of L. monocytogenes adhered equally well to four different 

abiotic surfaces (glass, plastic, rubber, and stainless steel).  

pH: Several authors have demonstrated that pH has a great influence on the adhesion 

capacity of L. monocytogenes, although with some discrepancies between them. Whereas 

Herald and Zottola (1988) concluded saying that a decrease in the adhesion capacity of L. 

monocytogenes at acid pH in comparison with alkaline pH, Poimenidou et al., 2009 pointed 

out that low pH stimulates initial adhesion of L. monocytogenes to stainless steel due to the 

protonation of the negative groups on the cell surface. In the same line, Smoot and Pierson 

(1998) showed that after short contact times (less than 30 min) the levels of attached cells 

were lower under alkaline conditions. However, the maximum levels of adhered cells to 

Buna-N rubber were not affected by adjustments of pH between 4 and 9. Stopforth et al., 

2002 observed no significant differences in attachment and biofilm formation between acid-

adapted and nonadapted L. monocytogenes. 
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Concerning the effect of temperature on initial attachment, it has been stated in several 

works that attachment of L. monocytogenes increase with the temperature (Mai and Corner, 

2007; Poimenidou et al., 2009). 

1.2.3.1.2. Effect of the presence of conditioning film in the initial bacterial attachment 

During the first stage of biofilm formation, molecules present in a bulk flow, both organic 

and inorganic, are carried toward the surface either by diffusion or turbulent flow. This 

accumulation of molecules at the solid–liquid interface on surfaces found in many food 

industries is commonly called conditioning film and it leads to a higher concentration of 

nutrients at the surface than in the liquid phase. The adsorption of organic molecules such as 

proteins to surfaces could play an important role in bacterial attachment, as this conditioning 

of the surface may alter its physical and chemical properties. Factors involved can include 

surface free energy, hydrophobicity and electrostatic charges. Conflicting opinions exist on 

the importance of a conditioning film in initial bacterial attachment (Palmer et al., 2007). 

Some authors demonstrated that the presence of nutrients on the surface reduced attachment 

of L. monocytogenes on different surfaces (Parker et al. 2001; Helke et al., 1993). One reason 

for this reduced attachment may be that proteins in the bulk fluid phase may act as 

competitors for binding sites on the surface of stainless steel, reducing the ability of bacteria 

to attach. But others reported that conditioning films increased the attachment of Listeria 

monocytogenes and another species (Palmer et al., 2007; Jeong and Frank, 1994; Verran and 

Whitehead, 2001; Speers and Gilmour 1985).  

1.2.3.1.3 Effects of flagellar motility 

Flagellar motility facilitates localization and potentially cellular adhesion which may be 

vital for colonization during the infectious cycle. L. monocytogenes is capable of motility and 

produces between four and six peritrichous flagella. It is flagellated and motile at temperature 

of 30 ºC and below; however, it is non-motile at human body temperature or higher (Peel et 

al., 1988). Then, during biofilm formation temperature affects the motility and thus the 

adherence capacity to surfaces. Guerieri et al., (2008), Lemon et al. (2007), Tresse et al., 

(2006), and Vatanyoopaisarn et al. (2000) demonstrated that flagellar motility is critical for L. 

monocytogenes biofilm formation in the first stages. Nonetheless, Bonaventura Di et al. 

(2008) did not find any correlation between swimming and biofilm production by Listeria 

monocytogenes in different food contact surfaces. 
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1.2.3.2. Maturation of attached bacteria into a differentiated biofilm  

Maturation starts with the irreversible binding to the surface within the next few hours and 

subsequent multiplication of bacteria cells, which form microcolonies and begin to produce a 

polymer matrix around them (Høiby et. al., 2010). Takhistov and George (2004) observed that 

following the initial attachment of Listeria monocytogenes new cells attach to the 

extracellular polymeric substances (EPS). The number and size increased with time, 

eventually forming intercolony bridges. They describe this appearance as a “bacterial web” 

similar to the net-like and honey comb patterns that were reported by Marsh et al., 2003. As in  

attachment, several factors have an important effect on this phase of biofilm formation: 

1.2.3.2.1. Effects of the external medium in the maduration of the biofilm 

Whereas initial attachment of the cells has been extensively studied, biofilms maturation 

has received less attention. Results from most studies indicate that Listeria monocytogenes 

prefers forming a biofilm under relatively high nutrient conditions, unlike many other species 

(Blackman and Frank 1996; Helke and Wong 1994; Takhistov and George 2004; Stepanovic 

et al., 2004). 

The effects of several specific nutrients on L. monocytogenes during biofilm formation 

have also been studied. Kim and Frank (1995) examined the effects of phosphate, amino 

acids, tryptone, and various carbohydrates in MWB on L. monocytogenes biofilm formation. 

A reduction or increase in phosphate level from that occurring in MWB (37.52 g/l) reduced 

biofilm development. A reduction in amino acid levels produced a corresponding decrease in 

biofilm formation during the first 7 days of incubation, but after 12 days the amount of 

biofilm was the same regardless of amino acid concentration. Among the carbon sources 

studied, L. monocytogenes produced significantly greater biofilm amounts in presence of 

mannose and trehalose than in the presence of glucose and even less with glucosamine as 

carbon source. Similary, Somers and Wong (2004) have shown that small amounts of meat 

and fat residue in the medium reduced biofilm formation initially but, on prolongated 

incubation, the cell number increased and, on some surfaces, exceded the number present on 

unsoiled chips.  

Finally, some studies have demonstrated that the effect of the type of feeding is also 

relevant. Rodrigues et al. (2009) studied the influence of feeding conditions (batch and fed-
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batch) at different temperatures on the formation of L. monocytogenes biofilms. They showed 

that biofilms formed under fed-batch conditions were metabolically more active than those 

formed in batch mode. 

1.2.3.2.2. Importance of the extracellular polymeric substances (EPS) matrix  

Up-regulation of EPS biosynthesis generally occurs within minutes of the irreversible 

attachment of a cell to a surface and proceeds with the development of a microcolony over a 

period of several hours (Gilbert et al., 2002). A biofilm is a structured consortium of bacteria 

embedded in a self-produced polymer matrix consisting of polysaccharide, protein, lipids, 

minerals and DNA originating from the microbes, and the bacterial consortium can consist of 

one or more species living in a sociomicrobiological way (Høiby et al., 2010). Most of the 

components are secreted by the embedded living cells; others may come from dead and 

decaying cells and some may be trapped from the environment. The matrix is important since 

it provides structural stability and protection to the biofilm. The development of bacterial 

biofilms over time has been intensively studied in vitro by confocal scanning laser 

microscopy employing green fluorescent protein (GFP)-tagged bacteria. This technique has 

been combined with the advances in silico image analysis to produce three-dimensional 

images (Høiby et al., 2010). The first matrix components to be known were the 

polysaccharides; few of them have been quantitatively analyzed, due to the difficulties to 

obtain sufficiently large amounts. In the particular case of L. monocytogenes, EPS structure 

has not been characterized yet. Whereas the role of polysaccharides as part of the extracellular 

matrix remains elusive it has been demostrated the presence of extracellular DNA (eDNA) in 

the biofilm matrix that plays an important role for both initial attachment and early biofilm 

formation in L. monocytogenes (Harmsen et al., 2010; Renier et al., 2010). 

The presence of a charged, hydrated exopolymer matrix around individual cells and 

microcolonies profundly affects the access of solutes. The polymers of the extracellular 

matrix thereby act as an ion exchange resin and actively remove strongly charged molecules 

(i.e. glycopeptides; Hoyle et al., 1992) from solution (Slack and Nichols, 1981, 1982; 

Costerton et al., 1987). Curiously, the effectiveness of macrolide antibiotics, which are 

positively charged and very hydrophobic, is relatively unaffected by the presence of 

exopolymers (Ichimiya et al., 1994). Poor penetration through anionic matrices might be a 

phenomenon restricted to more hydrophilic, positively charged agents. Alternatively, the 
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matrix polymers might react chemically with and directly neutralize reactive molecules. The 

latter effects would be most pronounced with biocides, such as iodine and iodine–

polyvinylpyrollidone complexes (Favero et al., 1983), and chlorine and peroxygens (Huang et 

al., 1995), which react directly in a consumptive manner with the exopolymer and cellular 

materials. However, diffusion limitation studies have generally focused on antibiotics rather 

than biocides and upon medically relevant biofilm populations rather than biofouling 

situations.  

1.2.3.3. Dettachment 

Detachment is defined as a stage where focal areas of the biofilm dissolve and the liberated 

bacterial cells can then spread to another location where new biofilms can be formed. There 

are several hypotheses to explain detachment: 

i. That cells may detach individually from biofilms as a result of cell growth and 

division within the biofilms, or cell aggregates or clusters may detach or be 

sloughed from biofilms (Donlan and Costerton, 2002). 

ii. That is the result of different detachment regulating systems that have been 

demonstrated in various bacterial species, such as those based on catabolic 

repression (Sauer et al., 2004), in the production of specific enzymes (Liu et al., 

2007) or other molecules like ramnolipids in Pseudomonas (Boles et al., 2005) that 

could specifically disrupt the external matrix (EPS) of the biofilms. Other authors 

believed that EPSs can be used as nutrients by cells, making it easier for starving 

cells to detach from biofilms (Takhistov and George, 2004). 

iii. That is the result of bacteriophage activity within the biofilm. The mature biofilm 

may contain water-filled channels and thereby resemble primitive, multicellular 

organisms like it has been demonstrated in other microorganisms (Wang et al., 

2009).  

iv. That is the result of using type IV pili to mount or climb biofilms formed by other 

bacteria and colonise the top of the biofilm, resembling a hat (Høiby et. al., 2010).  

The amount of biofilm in a given system after a certain period of time depends on biofilm 

accumulation, which has been defined as the balance between bacterial attachment from the 

planktonic phase, bacterial growth within the biofilm and biofilm detachment from the 
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surface. When that balance is null, the biofilm is said to have reached a steady-state (Simões 

et al., 2009).  

Harvey et al., 2007 showed some representative images obtained from microscopic 

observations of biofilms as they developed during 14 days (Fig. 1.2.1 a–d).  

 

Fig. 1.2.1: Micrographs of L. monocytogenes biofilms grown in TSB at 20 ºC on 

polystyrene Petri dishes. Bacteria stained with crystal violet and observed under a 1000 x 

oil-immersion objective: (a) strain L-12-90 after 1day; (b) strain WHO04 after 5 days; (c) 

strain L-12-90 after 5 days; and (d) strain D-11-89 after 14 days. Scale bars, 10.0 mm 

(taken from Harvey et al., 2007). 

The strains developed clearly defined networks of microcolonies completely covering the 

entire surface of Petri dishes (Fig. 1.2.1 a, initial attachment). During the maturation stage, 

fully developed biofilms were formed in which closely connected microcolonies completely 

covered the surface of the dish and areas could be seen dispersed throughout the biofilm 

where layers or stacks of bacterial cells had accumulated. Layers are greater or smaller 

depending on the strain (Fig. 1.2.1 c and d). Finally, for a small number of strains, only single 

cells or small clumps very sparsely distributed over the surface of the Petri dishes were 

observed throughout the 14-day period (dettachment). Although these steps are most 

commonly accepted in the physiology of biofilms, small number of the L. monocytogenes 

strains were seen to require an extra stage in biofilm development. These strains, typically 

after 5–6 days, started to form a network of microcolonies covering the entire surface of the 

Petri dishes. However compared to the networks formed by the strains of the type shown in 



Introduction 
 

19 

 

 

Fig. 1.2.1 a, the unpopulated surface areas between microcolonies in these biofilm networks 

were very much larger (Fig. 1.2.1 b). With continued incubation, the surfaces between these 

microcolonies gradually became populated until by 11–12 days fully developed biofilms 

similar to those shown in Fig. 1.2.1 c or d were produced 

1.2.4. Regulation of biofilm formation in L. monocytogenes 

1.2.4.1. Cell-cell comunication 

Two archetypal cell-cell comunication systems have been described in L.monocytogenes: 

the auto-inducer 2 (AI-2) LuxS system found in both Gram-negative and Gram-positive 

bacteria, and the peptide-mediated QS signalling system Agr characteristic of Gram-positive 

bacteria (Dunny and Leonard, 1997; Miller and Bassler, 2001; Waters and Bassler, 2005). 

Quorum sensing (QS): AI-2 Lux S system 

LuxS is responsible for the production of autoinducer-2 (AI-2), which is involved in the 

quorum-sensing response of Vibrio harveyi and considered a signal molecule implicated in 

interspecies communication. Recently, it has also been demonstrated AI-2 plays a role in 

bacterial biofilm formation (Blehert et al., 2003; Coleet al., 2004; Merritt et al., 2003; Wen et 

al., 2004). So, Belval et al. (2006) studied the role of autoinducer 2 (AI-2), the gen LuxS, 

responsible of AI-2 synthesis, and S-adenosylhomocysteine (SAH), S-Ribosyl Homocysteine 

(SRH), intermediate metabolites in the synthesis of AI-2, in cell attachment during biofilm 

formation by Listeria monocytogenes EGD-e (see Figure 1.2.2 for metabolic pathway). Their 

results indicated that L. monocytogenes EGD-e produces AI-2 like molecules. However, the 

authors demonstrated that a mutant luxS-negative (Lux 1) of L. monocytogenes EGD-e, can 

not produce AI-2 and formed denser biofilms than EGD-e strain formed, with 10-17 times 

more attached cells. To explain these results, they checked the role of the precursors of AI-2, 

SAR and SHR, that would be accumulated in the mutant Lux1. As a result, they demonstrated 

that only SRH, but not SAH, plays an important role in biofilm formation. Although the 

explanation of that mechanism is unclear, for the bacteria it would be beneficial to detect the 

presence of other bacteria using SRH, especially if we consider this pathway is associated 

with the detoxification of methyl groups in bacteria.  
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Figure.1.2.2: Partial pathway for conversion of SAH to AI-2. 

 

Agr system 

Major adaptive responses are regulated through agr autoinduction; these include virulence 

and biofilm formation (Riedel et al. 2009). Although there is no doubt that the agr system is 

indeed a communication system based on autoinduction, whether it is dedicated to Quorum 

Sensing (QS) remains an open question. In fact, it has not been demonstrated that the agr 

system is a mechanism to assess cell density in order to coordinate the behaviour of the whole 

population in L. monocytogenes (Garmyn et al., 2009). In other words, evidence of a QS 

system is still awaited in this species (Renier et al., 2010). 

Two cell–cell communication systems LuxS and Agr have been shown to take part in the 

regulation of biofilm formation. But also as mentioned by Renier et al., 2010 several 

additional molecular determinants have also been identified by functional genetic analyses, 

such as the (p)ppGpp synthetase RelA (Taylor et al., 2002) and more recently BapL (biofilm-

associated protein similar to Bap discovered by Jordan et al., 2008). Further studies on the 

molecular mechanisms of biofilm formation are needed. 

1.2.4.2. General stress sigma factor (sigB) 

Schwab et al. (2005) conducted studies that looked at the attachment of wild type L. 

monocytogenes and a sigB mutant to stainless steel. The data suggested that initial attachment 

of both wild type and mutant to the surface was the same; however, the number of cells of 

sigB mutant attached was significantly lower than the wild type after 48 or 72 h of incubation. 

However, van der Veen and Abee (2010a) studies showed that sigB is activated in static and 

continuous-flow biofilms. These authors also pointed out the implications of HrcA and Dnak 

genes in biofilm formation (van der Veen and Abee, 2010b). 
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1.2.5. Mixed biofilms  

L. monocytogenes is a relatively poor biofilm former when compared to other bacterial 

species (Kalmokoff at al., 2001). However, monoculture biofilms are rarely found in natural 

environment. Listeria is mainly found forming mixed biofilms with other species, for example 

Pseudomonas. Pseudomonas spp. are common spoilage organism, particularly at refrigeration 

temperatures, and are widely distributed in foods (Jay 2003). Listeria monocytogenes is 

capable of integrating itself into EPS and biofilms formed by other bacteria (Hassan et al., 

2004; Sasahara and Zottola, 1993). Rickard et al., 2003 defined coaggregations as “a process 

by which genetically distint bacteria become attached to one another via specific molecules”. 

Moreover there has been increasing reports on the presence of cell-to-cell signalling among 

different bacteria in recent years. Microorganisms can become part of a microbial ecosystem 

by acting as primary colonizers, or as later biofilm partners by establishing interactions with 

other microorganisms (Kolenbrander 2000).  

The association between different bacterial species in a biofilm increases the resistance to 

antimicrobials and the surface colonization by a bacterium can enhance the attachment of 

others to the same surface (Simões et al., 2007). It is believed that biocide misuse may have 

an insidious effect, contributing to the evolution and persistence of drug resistance within 

microbial communities. Whilst such notions are supported by laboratory studies that utilize 

pure cultures, recent evidence has strongly refuted such linkage within the real environment 

where complex, multispecies biofilms predominate and where biocidal products are routinely 

deployed. But the problem is even worst if we consider that this complicates the phenotypic 

heterogeneity through the establishment of mutualistic and antagonistic partnerships (McBain 

et al. 2000). As a consequence, the outcome of any antimicrobial treatment of the biofilm 

community will, therefore, reflect the susceptibility of the most resistant phenotype 

represented within the consortium. As the biofilm matures, and exopolymer deposition 

increases, the magnitude of the nutrient and gaseous gradients within them will increase and 

the net growth rate of the community will become further reduced. This has been shown to 

cause onset of dormancy in some cells and trigger the expression of stringent response genes 

(Zambrano and Kolter 1995). 

The formation of mixed biofilm could also be a way to control the adherence of Listeria 

monocytogenes. In fact, Jeong and Frank (1994) found that L. monocytogenes grew slowly in 
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the presence of competing biofilms, but increased in numbers in monospecies-biofilm, even at 

low temperatures and nutrient levels. As a consequence, several studies have been focused in 

using mixed biofilms with strains that produce antilisterial metabolites to control Listeria 

monocytogenes (see section 1.3.3.1). Overall, results from these studies suggest that the 

specific resident microflora in food processing facilities play an important role in determining 

the likelihood of Listeria monocytogenes establishment and becoming persistent in the 

environment. 

1.2.6. Persistence 

Persistence has been noted for “months” by Jacquet et al. (1995); Salvat et al. (1995); 

Ojeniyi et al. (2000), 2 months at least; Chasseignaux et al. (2001), in poultry meat plant for 1 

year and a pork meat plant for 4 months; Rørvik et al. (1995), 8 months; McLauchlin et al. 

(1990), 11 months; Johansson et al. (1999), 14 months; Pourshaban et al. (2000), 17 months; 

Lawrence and Gilmour (1995), 1 year; or even years McLauchlin et al. (1990), 2 years; Brett 

et al. (1998), 3 years; Unnerstad et al. (1996), 40 months; (Nesbakken et al. (1996), Aase et al. 

(2000) and Fonnesbech Vogel et al. (2001), 4 years; Unnerstad et al. (1996), Miettinen et al. 

(1999) 7 years; and Kathariou (2003) for 10 years.  

The nature of strain persistence may be related to: 1) a number of factors affecting physical 

adaptation: surface attachment, biofilm formation, attachment strength, reduced growth rate, 

quiescence, cleaning and disinfection resistance, 2) the whole range of environmental 

conditions typical in chilled food factory environments: low temperature, wide pH range, 

fluctuating nutrient supply and moisture levels, frequency of cleaning and disinfection, etc., or 

to both. However, Jensen et al., 2007 have observed that persistent strains had the same 

growth rate as the presumed non-persistent strains when grown in LB with 1% glucose with 

or without the addition of 5% NaCl at both 5 °C and 37 °C. A persistent subtype was as 

sensitive to the processing steps in cold-smoked salmon production including brine and 

smoke as compared to two other strains of L. monocytogenes, a clinical strain and the EGD 

strain (Porsby et al., 2008). The persistent strains did not show higher tolerance to acid and 

heat stresses as compared to other strains of L. monocytogenes (Lundén et al., 2008) 

Several studies aimed to correlate the persistence of Listeria monocytogenes with the 

resistance to biocides, the level of initial adherence or the capacity to form biofilms were 

carried out. Obtained results have been , however, contradictory. Some authors demonstrated 
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that persistent L. monocytogenes strains may show enhanced surface adherence and increased 

disinfection resistance at very low disinfectant concentrations (Gilbert et al., 2002; Lundén et 

al., 2000, 2003). According to Kasthberg and Gram (2009), persistent strains of L. 

monocytogenes are as susceptible to disinfectants as are presumed nonpersistent strains and 

attachment does not render the strains more tolerant to disinfectants. Others found no 

evidence of resistance to in-use concentration of disinfectants in persistant strains (Holah et 

al., 2002). 

Concerning the possible correlation between persistence and initial adherence, Lundén et 

al. (2000) revealed that persistent L. monocytogenes strains showed enhanced adherence at 

short contact times (less than 72 h), promoting their survival in food processing facilities and 

possibly having an effect on initiation of persistent plant contamination 

One potential cause of confusion is the different opinion about the definition of persistence 

(Borucki et al., 2003). It is difficult to prove that a persistent strain survives within a factory 

during continuous production/cleaning cycles and has not merely entered the production area 

on the day of sampling (Holah et al., 2004). Norwood and Gilmour 1999, denote a subtype as 

persistent if it has been isolated repeatedly from a product from the same factory. However, it 

should be taking into account that bacteria are able to switch between a free-living and a 

surface attached in response to changing environmental conditions (O’Toole, 2004). 

1.3. INCIDENCE AND CONTROL OF L. MONOCYTOGENES  

1.3.1. Incidence of L. monocytogenes in foods and food processing plants 

1.3.1.1. A brief overview of L. monocytogenes outbreaks 

Food-borne transmission is considered the most common means of contracting both 

epidemic and sporadic listeriosis, with 99% of all human cases caused by consumption of 

contaminated food products. Although the incidence of listeriosis is low relative to other 

pathogens, such as Salmonella and Campylobacter, the mortality associated with outbreaks is 

high, making L. monocytogenes one of the most significant pathogens encountered in foods 

(EFSA 2009, Ivanek et al., 2004). In Table 1.3.1 the main known listeriosis outbreaks during 

the last 20 years have been recopilated.  
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Additionally, illness caused due to the consumption of contaminated foods has a wide 

economic and public health impact worldwide. The Centers for Disease Control and 

Prevention (CDC) estimate that foodborne diseases are responsible for about 76 million 

illnesses, which result in 325,000 hospitalizations and 5000 deaths in the United States each 

year (Mead et al., 1999). Also, the food industry can have major expenses due to product 

contamination with L. monocytogenes as in cases with recall of products, factory closing, 

extraordinary cleanings, and compensation to infected people. This was seen lately in a large 

outbreak of L. monocytogenes in Canada in 2008 resulting in 57 cases with 22 deaths 

(Anonymous, 2009a). The outbreak was caused by meat products from a company that itself 

estimates their costs to be around $43 million for recalls, lost sales and compensations to 

claimants (Anonymous, 2009b). 

1.3.1.2. Incidence of L. monocytogenes in food processing plants 

Several studies have confirmed the ability of L. monocytogenes to colonize food 

processing factories (Harvey and Gilmour, 1992). Contamination of the final food products 

occurs mainly during processing rather than from the raw material (Cox et al., 1989; Hu et al., 

2006; Samelis and Metaxopoulos, 1999, Autio et al., 1999, Miettinen et al., 1999; Norton et 

al., 2001; Rørvik et al., 1995; Vogel et al., 2001, Wulff et al., 2006). Typing methods have 

been used to point out equipment, floors and drains as important contamination sources in the 

processing lines (Hoffmann et al., 2003; Miettinen et al., 1999; Norton et al., 2001; Keto-

Timonen et al., 2007) and to demonstrate that specific sub-types are able to persist in the food 

processing environment for up to 10 years (Norton et al., 2001, Wulff et al., 2006). Moreover, 

from recopilated data during surveys carried out in 2006 and 2007 it can be deduced that the 

percentage of units in non-compliance with the EU Listeria criteria was considerably higher 

in samples obtained from food processing than in those obtained from retails (Figure 1.3.1). 

This pathogen represents a problem specifically in dairies, smoked fish houses and RTE 

meat processing plants where, according to a research carried out by Kornacki and Gulter in 

2007, a high prevalence has been detected within processing facilities in North America and 

Europe. The DNA types found in the final products were also found in many samples from 

the processing environment (Autio et al., 1999; Norton et al., 2001; Vogel et al., 2001; Wulff 

et al., 2006). Also, the frequency of positive samples in a fish processing industry was lower 

for fish before filleting compared to samples of fish after filleting and further in the 

production process (Rørvik et al., 1995).  
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Figure 1.3.1: Proportion of samples in non-compliance with the EU Listeria criteria, 2007. 

Samples are based on single and batch data from retail, including sample units >=25. 

Excluding HACPP and own check samples. RTE for infants and medical purposes also 

include food for special nutritional uses. Taken from EFSA 2009. 

1.3.1.3. Incidence of L. monocytogenes in foods 

After several L. monocytogenes surveys, it is now generally accepted that the highest 

incidence of L. monocytogenes ocurrs in RTE foods. In USA, the prevalence of L. 

monocytogenes in RTE foods was generally determined to be 1.82% in 31,705 tested samples. 

The highest rate of positive samples were from seafood salads (4.7%) and smoked seafood 

(4.3%) (Gombas et al., 2003). In the EU, Listeria monocytogenes was seldom detected above 

the legal (Gombas et al. 2003; Wallace et al. 2003) safety limit (contamination level of <10 

cfu/g) from RTE foods but findings over this limit were most often found in smoked fish and 

other ready-to-eat fishery products followed by ready to eat meat products and cheeses 

(Anonymous, 2009a). In fact, fishery products had the highest proportion of samples 
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exceeding 100 cfu/g (2.4%) (EFSA, 2009). Incidence data of L. monocytogenes in ready-to 

eat fishery products in different EU countries are showed in Table 1.3.2. 

  Table : 1.3.2: L. monocytogenes in ready-to-eat fishery products, 2007  

Country Sampling Details N %POS N %POS %POS 
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Fish 

Belgium Single Smoked salmon, at retail  - - 150 1.3 1.3 

Bulgaria Single Smoked, at processing 130 1.5 - - - 

Batch Smoked, at processing 240 13.8 80 12.5 18.8 
Czech Rep. 

Batch Smoked, at retail - - 68 5.9 5.9 

Single Smoked, at processing 172 9.3 185 1.2 0.6 
Germany 

Single Smoked, at retail 447 11.4 622 1.6 1.6 

Single Smoked, 131 14.5 - - - 
Italy 

Batch Smoked, - - 41 2.4 0 

Netherlands Single Smoked, at retail 709 22.6 820 4.3 4.6 

Single Marinated 51 0 - - - 
Poland 

Single Smoked, 676 29.6 1.098 4.6 0.5 

Portugal Batch Smoked, at retail - - 35 0 0 

Romania Batch Smoked, at processing 73 0 - - - 

Slovakia Batch Smoked - - 90 0 2.2 

Total (fish) (10 MSs) 2.629 18.3 3.169 3.6 2.4 

      

Crustaceans 

Bulgaria Single 
RTE, at processing, 
cooked 

150 0 - - - 

Germany Single 
RTE, at processing, 
cooked 

210 2.4 241 0.4 0.4 

Molluscan shellfish 

Greece Single Cooked, at retail 27 3.7 - - - 

 Fishery products, unspecified 

Single At retail 166 6.6 166 6.6 0 
Austria 

Single - 26 3.8 26 3.8 0 

Estonia Single RTE, at processing 77 2.6 - - - 

Germany Single At retail 1.008 14.7 779 1.4 1.3 

Single At retail - - 97 0 0 

Single At processing 35 0 - - - 

Single Smoked, at retail 32 9.4 52 0 1.9 
Ireland 

Single Cooked at retail 228 2.2 298 0 0 

Slovakia Batch - 105 1.9 116 0 0 

Spain Single RTE 653 5.2 - - - 

Total (6 MSs)  2.328 2.5 1.534 1.6 0.8 

Norway Single Smoked, at processing 70 0 - - - 

Note: Data are only presented for sample size ≥25 
% POS: % positive samples 
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In contrast with this high incidence, only a few cases of listeriosis were reported from 

consumption of fish products and they involved a limited number of patients (Brett et al. 

1998; Farber et al. 2000). Although L. monocytogenes was firstly isolated from imported 

cooked crabmeat in 1987, the first of several cases of listeriosis positively linked to 

consumption of fish or seafood was not reported until 1989. Further, some listeriosis 

outbreaks have been related to the consumption of steamed mussels, shrimp, fish salads and 

semicooked fish (Ben Embarek, 1994, Brett et al., 1998), cold-smoked rainbow trout 

(Miettinen et al. 1999) and salmon (Tham et al., 2000). 

The frequency with which L. monocytogenes can be found during environmental surveys 

has raised doubts that the food processing industry can effectively eliminate L. 

monocytogenes contamination. In this sense, some authors have hypothesized that three recent 

anthropogenic practices increase the load within and transmission among reviewed habitats 

and host populations: extended refrigerated storage of ready-to-eat foods allowing L. 

monocytogenes growth in foods that are contaminated during production or subsequent 

handling; feeding domestic ruminants with silage often contaminated with L. monocytogenes; 

and dispersal of contaminated products of sewage treatment to agricultural fields and waters 

(Ivanek et al., 2006). In this frame, prevention relies on progressively better defined tolerance 

limits in foods and improved risk communication, focused on risk groups. Risk assessment is 

increasingly used as a scientific process to assess the potencial for adverse health effects to 

occur and as a basis for management of unacceptable risks (Notermans and Hoornstra, 2000).  

 

1.3.2. Control of L. monocytogenes in food processing plants  

1.3.2.1. Prerrequisites and Hazard Analysis Critical Control Point (HACCP): 

importance for food safety  

HACCP is an effective and rational means of assuring food safety from harvest to 

consumption. Preventing problems from occurring is the paramount goal underlying any 

HACCP system. To meet this goal, seven basic principles are used in developing HACCP 

plans. These include hazard analysis, Critical Control Point identification, establishing critical 

limits, monitoring procedures, corrective actions, verification procedures, and record keeping 

and documentation. Under such systems, if a deviation occurs indicating that control has been 
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lost, the deviation is detected and appropriate steps are taken to re-establish control in a timely 

manner to assure that potentially hazardous products do not reach the consumer. But for a 

HACCP to be succesful some prerequisites programs must be developed and implemented 

These programs provide the basic environment and operating conditions that are necessary 

for the production of safe, wholesome food. Many of the conditions and practices are 

specified in federal, state and local regulations and guidelines. All prerequisite programs 

should be documented and regularly audited, and are established and maintained separately 

from the HACCP plan.  

 

Prerequisites are aimed to prevent contamination of food-products with foodborne 

pathogens such us L. monocytogenes during the manufacturing processing are importat 

(Kornacki and Gulter, 2007). Thus: 

i. The raw material must be of good microbiological quality.  

ii. The employees must have a thorough understanding of food hygiene: Holah et al. 

(2004) showed that although food factory designs, personnel hygiene and cleaning 

and disinfection regimes are sufficient to control Listeria spp. to very low levels, 

persistent strains can remain within factory high-risk production areas over 

considerable time periods. Although hygienic conditions of food production in 

industrially developed countries are continually improving, outbreaks of listeriosis 

originating from consumption of contaminated food products still occur, ensuring 

effective control of L. monocytogenes has proved to be challenging.  

iii. The factory and equipment should be designed so they are easily cleaned to avoid 

cross-contamination: biofilms may also cause technical problems such as total or 

partial occlusion of pipes, outlets, valves, drains, filters, filtration membranes and 

may coat the surfaces of heat exchangers and diverse sensors. Particularly 

vulnerable are poorly accessible zones, pieces of equipment that are difficult to 

dismantle, irregular or scratched surfaces and sites where routine cleaning fails to 

prevent accumulation of organic material. Mechanical aids (high pressure jets, 

brushing, scrubbing) may be used to supplement cleaning and disinfection chemical 

treatments, but manual labour is costly and the hygienic results have a low 

reproducibility. Identification and quantification of biofilm resident 
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microorganisms and development of specific sanitation practices are increasing 

concerns among food processors in the last few years (Belessi et al., 2010; Sofos 

and Geornaras, 2010) 

Once these and others prerrequisites are controlled, critical points in the process where 

contamination can occur should be identified and controlled. Rocourt and Cossart (1997) 

proposed that L. monocytogenes enters processing plants through soil on workers’ shoes, 

clothing, and transport equipment; animals that excrete the bacterium or have contaminated 

hides or surfaces; raw plant tissue; raw food of animal origin; and, possibly, healthy human 

carriers. However, the widespread presence of L. monocytogenes in natural reservoirs and its 

ability to grow at harsh conditions make its control in foods difficult (Bonnet and Montville 

2005).  

 

1.3.2.2. The problem of cross contamination 

Cross-contamination can also occur after listeriocidal treatment (Reij and Aantrekker Den, 

2004; Tompkin, 2002) and generally represents post-processing contamination from 

environmental sources, including in food processing plants, retail operations, and household 

kitchens (Soumet et al., 2005). Foodborne pathogens can remain viable on common food 

contact surfaces for days or weeks and cross-contaminate other products (Lappi et al., 2004; 

Lunden et al., 2000; Nesbakken et al., 1996). 

There are numerous studies about the cross-contamination when food is sliced with blades. 

Keskinen et al. (2008) study the stress and biofilm-forming ability on transfer of surface-dried 

Listeria monocytogenes during slicing of delicatessen meat. They obtained significantly 

greater transfer for blades used after 6 as opposed to 24 h of incubation. Also, Pappelbaum et 

al. (2008) monitored the prevalence of Listeria spp. in frozen vegetables and environmental 

samples (swabs) from a large produce processing factory. They conclude that the lack of 

personnel hygiene was supporting the cross-contamination cycle in the plant. Another 

possible source of cross-contamination could have been aerosol generation through hosing 

under high pressure or in the cooling units. In fact protective barriers between the processing 

lines were limited. 
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In this frame, it is evident that cleaning and disinfection protocols must be effective: a key 

point in preventing contamination is the control of hygiene at the food processing plant level, 

and this is primarily obtained by efficient cleaning and especially disinfection, which is 

regarded as a critical step in eliminating spoilage and pathogenic bacteria in the food 

processing environment. The mechanisms by which L. monocytogenes survive under these 

harsh conditions of physical and chemical stresses are not fully understood (Harvey et al., 

2007). It has been suggested that biofilm formation by L. monocytogenes have highlighted the 

need for additional cleaning and disinfection strategies to control persistent L. monocytogenes 

strains in the food processing environment (Holah et al. 2004).  

 

1.3.2.3. Disinfectants  

1.3.2.3.1. Classical disinfectants 

There are a number of prerequisites for an efficient disinfection. Firstly, the disinfectant 

must have the right spectrum of activity and be able to eliminate the relevant contaminants in 

the production site. Generally, disinfectants have a very broad spectrum of targets, since they 

are efficient against bacteria, viruses and fungi. However, Gram-negative bacteria tend to be 

less susceptible than Gram-positive bacteria (McDonnell and Russell, 1999). Secondly, it is 

important to use the right concentration, pH, temperature, and exposure time to obtain 

sufficient elimination of bacteria. Finally, cleaning of the surface prior to disinfection is 

necessary to remove organic compounds. Otherwise, the disinfection will be useless. A wide 

range of chemical disinfectants are available for the food-industry, and they can be divided 

into the following seven groups (Asselt and Giffel, 2005): alcohols, aldehydes, biguanides, 

(bis)-phenols, halogen-releasing agents (HRA), peroxygens and quaternary ammonium 

compounds (QACs). The most well-known disinfectant agents of each group, including their 

applications and restrictions in use, are summarized in Table 1.3.3. Generally, disinfectants 

act on multiple targets on a specific cell, which make these compounds highly active against 

microorganisms, but also potentially harmful to humans. Bactericidal activity of a disinfectant 

is well-known, but the mechanism of action is rarely fully understood (McDonnell and 

Russell, 1999).  
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Chlorine-based compounds, peroxygens, and compounds based on quaternary ammonium 

compounds (QAC) are the most frequently applied disinfectants in the food industry. Each of 

these three groups have some advantages and disadvantages (Table 1.3.4), and therefore the 

choice of the disinfectant to be used depends on the production site. 

Table 1.3.3: Biocide groups applications and restrictions in use.  

Group Important 
types 

Application Action on bacteria Comments 

Ethanol 
Small spots. 
 

Alcohols 
Isopropanol Quick wipe-downs. 

Membrane damage 
and rapid denaturation 
of proteins. 
Interference with 
metabolism. Cell lysis 

Not for large industrial 
application due to need of 
high concentrations (60-
90%).  
Flammable. 

Formaldehyde 
Decontaminate 
romos. 

Extremely reactive. 
Reacts un-specifically 
with functional groups 
of proteins 

Used less frequently in food 
production and processing 
due to toxicological 
considerations. 

Aldehydes 

Glutaraldehyde 
Instrument. 
Disinfectant. 

Strong membrane 
association. Reacts 
unspecifically with 
functional groups of 
proteins. Inhibition of 
transport 

 

Polymeric 
biguanides 

Used in particular 
by the food 
industry 

Alexidine  Biguanides 

Chlorhexidine 

Most widely applied 
biocide in hand-
washing and oral 
products. 

Membrane active.  
Damage of intracellular 
membrane.  
Leakage of intracellular 
components. 

Polyhexamethylene 
biguanides (PHMB) is a 
superior biocide due to lack 
of toxicology, colour, taste 
and surfactancy. 

Bis-phenols Triclosan 
Soap, toothpaste, 
packing material, 
conveyer belts. 

Membrane-active 
Inhibits a specific 
enzyme in lipid 
biosynthesis 

The action at a specific target 
increases the risk of 
resistance. 

Hypochlorite 
Frequently applied 
disinfectant in food 
industry. 

Highly oxidizing agents 
Irreversible change 
and disruption of 
DNAprotein 
synthesis. 

It is cheap. 
Halogen-
releasing 
agents 

Iodine  
Penetrates bacteria 
and attacks keygroups 
of proteins. 

Expensive.  
Staining of skin and plastic 
parts. 

Peracetic acid 
Frequently applied 
disinfectant in the 
food industry. 

 

Mixture of water, hydrogen 
peroxide and acetic acid.  
Less sensitive to organic 
loads. 

Peroxygens 

Hydrogen 
peroxide 

 

Oxidation of essential 
cell components as 
lipids, 
proteins and DNA. 

Corrosive on some materials. 

Quaternary 
ammonium 
compounds 

 
Frequently applied 
disinfectant in the 
food industry. 

Absorption to cell wall 
Perturbation of lipid 
bilayer. 
Cytoplasmic protein 
aggregation. Leakage 
of cytoplasmic 
materials. 

More expensive than 
chlorine, but have residual 
action. 
Non-corrosive and non-
tainting monocationic agents. 
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Table 1.3.4: Advantages and disadvantages of some chemical disinfectants widely used in the food industry. 

Disinfectant Advantages Disadvantages 

Chlorine compounds 

Cheap and effective. 
-Kills most types of microorganisms. 
-Less affected by hard water than some. 
-Does not form films. 
-Effective at low temperatures. 
-Relatively inexpensive. 
-Concentration easily determined by test 
strips. 

-Inactivated in presence of organic 
material. 
-May corrode metals and 
weakenrubber. 
-Irritating to skin, eyes and throat. 
-Unstable, dissipates quickly. 
-Liquid chlorine loses strength in 
storage. 
-pH sensitive. 

Iodophors 

-Kills most types of microorganisms. 
-Less affected by organic matter than 
some. 
-Less pH sensitive than chlorine. 
-Concentration determined by test strips. 
-Solution colour indicates active sanitiser. 

-May stain plastics and porous 
materials. 
-Inactivated above 50°C. 
-Reduced effectiveness at alkaline pH. 
-More expensive than hypochlorites. 
-May be unsuitable for CIP1 due to 
foaming. 

Peroxy compounds 

-Effectiveness. 
-Best against bacteria in biofilms. 
-Kills most types of microorganisms. 
-Relatively stable in use. 
-Effective at low temperatures. 
-Meets most discharge requirements. 
-Low foaming; suitable for CIP. 

-Inactivated in presence of organic 
material. 
-More expensive than some. 
-Inactivated by some metals/organics. 
-May corrode some metals. 
-Not as effective as some against 
yeasts and moulds. 

QAC 

-Non corrosive 
-Less affected by organic matter than some 
-Residual antimicrobial activity if not rinsed 
-Can be applied as foam for visual control 
-Effective against Listeria monocytogenes 
-Effective for odour control 
-Concentration determined by test strips 

-Expensive. 
-Inactivated by most detergents. 
-May be ineffective against certain 
organisms. 
-May be inactivated by hard water. 
-Effectiveness varies with formulation. 
-Not as effective at low temp. as some. 
-May be unsuitable for CIP due to 
foaming. 

Acid-Anionic 

- Sanitize and acid rinse in one step 
- Very stable 
- Less affected by organic matter than 
some 
- Can be applied at high temperature 
- Not affected by hard water 

-Effectiveness varies with 
microorganism. 
-More expensive than some. 
-pH sensitive (use below pH 3.0). 
-Corrode some metals. 
-May be unsuitable for CIP due to 
foaming. 

Carboxylic Acid 

-Kills most types of bacteria 
-Sanitize and acid rinse in one step 
-Low foaming, suitable for CIP 
-Stable in presence of organic matter 
-Less affected by hard water than some 

-Inactivated by some detergents. 
-pH sensitive (use below pH 3.5). 
-Less effective than chlorine at low 
temp. 
-May damage non-stainless steel 
materials. 
-Less effective against yeasts and 
moulds than some. 

Chlorine Dioxide 

-Kills most type of microorganisms 
-Stronger oxidiser (sanitizer) than chlorine 
-Less affected by organic matter than some 
-Less corrosive than chlorine 
-Less pH sensitive than some 

-Unstable and cannot be stored. 
-Potentially explosive and toxic. 
-Relatively high initial equipment cost. 

Ozone 
-Kills most type of microorganisms 
-Stronger oxidiser (sanitizer) than chlorine 
and chlorine dioxide 

- Unstable and cannot be stored. 
-May corrode metals and weaken 
rubber. 
-Potentially toxic. 
-Inactivated by organic matter (similar 
to chlorine). 

Hot Water / Heated 
Solutions 

-Kills most types of microorganisms 
-Penetrates irregular surfaces 
-Suitable for CIP 
-Relatively inexpensive 

-May form films or scale on equipment. 
-Burn hazard. 
-Contact time sensitive. 
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1.3.2.3.2. Other compounds with potencial application in cleaning and disinfection 

protocols 

Enzymes 

A promising strategy may be the use of enzymes that can dissolve the biofilm matrix (e.g. 

DNase and alginate lyase) as well as quorum-sensing inhibitors that increase biofilm 

susceptibility to antibiotics (Høiby et al. 2010). Several works have shown the potential 

applicability of enzymes against biofilms: Gamble and Muriana (2007) tested three enzyme 

preparations against single-species biofilms of 6 “strongly adherent” strains previously 

isolated from meat and meat processing plants. They found that protease, lipase, and cellulase 

were effective in releasing adherent cells from microplates. Longhi et al., (2008) examined the 

effects of a protease treatment on the ability of L. monocytogenes to form biofilms and to 

invade tissues. They have chosen serratiopeptidase (SPEP), an extracellular metalloprotease 

produced by Serratia marcescens. Treatment of L. monocytogenes with sublethal 

concentrations of SPEP reduced their ability to form biofilms and to invade host cells. 

Zymograms of the treated cells revealed that Ami4b autolysin, internalin B, and ActA were 

sharply reduced. These cell-surface proteins are known to function as ligands in the 

interaction between these bacteria and the host cells, and their data suggest that treatment with 

this natural enzyme may provide a useful tool in the prevention of the initial adhesion of L. 

monocytogenes to the human gut. More recently, Harmsen et al. (2010) have shown that 

DNase I treatment resulted in dispersal of biofilms, not only in microtiter tray assays but also 

in flow cell biofilm assays. 

Essential oils 

In vitro and in vivo studies have demonstrated that essential oils act as antioxidants and 

show antibacterial activities (Viuda-Martos 2010). Considering the large number of chemical 

substances that make up essential oils (EOs), it is most probable that their antibacterial 

activity cannot be explained by a single specific mechanism but rather by several different 

mechanisms. Nevertheless, phenolic compounds are generally considered to be responsible 

for the antibacterial properties of EOs. Several studies that have demonstrated the 

effectiveness of EOs, alone or combined with other antimicrobials, as antilisterial agents in 

foods are recopilated in Table 1.3.5.  
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Table 1.3.5: Some examples of sucessful applications of essential oils (EOs) as antilisterial agents in foods 

Essential oil Food Reference 
Thyme´s (0.08%) Minced pork Aureli et al., 1992 
Rosemary (0.3%) and encapsulated rosemary oil (5%) Pork liver sausage Pandit and Shelef 1994 
“DMC base natural” preservative comprising 50% Eos of 
rosemary, sage and citrus. 

Soft cheese 
Mendoza-Yepes et al., 
1997 

Eugenol Cooked chicken breast, pieces Hao et al., 1998a 
Eugeniol Roast beef sirloin, sliced Hao et al., 1998b 
Pelargonium oil Quiche Lis-Balchin et al., 1998 

Mint oil (Mentha piperita) 
Tzatziki (yogurt and cucumber salad pH 
4.5), taramosalata (cod´s roe salad pH 
5.0) and pâté (pH 6.8) 

Tassou et al., 1995 

Oregano Packed meat Tsigarida et al., 2000 
Clove oil Mozzarella cheese Vrinda et al., 2001 
Carvacrol Semi skimed milk Karatzas et al., 2001 

Cilantro oil (6%) Vacuum packed ham Gill et al., 2002 

Oils and vapours of lemon (Citrus limon), sweet orange 
(Citrus sinensis) and bergamot (Citrus bergamia) 

Chicken skin Fisher and Philips 2006 

Oregano or savory Pork meat Ghalfi et al., 2007 

Spanish oregano (O; Corydothymus capitatus), Chinese 
cinnamon (C; Cinnamomum cassia), or winter savory (S; 
Satureja montana) 

Bologna and ham Oussalah et al., 2007 

Carvacrol Steak tartare Veldhuizen et al., 2007 
Thyme Minced beef during refrigerated storage Solomako et al., 2008 
Oregano Barbecued chicken Firouzi et al., 2007 
Clove and cinnamon Pasteurized milk Cava et al., 2007 

Cinnamon, bark Melon and waterlemon juices 
Mosqueda-Melgar et al., 
2008 

Basil, lemon balm, marjoram, oregano, rosemary, sage 
and thyme 

Model media included potato starch (0, 
1,5 or 10%), beef extract (1.5, 3, 6 or 
12%), sunflower oil (0, 1, 5 or 10%). 

Gutierrez et al., 2008 

Satureja montana Minced pork Carramiñana et l., 2008 
Basil, caraway, fennel, lemon balm, marjoram, nutmeg, 
oregano, parsley, rosemary, sage, and thyme 

Ready-to-eat vegetables Gutierrez et al., 2008 

Citron Fruit-based salads Belletti et al., 2008 

Lemon balm, marjoram, oregano and thyme 
Model media based on lettuce, meat 
and milk 

Gutierrez et al., 2009 

Allspice, garlic, and oregano tomato films Du et al., 2009 
Garlic, bay, black pepper, origanum, orange, thyme, tea 
tree, mint, clove, and cumin 

Apple-carrot juice 
Irkin and Korukluoglu, 
2009 

Oregano and rosemary Fresh-cut vegetables Scollard  et al., 2009 
Thyme verbena, thyme red, Spanish oregano, ajowan, 
tea tree, clove, and sage oils tested at 1%, as well as 
with 2% rosemary oil 

Ready-to-eat salad 
Cobo Molinos et al., 
2009 

Clove (Syzygium aromaticum L.), fennel (Foeniculum 
vulgare Miller), cypress (Cupressus sempervirens L.), 
lavender (Lavandula angustifolia), thyme (Thymus 
vulgaris L.), herb-of-the-cross (Verbena officinalis L.), 
pine (Pinus sylvestris) and rosemary (Rosmarinus 
officinalis) 

Films for fish preservation 
Gómez-Estaca et al., 
2010 

 

There are few studies on the effects of essential oils in biofilms (Chorianopoulus et al., 

2008; Oliveira et al., 2010; Sandasi et al., 2008; Sandasi et al., 2010). Sandasi et al., 2010 

studied the in vitro antibiofilm activity of selected culinary herbs and medicinal plants against 

L. monocytogenes biofilms. The majority of extracts tested prevented cells adhesion to 

polyvinyl chloride (PVC) surface. In contrast, inhibition of preformed biofilms (during 4 
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hours) was more difficult to achieve, with only three extracts (Rosemarinus officialis, Mentha 

piperita and Melaleuca alternifolia) inhibiting the growth of both strains by at least 50%. 

Previously, Sandasi et al., 2008 showed that some essential oils at a concentration of 1 mg/ml 

components promote the growth and development of a preformed L. monocytogenes biofilm 

(6 h) in vitro. However, Chorianopoulus et al., 2008 observed that the essential oil of S. 

thymbra (1%), as well as its hydrosol fraction (100%), presents sufficient bactericidal effect 

on bacterial biofilms formed on stainless steel after 5 days. And also, Oliveira et al., 2010 

studied the effect of disinfectant and essential oils (Cymbopogon citrtus Stapf. and 

Cymbopogon nardus) in different phases of biofilm formation (3 hours of biofim formation) 

of Listeria monocytogenes on stainless steel surface and found that essential oils have 

effectively reduced the number of surface-adhered cells, especially after 60 min of contact.  

Biosurfactants 

A few studies have confirmed the effectiveness of biosurfactants produced by gram-

negative (Pseudomonas fluorescens) and Gram-positive (Lactobacillus helveticus) bacteria 

against the adhesion of Listeria monocytogenes on stainless steel (Meylheuc et al., 2001 and 

2006). Zeraik and Nitschke, 2010 studied the adhesion of different pathogenic bacteria 

(Staphylococcus aureus, Listeria monocytogenes, and Micrococcus luteus) to polystyrene 

surfaces previously condicioned with surfactin and rhamnolipid , whereas Nitschke et al. 

(2009) to stainless steel and polypropylene previously adsorbed with surfactin.  

Bacteriocins 

The effectiveness of nisin and pediocin against planctonic L. monocytogenes cells has been 

demonstrated in numerous studies (Nisin: Scannell et al., 2000; Szabo, and Cahill. 1999; 

Harris et al., 1991; Coma et al., 2001; Nilsson et al., 2000; Benkerroum and Sandine. 1988; 

Fang and Lin. 1994, Zhang and Mustapha. 1999. Pediocin: Degnan et al., 1993, Goff et al., 

1996; Liao et al., 1993; Scannell et al., 2000). In fact, biocontrol of L. monocytogenes in 

refrigerated storage through co-culture with bacteriocin-producing lactic acid bacteria has 

been proposed by several authors (Yousef et al., 1991.). However, both nisin-producing 

lactococci and pediocin producing pediococci are hardly effective because they do not grow 

well at refrigeration temperatures. The psychrotrophs C. piscicola L103 (Schobitz et al., 

1999), Leuconostoc carnosum 4010 (Budde et al., 2003), and several strains of Lb. bavaricus 

(Winkowski et al., 1993) were proposed as alternative bacteriocin producers to prevent 
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Listeria to grow at refrigeration temperature. Growth of the pathogen may also be retarded in 

ready-to-eat, fresh-cut vegetables inoculated with Lb. delbrueckii (Harp and Gilliland. 2003). 

On the contrary, studies about the effectiveness of bacteriocins against L. monocytogenes 

biofilms are really scarce. Only three were found in the bibliography: Leriche et al., 1999; 

Minei et al., 2008 and Guerrieri et al., 2008. The first one studied L. monocytogenes biofilm 

growth in association with a nisin-producing strain of Lactococcus lactis. Both when L. 

monocytogenes was combined with Lc. lactis and inoculated onto stainless steel coupons or 

was inoculated onto a preexisting Lc. lactis biofilm, the antilisterial activity of the biocontrol 

was effective. Minei et al., 2008 studied the influence of nisin (3 h) on L. monocytogenes 

biofilms and observed that although treatment decreased the number of cells 4.6 log 

CFU/cm2, a renewed biofilm was detected after 24 h of incubation. However, coculture with a 

bacteriocin produced by E. faecium reduced efficiently the biofilm formation. Guerrieri et al., 

2008 studied the use of lactic acid bacteria (LAB) biofilms bacteriocin producers 

(Lactobacillus plantarum 35d, Enterococcus casseliflavus IM 416K1) and by two non-

producers (L. plantarum 396/1, Enterococcus faecalis JH2-2) for the control of Listeria 

monocytogenes in a small-scale model. They found the bacteriocin producers showed the best 

antilisterial potentiality. Comparing the antilisterial activity of LAB biofilm against both 

planktonic and adherent cells, the L. monocytogenes adherent cells showed a higher 

resistance. And also in the studies performed with L. monocytogenes in co-culture with a 

Pseudomonas putida strain it is produced a reduction of the antilisterial activity in the 

lactobacilli biofilms added with P. putida, probably due to the pH increase and to a better 

survival of Listeria in the presence of P. putida.  

More recently, it has been showed that the presence of model resident Lactococcus lactis 

biofilms reduced the initial adherence of L. monocytogenes. Moreover, significant differences 

were seen in L. monocytogenes settlement as a function of the genetic background of resident 

lactococcal biofilm cells (Habimana et al. 2009). 

1.3.2.4. Resistance of L. monocytogenes biofilms to disinfectants 

It is generally accepted that biofilm formation implies an increase in the resistante to 

biocides. (Aarnisalo et al., 2000; Aarnisalo et al., 2007; Amalaradjou et al., 2009; Ammor et 

al., 2004; Blackmann and Frank, 1996, Bremer et al., 2002, Chavant et al., 2003; Gram et al., 
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2007, Kastbjerg and Gram, 2009; Holah et al., 2002, Leriche et al., 1999; Minei et al., 2008, 

Frank et al.,  2003; 48 h: Pan et al., 2006, Yang et al., 2009). 

According with Costerton et al. (1999) and Donlan and Costerton (2002), some 

mechanisms responsible for that resistance may be one or more of the following:  

i. A delayed penetration of the antimicrobial agent through the biofilm due to the 

polymeric substances that make up the matrix of a biofilm (Ammor et al., 2004; 

Bourion and Cerf 1996; Davies, 2003; Fatemi and Frank, 1999; Gilbert et al, 2002,; 

Pan et al., 2006). Extracellular polymeric substances surrounding the cells may hinder 

diffusion. Additionally, some authours have also pointed out that the abiotic part of the 

biofilm plays a part in resistance because of its potent neutralization effect on many 

compounds (Campanac et al. 2002). 

ii. An altered growth rate of biofilms (Chavant et al., 2004, Fah and O´Toole). 

iii. Other physiological changes due to the biofilm mode of growth. This suppose a more 

speculative hypothese than the preceding one, in which at least some of the cells in a 

biofilm adopt a distinct and protected biofilm phenotype (Chavant et al., 2004; Fah 

and O´Toole; Davies, 2003). 

iv. Formation of multispecies biofilms: L. monocytogenes is more resistant when grown 

in multi-species biofilm than when grown as monospecies biofilm (Ammor et al., 

2004; Fatemi and Frank 1999; Saá Ibusquiza et al., 2010).  

1.3.2.5. Cross-resistance responses of L. monocytogenes 

1.3.2.5.1. Cross-resistance of acid-adapted L. monocytogenes. 

Acid-adapted L. monocytogenes (pH 5.2, 2 h) had increased resistance to heat shock (52 

°C), osmotic shock (25–30% NaCl) and alcohol stress, suggesting that acid adaptation also 

provides cross-protection against other stress factors (Phan-Thanh et al., 2000). Cross-

resistance of acid-adapted cells to other stresses such as high temperatures, sodium chloride, 

hydrogen peroxide, hypochlorite, crystal violet, ethanol, surfactants and3the bacteriocin nisin 

(Begley et al., 2010; Bonnet and Montville, 2005) has important implications for the food 

industry, particularly since foods commonly encounter sublethal acidic treatments during 

processing (Phan-Thanh 4et al., 2000; van Schaik and Abee, 1999). Also, acid-tolerant strains 

of L. monocytogenes are more resistant to CO2 (Francis et al. 2007; Jydegaard-Axelsen et al., 
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2004). Specifically with bacteriocins, acid tolerance response (ATR) confers cross-resistance 

to nisin (Badaoui Najjar, et al., 2009; Begley et al., 2010; Bonnet and Montville, 2005; Ivanek 

et al., 2006). So the cross-resistance induced by the ATR should be considered for the safety 

of foods fermented with bacteriocin-producing cultures. 

1.3.2.5.2. Cross-resistance between bacteriocins in L. monocytogenes  

Song and Richard (1997) studied the antilisterial activity of three bacteriocins used at sub-

minimal inhibitory concentrations and cross-resistance of the survivors. They obtained that 

the survivors displayed increased resistance not only toward the bacteriocin they were in 

contact with, nisin, but toward the two other bacteriocins under study, pediocin AcH and 

enterococcin EFS2. As the survivors to nisin are resistant to the other two bacteriocins, one 

can expect that combined use of nisin and one of these bacteriocins would not result in better 

inhibition. This conclusion is contradicted by the results of Hanlin et al. (1993) who showed 

that nisin and pediocin AcH had greater antibacterial activity in combination than 

individually.  

 

1.3.3. Control of Listeria monocytogenes in foods 

In general, there is not a unique strategy or technology to control L. monocytogenes in 

foods. Preservation technologies were not designed exclusively to eliminate L. 

monocytogenes so the application of multiple hurdles is necessary. However, in those foods 

were L. monocytogenes has been identified as a frequent pathogenic bacterium, several 

specific strategies have been developed:  

1.3.3.1. Bacteriocins 

Nisin and pediocin are the most investigated bacteriocins against L. monocytogenes. 

Bacteriocins are suitable as processing aids, complementing other preservation methods. 

Previous works have demonstrated that heat, freezing–thawing, acid (Muriana, 1996), high 

hydrostatic pressure (Kalchayanand et al., 1994), and pulsed electric fields were more 

listericidal in presence of bacteriocins than they were in their absence. 
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1.3.3.2. Application of active packaging  

Active packaging that contains antilisterial agents is increasingly investigated as a means 

to improve food safety after processing. Listeriostatic or listericidal agents of active 

packaging are applied as coatings to surfaces in contact with food (Cowan et al., 2003; 

Hoffman et al., 2001) or incorporated into packaging materials (Brody et al., 2001). As an 

example, we can cite: organic acids, bacteriocins, spice extracts, lysozyme, chitosan, 

listeriophages, or EDTA.  

1.3.3.3. Ozone (O3)  

Ozone has been used in European countries for decades and has recently been approved in 

the United States by the FDA for treatment, storage, and processing of foods, including meat 

and poultry, unless useis precluded by a standard of identity (Food and Drug Administration. 

2003). Although ozone treatment inactivates L. monocytogenes, listericidal activity of ozone 

varies with temperature, medium composition, strain, and physiological status.  

1.3.3.4. Electrolyzed water (EO). 

The effectiveness of EO water against L. monocytogenes has been demonstrated in 

suspension and in foods, like salmon (Ozer and Demirci 2005), eggs, fruits, and vegetables 

(Sharma and Demirci 2003; Singh et al., 2003; Stan and Daeschel 2003; Bialka et al., 2004; 

Koseki et al., 2004; Wang et al., 2004, Rahman et al., 2010; Park et al., 2004).  

1.3.3.5 Phages 

Bacteriophages have a potent antimicrobial activity by inducing the lysis of their host, are 

ubiquitous in nature including food ecosystems, and are harmless to mammalian cells. Their 

host specificity allows proper starter performance in fermented products and keeps the natural 

microbiota undisturbed. Moreover, there are also several phage-encoded proteins with 

antimicrobial activities, which may be useful for biological intervention approaches. Listeria 

phages have already been succesfully used as processing aids to avoid Listeria contamination 

during the manufacturing of soft cheeses (Carlton et al., 2005). However, limited work is 

reported regarding phages to control foodborne pathogens. In this context, EFSA has 

submitted a recommendation about more research on the use of phages in food 

(http://www.efsa.europa.eu/en/scdocs/scdoc/1076.htm) and their possible use in RTE 
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products products as it was recomended in the recent Scientific Opinion of the Panel on 

Biological Hazards on “The use and mode of action of bacteriophages in food production” 

(Anonymus 2009c). 

1.3.3.6. Nanotechnology 

The application of nanotechnology have been developed in the last few years. It is applied 

to detect and combat Listeria in foods. With the first objective, a nanoparticle inmunoassay to 

detect low concentrations of L. monocytogenes in food and environmental samples 

(Jaakohuhta et al., 2007) and a  highly stable biosensor material that mimics existing whole-

cell assays for detecting listeriolysin O (Zhao et al., 2006) have been developed, among 

others. To combat L. monocytogenes in foods, Hong et al. (2008) studied the antimicrobial 

activity of organically modified nano-clays and they observed that two of the three tested 

caused rupture of cell membrane and inactivation of L. monocytogenes and Staphylococcus 

aureus.  

1.3.4. Listeria monocytogenes as a tool. 

But  Listeria has been also applied as a tool in medicine. Sawosz et al. (2010) tried to 

construct bacteria-nanoparticle vehicles of gold and platinum with Listeria and Salmonella 

enteritidis although in the case of Listeria monocytogenes they did not penetrate or were 

removed. In the same line, Powell et al., 2010 used ovalbumin-derived designed peptides of 

Listeria monocytogenes as a surrogate antigen to generate nanoparticle vaccines. All these 

multiple applications constitute a promising field in biotechnology 

Moreover, Tangney and Gahan (2010) described the potencial of Listeria monocytogenes 

as a vector for anti-cancer therapies. Several recent studies about this medical application 

were published: Paterson et al. (2010) designed Listeria and Salmonella bacterial vectors of 

tumor-associated antigens for cancer immunotherapy. Shahabi et al., 2010 developed a live 

and highly attenuated Listeria monocytogenes-based vaccine for the treatment of Her2/neu-

overexpressing cancers in human. Finally, Wood, et al. (2010) described Listeria-derived 

ActA as an effective adjuvant for primary and metastatic tumor immunotherapy. 
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2. JUSTIFICATION AND OBJECTIVES 
 

Listeria monocytogenes is one of the most important food-borne pathogens, since it has a 

high incidence in different kinds of food products, including fish products, and can cause 

severe illness and even death in susceptible individuals. In general terms, this work is 

therefore justified by the need of reducing the risk of the presence of L. monocytogenes in 

food. Within this global objective three main reasons support the appropriateness of the 

specific objectives raised in this Ph.D. thesis: 

1. That the formation of biofilms is one of the principal strategy for L. monocytogenes to 

persist in food processing plants. Persistence implies a high risk of cross-

contamination of food by biotransfer (contact, aerosols). 

2. That the persistence of L. monocytogenes biofilms in the food industry may be related 

to the resistance to external physical or chemical stimuli, including biocides. 

3. That the transfer of biocide-resistant cells from biofilms to food can imply cross-

responses to preservation techniques. 

The study of different aspects related to these three matters was considered to be useful to 

prevent the persistence of biofilms formed by L. monocytogenes in the food environment and 

thus improve the control of this bacterial pathogen.  

Additionally, experimental systems were developed with the aim of simulating realistic 

industrial conditions, which is not taken into consideration in many previous studies. Biofilms 

were thus formed under experimental conditions simulating conditions found in mussel 

processing plants. The use of mussels and mussel soils as experimental systems is justified by 

the fact that Spain, particularly Galicia, is the number one mussel-producing European 

country. In second term, single and dual species mature biofilms were used in this work to 

assess the biocide activity of widely-used disinfectants as well as the potential of further 

biocides as new disinfectants, whereas planktonic cells and young biofilms are commonly 

used as experimental systems in previous works. Lastly, the structural complexity of biofilms 

was measured in terms of the resistance to biocides instead of the number of cells. 

Taking this into account, the main objectives of this work were:  
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1. To compare the adhesion kinetics of L. monocytogenes (strains CECT 5873, CECT 936, 

CECT 911 and CECT 4032, representing serotypes 1/2a, 1/2b, 1/2c and 4b, respectively) in 

polypropylene (PP) and stainless steel (SS) under two surface contamination conditions (with 

and without conditioning film) simulating those found in mussels processing plants. This 

permitted to select for subsequent studies those scenarios that give rise to the most risky 

conditions. 

2. To develop of a new method to obtain benzalkonium chloride adapted L. monocytogenes 

by exposing exponential-phase cells once to a sub-lethal concentration of the biocide. This 

permitted to obtain a BAC-adapted strain derived from L. monocytogenes CECT 5873, to 

explore and discuss the effect of the inoculum size and the BAC concentration in the 

exposition in the level of adaptation of L. monocytogenes to BAC and to compare the 

proteomic pattern of BAC-adapted and non-adapted L. monocytogenes.  

3. To compare the increase of resistance to biocides (BAC, peracetic acid and nisin) and 

the changes in microscopic structure during biofilm formation at 25 ºC by three strains of L. 

monocytogenes (CECT 911, CECT 4032, CECT 5873 and BAC-adapted CECT 5873) in 

those scenarios selected in 1. This objective will permit to compare the effectiveness of the 

checked biocides, to identify some cross-responses derived from BAC adaptation and to 

highlight the importance of the structure in biofilm formation.  

4. To compare the resistance to BAC and the microscopic structure of mixed-species 

biofilms formed by different strains of L. monocytogenes and Pseudomonas putida CECT 845 

under different scenarios and that obtained by the corresponding mono-species L. 

monocytogenes biofilms. Obtained results in this section could give us an idea of how 

important is to consider multispecies biofilm in food safety. 

5. To compare the viability of BAC adapted and non-adapted L. monocytogenes CECT 

5873 biofilm cells in modified atmospheres rich in CO2 and O2 during storage at 2.5 ºC once 

they had been transferred by contact to cooked and live mussels, respectively. In addition, in 

cooked mussels the combined effect of CO2 and nisin against the survival of L. 

monocytogenes was also studied by using a first order factorial design. 
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3.1. ADHERENCE OF LISTERIA MONOCYTOGENES: EFFECTS OF 

MUSSEL PROCESSING SOILS ON THE ADHERENCE OF LISTERIA 

MONOCYTOGENES TO POLYPROPYLENE AND STAINLESS 

STEEL 

 

 

A comparative study of adhesion kinetics of L. monocytogenes (strains CECT 5873, CECT 

936, CECT 911 and CECT 4032, representing serotypes 1/2a, 1/2b, 1/2c and 4b, respectively) 

to polypropylene (PP) and stainless steel (SS) under two surface contamination conditions in 

plants processing cooked mussel was carried out. Either: i) contamination of clean surfaces 

with mussel cooking juice carrying L. monocytogenes, or ii) contamination with L. 

monocytogenes after soiling with mussel cooking juice, i.e. conditioning film (CF). 

The kinetics of adhesion were successfully described by a modified logistic model. 

Adhesion to polypropylene was higher than to stainless steel in all strains, except CECT 5873. 

Adhesion was initially higher in the presence of CF, but numbers of adherent cells decreased 

sharply in the late phase of study in 3 out of 8 cases as a result of cell detachment. 

Combinations of strain, surface material and surface conditioning where adhesion was 

most enhanced were defined as worst case scenarios (CECT 911-PP, 4032-PP-CF, 5873-SS, 

and 4032-SS-CF). Subsequently, adhesion in worst case scenarios was compared with a 

similar contamination event taking place in plants processing live mussels, using intervalvar 

water of mussel as food residues. 

Adhesion levels were higher in intervalvar water than in cooking juice, especially in both 

cases with no conditioning film; this was attributed to more space available for adhesion or 

physico-chemical conditions enhancing cells to adhere.  
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3.1.1. Introduction 

Listeria monocytogenes is a potencially pathogenic bacterium widely distributed in nature 

and in food industries. Therefore it has been found in a wide range of sources, including 

vegetables, processed foods, silage and soil. (Cox et al., 1989; Ivanek et al., 2006). L. 

monocytogenes grows at temperatures ranging from 1 to 45 ºC, pH between 4 to 9, and high 

salt concentrations (up to 10%) (Gandhi and Chikindas, 2007). Food are the primary route of 

transmission of L. monocytogenes, which has been involved in numerous outbreaks and 

sporadic cases of foodborne diseases in humans (Farber and Peterkin, 1991; McLauchlin et 

al., 2004; Denny and McLauchlin, 2008).  

L. monocytogenes comprises 13 distinct serological groups, but 95% of human isolates 

belong to serotypes 1/2a, 1/2b, 1/2c and 4b (Kathariou, 2002). Although serotype 1/2a is more 

frequently isolated from food and the environment, most outbreaks are caused by serotype 4b 

(Borucki et al., 2003). In fact, serotype 4b strains were found in 59% of human cases of 

listeriosis (Rocourt and Cossart, 1997). 

L. monocytogenes can attach to food industry surfaces and evolve a biofilm (Kim and 

Frank 1995). Biofilms can allow L. monocytogenes to persist in the food processing 

environment (Frank and Koffi 1990; Pan et al., 2006). Although extensive research has been 

conducted on L. monocytogenes biofilms, the control of biofilms is still a major problem for 

the food industry (Chmielewski and Frank, 2003). 

Bacterial adhesion to surfaces is the initial step in biofilm formation. The effects of 

different environmental factors on the adherence of L. monocytogenes to different surfaces 

have been the subject of several studies (Bonaventura et al., 2008, Chavant et al., 2002; Mai 

and Conner, 2007; Moltz and Martin, 2005; Rodríguez et al., 2008; Smoot and Pierson, 

1998). However, conflicting results have been obtained, and it has recently been stated that 

biofilm formation is still poorly understood (Harvey et al., 2007). In fact, two main aspects 

can be criticized in many studies. Firstly, adhesion was only determined during the first hours 

of study, so the kinetics of adherence are not defined and it makes comparisons difficult. 

Secondly, commercial or synthetic media were commonly used and these media do not 

reproduce the actual conditions found in food processing plants. 
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This study aimed to examine the adhesion kinetics of different L. monocytogenes strains on 

stainless steel and polypropylene, which are widely used in the food industry. First, two 

different surface contamination possibilities in plants processing cooked mussel were 

compared: i) contamination of clean surfaces with food residues carrying L. monocytogenes 

and ii) contamination of surfaces with L. monocytogenes after conditioning with food 

residues. Following this, worst case scenarios, i.e. combinations of strain, surface material and 

surface conditioning where adhesion was most enhanced, were further compared with a 

similar contamination event which may occur in situ in plants processing live mussels i.e. use 

of intervalvar water as a food residue matrix. 

 

3.1.2. Materials and methods. 

Bacterial strains 

Listeria monocytogenes CECT 5873, CECT 911, CECT 4032 and CECT 936 were 

provided by the Spanish Type Culture Collection (Valencia). Strains were stored at -80ºC in 

nutrient broth containing 50% glycerol (v/v) until use. 

Food processing surfaces 

Stainless steel (AISI-304, 2B finish, 0.8 mm thickness) and polypropylene sheets (compact 

00226) were cut into coupons (20 mm x 20 mm). Each polypropylene (PP) coupon was used 

only once. Prior to being used, PP coupons were cleaned with alcohol and left overnight in 

distilled water. In contrast, stainless steel coupons were used repeateadly. Prior to being used, 

SS coupons were soaked in 2 M NaOH to remove any grease or food residues and then rinsed 

several times with distilled water.  

After cleaning, a circular shape (15 mm diam) was drawn on each coupon with a correction 

pen (Tipp-Ex) to define the working area. 

Mussel cooking juice (MCJ) and intervalvar water of mussel (IWM) were used as culture 

media to simulate contamination of surfaces in plants processing cooked mussel and live 

mussel, respectively. 
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MCJ was prepared by cooking live mussels (ca. 1 kg) during 1 min at 100ºC in a pot with 

no water added. Mussels prepared in this manner open and release liquid. About 400 ml MCJ 

were obtained and stored in 50 ml aliquots at -20ºC (Table 3.1.1). 

 

Table 3.1.1: Composition of mussel cooking juice (MCJ) 

and intervalvar water of mussel (IWM) 
 MCJ IWM 

Carbohydrate (g/l) 9,19 2,7 

Nitrogen (g/l) 1.70 1.85 

pH 7.74 8,80 

 

IWM was directly collected by opening live mussels (ca. 1 kg) with a knife. About 250 ml 

IWM were obtained and similarly stored (Table 3.1.1). The pH of MCJ and IWM was 

measured using a pHmeter. 

Whenever required, aliquots of either MCJ or IWM were thawed and used either for 

preparing the inocula or forming the conditioning film on coupons. 

A conditioning film was formed on the working area of approximately half of the coupons 

by drying 250 μl of mussel cooking juice (MCJ) or intervalvar water (IWM) under a stream of 

air. Then coupons were sterilized by overnight exposure to ultraviolet light and subsequently 

placed into sterile glass petri plates. 

Preparation of inocula 

Whenever required, stock strains were thawed and subcultured twice in Tryptone Soy 

Broth (TSB; Difco, Spain) at 37 ºC prior to use. 

Inocula were then prepared by adjusting the absorbance at 700 nm of each strain in TSB to 

a value of 0.100, corresponding to a cell density of 108 CFU/ml previously, calibration curves.  

Cells were then harvested by centrifugation (6000 rpm, 10 min, 25 ºC) and finally 

resuspended in MCJ or in IWM. Two hundred and fifty μl-aliquots of each inoculum were 

pipetted onto the working area of each coupon. In the case of the inocula dispensed on 
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coupons with conditioning film, cells were resuspended in 1/2 x PBS instead. It was used 10 

ml of MCJ and 12.5 ml of IMW in each experiment. 

Two hundred μl of sterile distilled water were dispensed around the coupons placed in 

Petri dishes to maintain humidity. Mass determinations initially and at each sampling time 

indicated that this procedure was sufficient to prevent evaporation of inoculum.  

Experimental design 

During the first stage, the kinetics of adhesion of L. monocytogenes strains on 

polypropylene and stainless steel were examined under two surface contamination 

possibilities with different nutrient availability in plants processing cooked mussels: 

 Contamination of clean surfaces with food residues, i.e. mussel cooking juice, 

carrying L. monocytogenes. In this case, nutrients were freely available. 

 Contamination of surfaces with L. monocytogenes after conditioning with dried 

mussel cooking juice. In this case, inocula were prepared in 1/2 strength PBS and 

nutrients were initially much less available. 

During the second stage, the kinetics of adhesion of the worst case scenarios defined in the 

first stage (combination of strain, surface material and surface conditioning showing most 

adhesion), were examined in a similar contamination event which may occur in situ in plants 

processing live mussel. Intervalvar water was used as matrix of food residues during these 

experiments. 

These studies were carried out during a period of 60-80 h at 25 ºC, which is a usual 

temperature in the food processing environment. Two replicate coupons were examined at 

each sampling time. Each experiment was carried out on 3 separate ocasions. 

Determination of the number of adhered cells 

The number of adhered cells was determined according to Herrera et al. (2007). Briefly, 

coupons were drained and immediately immersed in 10 ml of PBS for 10 s to release non-

adhered cells. Adhered cells were collected by sequentially rubbing coupon surfaces with two 

peptone water-moistened swabs for 30 s each. Both swabs were transferred to 10 ml peptone 

water and subjected to vigorous vortexing for 1 min. The number of adhered cells was 
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determined by plating appropriate serial dilutions on Triptone Soy Agar after incubation at 37 

ºC for 24 h. Peptone water was always used as dilution medium. Results were expressed as 

CFU per mm2. 

Nutrient analysis 

The liquid medium poured from coupons was centrifuged (2000 x g, 10 min) and the 

supernatant was collected. In the case of coupons with conditioning film, the nutrients 

remaining behind in the various food residues were analysed during biofilm growth. The 

conditioning film was detached from the coupon surface by pipetting 10 ml of distilled water 

up and down several times. Once detached, it was mixed with the liquid medium and the 

whole volume was centrifuged. In both cases, supernatants were stored for subsequent 

carbohydrate and nitrogen analysis. 

The content of total carbohydrates was determined according with Dubois et al. (1956). 

Total nitrogen was determined by the Kjeldahl method with a kjeltec 2300 analyser unit (Foss 

Tecator, Barcelona, Spain). 

Statistical analysis. 

The fits of the models to the experimental data were performed according to a least-squares 

method (quasi-Newton). 

A Student´s test (α=0.05) was used to test the significance of the differences between 

means of the total number of adhered cells. 

 

3.3. Results and Discussion 

Effects of mussel cooking juice on the kinetics of adhesion of L. monocytogenes on 

polypropylene and stainless steel under different nutrient availability 

A study on the effects of the presence of mussel cooking juice on the adhesion kinetics of 

four L. monocytogenes strains to polypropylene and stainless steel surfaces, which are widely 
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used in the food industry, was carried out first. The strains chosen for this study belonged to 

the major foodborne serotypes. 

The kinetics of adhesion obtained for each of the cases are shown in Figure 3.1.1. Two 

different profile patterns could be distinguished: 
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Figure 3.1.1: Adhesion kinetics of different strains of Listeria monocytogenes to 

polypropylene (PP) and stainless steel (SS) coupons in the presence of mussel 

cooking juice either in liquid state (Θ) or as a conditioning film (). Lines 

represent estimates obtained using eq.[3.1.1] or [3.1.2]. 
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 A sigmoidal type pattern, which is most frequent. This profile was described by a 

logistic equation modified according to Cabo et al. (1999): 


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 [3.1.1] 

 A pattern showing a sharp decrease after approximately 24 h. It appeared in 3 out 

of the 16 experimental cases under study, namely, CECT 911 on polypropylene and 

stainless steel and CECT 936 on polypropylene (Fig. 3.1.1), all of them in the 

presence of conditioning film. An empirical additive model represented by two 

logistic terms was used to describe this second pattern:  
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 [3.1.2] 

where, 

 NAC: number of adhered cells (CFU/mm2). 

 aad: maximum number of adhered cells (asymptote). 

 rad: specific adhesion coefficient (t-1). 

 mad: time at which the number of adhered cells is half of the maximum. 

 aD: total number of adhered cells which detach or die (CFU/mm2). 

 rD: specific detachment/death coefficient (t-1). 

 mD: time at which the number of detached/death cells is half of the maximum. 

The values obtained for these parameters in each case are shown in Tables 3.1.2 and 3.1.3. 

Fits of eq [3.1.1] and eq [3.1.2] to experimental data are shown by solid lines in Figure 3.1.1. 

The values of parameters rad and mad have clearly shown that the strains CECT 911 

(serotype 1/2c) and CECT 4032 (serotype 4b) had the highest adhesion ability (P < 0.05) to 

both stainless steel and polypropylene, and that the adhesion of L. monocytogenes CECT 911 

to polypropylene was the highest (as judged especially by the values of rad). On the contrary, 

L. monocytogenes CECT 5873 (serotype 1/2a) showed the lowest adhesion (P < 0.05) in all 
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the cases, except on stainless steel in the absence of conditioning film, a case in which the 

adhesion of this strain was higher than all other strains. 

Table 3.1.2: Values obtained for the parameters of eq [3.1.1] and eq [3.1.2] of adhesion to polypropylene in the 

presence of mussel cooking juice 

 911 911-CF 4032 4032-CF 936 936-CF 5873 5873-CF 

aad 603302 1134524 788373 650000 285000 500000 45000 190000 

rad 0,420 0,171 0,068 0,075 0,198 0,140 0,550 0,211 

mad 21,727 34,270 40,012 29,886 14,000 21,000 3,200 21,000 

aD - 898804 - - - - - - 

rD - 0,573 - - - - - - 

mD - 35,67 - - - - - - 

CF: presence of conditioning film. 

 

Table 3.1.3: Values obtained for the parameters of eq [3.1.1] and eq [3.1.2] of adhesion to stainless steel in the 

presence of mussel cooking juice 

 911 911-CF 4032 4032-CF 936 936-CF 5873 5873-CF 

aad 250000 342779 1116597 204055 240993 169052 300000 131004 

rad 0,122 0,109 0,017 0,252 0,122 0,253 0,102 0,242 

mad 45,761 39,377 117,579 20,457 21,887 15,744 10,000 24,171 

aD - 281047 - 198133 - 737975 - - 

rD - 0,146 - 0,014 - 0,141 - - 

mD - 50,27 - 43,302 - 53,76 - - 

CF: presence of conditioning film 

Although studies relating serotype to adhesion on polypropylene were not found, some 

studies have shown that serotype 1/2c strains have higher adhesion ability on stainless steel 

than serotype 1/2a and 4b strains (Norwood and Gilmour, 1999; Norwood and Gilmour 

2001). This could be related to a different composition of flagella. The presence of flagella 

and the consequent mobility have been shown to be determinant for initial adhesion 

(Vatanyoopaisarn et al., 2000; Lemon et al., 2007). On the contrary, no significant differences 

in initial adhesion were detected among different serotypes by Kalmokoff et al (2001). Even 
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taking into account the variability in initial adhesion among different strains, discrepancies 

between different studies are in some cases the result of differences in the experimental 

design. It seems thus clear that sampling has to be carried out at several time points to define 

adhesion kinetics and distinguish worst case scenarios, which would be defined by maximum 

adhesion in minimum time, that is, by maximum values for aad and rad. (Herrera et al., 2007). 

Otherwise, comparisons can be difficult to make. Additionally, it is disregarded that a time 

limit between initial adhesion and mature biofilm formation cannot be fixed a priori. 

In the present study, the adhesion to polypropylene was significantly higher (P < 0.05) 

than to stainless steel in most of the scenarios and this is reflected in higher values of rad and 

mad. The exception was L. monocytogenes CECT 5873, which adhered better to stainless steel 

in the absence of conditioning film. This strain may exhibit a higher affinity towards 

hydrophilic surfaces than the other strains tested. 

Lower numbers (CFU/mm2) of adherenced CECT 911 and CECT 4032 on stainless steel in 

the absence of conditioning film questioned the validity of the values for the asymptote of eq. 

[3.1.1]. However, very similar values were obtained (aad=1116597 vs. aadreal=1115190; and 

rad=0.018 vs. radreal=0.017 for CECT 4032) in later studies, in which the incubation period 

was extended to 11 days (P < 0.05) (results not shown). 

The present results agree with several studies showing that the physico-chemical properties 

of surface materials (electric charge, hydrophobicity, roughness, etc.) are contributing 

determinants of the initial adhesion of L. monocytogenes (Palmer et al., 2007; Rodríguez et 

al., 2008; Sinde and Carballo, 2000). However, they may not be the only determinants. A 

previous study by Sinde and Carballo (2000) had found that L. monocytogenes adhered in 

higher numbers to polytetrafluoroethylene and rubber -hydrophobic substrates- than stainless 

steel -a hydrophilic substrate-. Additionally, hydrophilic passivating groups were suggested to 

be the best method for preventing cell attachment to synthetic substrates (Cunliffe et al., 

1999). On the contrary, other studies showed that L. monocytogenes formed biofilms faster on 

stainless steel than polytetrafluoroethylene (strain LO28), (Chavant et al., 2002; Meylheuc et 

al., 2001) or Buna-N rubber (strain Scott A), (Smoot and Pierson, 1998). In this latter work, 

however, changes in cell hydrophobicity could not be correlated to differences in adhesion, or 

to attachment of 21 L. monocytogenes strains to glass (Chae and Schraft, 2000). As Teixeira 

et al. (2008) pointed out, a correlation between surface hydrophobicity and the extent of 
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adhesion of L. monocytogenes is difficult to be established and other factors, such as surface 

charge or roughness, should also be taken into account. 

Adhesion was slightly higher (P < 0.05) under low nutrient availability conditions, i.e. in 

the presence of conditioning film, particularly on polypropylene. However, it seems more 

important that the number of cells adhered in the presence of conditioning film decreased in 

the late phase of study in 3 out of 8 cases, that is, CECT 911 on both polypropylene and 

stainless steel, and CECT 936 on stainless steel. Although the presence of conditioning film 

enhanced initial adhesion, it hindered direct adhesion of cells to surface material. The 

conditioning film plastified gradually over time. As a result, the system became more labile, 

as the conditioning film tended to detach from the coupon surface, carrying the adhered cells. 

This would be prevent a mature biofilm to be formed, but detachment involves a potential risk 

of food contamination (Chavant et al., 2002; Norwood and Gilmour 1999). 

With regard to the uptake of nutrients, it was approximately constant (1-2-g/l) in all the 

cases, except for the strain CECT 5873 in the absence of conditioning film, in which a higher 

carbohydrate content was consumed (ca. 4 g/l), despite lowers numbers of adhered cells was 

low. Previous studies had shown that nutrient consumption was inversely proportional to 

exopolysaccharide production, and therefore to adhesion (Laspidou et al., 2002). 

Effects of intervalvar water of mussel on the kinetics of adhesion of L. monocytogenes  

After this, the worst case scenarios were defined, i.e. combinations of strain, surface 

material and surface conditioning showing most adhesion in plants processing cooked mussel. 

These are: 

 CECT 911 on polypropylene in the absence of conditioning film (PP-ACF). 

 CECT 4032 on polypropylene in the presence of conditioning film (PP-CF). 

 CECT 5873 on stainless steel in the absence of conditioning film (SS-ACF). 

 CECT 4032 on stainless steel in the presence of conditioning film (SS-CF). 

Subsequently, the kinetics of adhesion of these scenarios were compared with a similar 

contamination event which may occur in situ in plants processing live mussels. Intervalvar 

water was used as matrix of food residues in these subsequent comparative studies. 
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As shown in Table 3.1.4 and Figure 3.1.2 adhesion was significantly higher (P < 0.05) in 

the presence of intervalvar water, especially in the cases 1 and 3, both with no conditioning 

film. However, only slight differences were observed in the presence of conditioning film. In 

fact, practically no differences were found between IWM and MCJ in case CECT 4032 PP-

CF 

Table 3.1.4: Values obtained for the parameters of eq [1] and eq [2] of adhesion in the 

presence of intervalvar water of mussel 

 911-PP 4032-PP-CF 5873-SS 4032-SS-CF 

aad 1444459.618 571898 809482 152976.856 

rad 0.424 0.100 0.115 0.115 

mad 25.517 23.087 41.286 33.36 

aD - - - 1068974 

rD - - - 35.63 

 mD - - - 0.650 

PP: polypropylene 
SS: stainless steel 
CF: presence of conditioning film 

Intervalvar water of mussel is nutritionally poorer than mussel cooking juice (see Table 

3.1.1), but cells were not starved. In fact, the consumption of nutrients was low so nutrients 

do not seem to play an important role. 

At least three non-mutually exclusive factors could account for the higher adhesion found 

in cases 3.1.2 A and 3.1.2.C (P < 0.05): i)  

 Higher probability of contact between cells and surface due to a lower nutrient 

concentration,  

 Intervalvar water was not an adequate medium for cells to survive in the planktonic 

state so they would tend to adhere,  

 pHs of intervalvar water and mussel cooking juice were different (7.74 in MCJ, 

8.80 in IWM and about 7.50 in coupons with conditioning film). However, with 

respect to the latter, it was shown that the lower the pH (in the range 6.0-9.0), the 

higher the adhesion rate of L. monocytogenes Scott A to Buna N-rubber (Smoot and 

Pierson, 1998). 
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Figure 3.1.2: Comparison between the adhesion kinetics of Listeria monocytogenes 

under four different conditions (worst-case scenarios A-D) in the presence of mussel 

cooking juice (Ο) and intervalvar water of mussel (). Lines represent estimates obtained 

using eq.[3.1.1] or [3.1.2]. 

A.:CECT 911 on polypropylene in the absence of conditioning film (PP-ACF). 

B.:CECT 4032 on polypropylene in the presence of conditioning film (PP-CF). 

C.:CECT 5873 on stainless steel in the absence of conditioning film (SS-ACF). 

D.:CECT 4032 on stainless steel in the presence of conditioning film (SS-CF). 

 

Additionally, the distinct adhesion ability of strains in MCJ or IWM should not be 

forgotten. A high variability (P < 0.05) among strains had already been observed (Borucki et 

al., 2003; Folsom et al., 2006; Tresse et al., 2006; Tresse et al., 2007). Also, Folsom et al 

(2006) found that serotype 4b strains were better biofilm-formers than serotype 1/2a strains in 

a high nutrient medium, whereas the latter were better biofilm-formers in a low nutrient 

medium, and reported it to be a possible cause of the predominance of serotype 1/2 strains in 

food processing plants. 
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Results from the present study showed a decrease in numbers of cells adhered to the 

various surfaces after 40 h presumably because cell detachment became higher than adhesion. 

This decrease was also observed by Herrera et al. (2007). This effect was observed in all cases 

in the presence of conditioning film (CECT 911-PP, CECT 911-SS, CECT 936-PP, CECT 

4032-SS) (Fig. 3.1.1, Tables 3.1.2, 3.1.3). However, in the cases of CECT 911-PP and CECT 

4032-SS, the kinetics of adhesion showed a further increase subsequent to each decrease (P < 

0.05) (Figure 3.1.1 and Figure 3.1.2, respectively). This may indicate a cyclic nature in L. 

monocytogenes biofilm development. However, further studies would be needed to confirm 

that a cyclical model is followed.  

In conclusion, the initial adhesion of L. monocytogenes seems to depend mainly on the 

interactions between cells and surfaces. The interactions are in turn mainly determined by 

their physicochemical properties and possible space restrictions (hence the effects of the 

conditioning film), along with environmental conditions. Adhesion is the initial step in 

biofilm formation. However, subsequent biofilm growth was not dependent on initial 

attachment (Chae and Schraft, 2000). Nonetheless, preventing the presence of pathogenic 

bacteria on surfaces of food processing plants requires the control of environmental 

conditions enhancing adhesion on a day to day basis. And this makes essential to carry out 

studies allowing such conditions to be defined. 
 

 

 

 

 

 

 

 

 

 
Biofilm formation: a cyclical dynamic? 
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3.2. AN EFFICIENT METHOD TO OBTAIN BENZALKONIUM 

CHLORIDE-ADAPTED CELLS OF LISTERIA MONOCYTOGENES 

CECT 5873. 

 

 

This section presents a new method for obtaining BAC-adapted L. monocytogenes cells. A 

factorial design was used to assess the effects of the inoculum size and BAC concentration on 

the adaptation (measured in terms of lethal dose 50 -LD50-) of exponential L. monocytogenes 

5873 cells after only one exposure. A significant empirical equation was obtained showing the 

positive effect of the inoculum size and the positive interaction between the effects of BAC 

and inoculum size on the level of adaptation achieved (LD50). However, a slight negative 

effect of BAC, due to it being a biocide, was also significant. By applying the new procedure, 

it was possible to increase BAC adaptation 4.17-fold in only 33 hours whereas 5 days were 

necessary in the classical procedure based on successive stationary phase cultures in sublethal 

BAC concentrations. Lastly, we present preliminary results of the comparison between the 

proteomic patterns of non-BAC adapted and BAC-adapted cells. 
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3.2.1. Introduction 

Listeria monocytogenes is a pathogenic bacteria widely found in nature and food industry 

(Cox et al. 1989, Ivanek et al. 2006). The frequent use of disinfectants in food environments 

can lead to the development of disinfectant resistant isolates due to inadequate cleaning and 

disinfection protocols (Walton et al., 2008). Benzalkonium chloride (BAC) is a biocide 

belonging to the group of quaternary ammonium compounds (QACs) that is commonly used 

in the food industry. Previous works have found that persistent L. monocytogenes strains are 

QAC resistant (Aase et al. 2000; Mullapudi et al., 2008). Changes in the cell membrane and 

efflux pumps lead to this resistance (Mereghetti et al., 2000, Romanova et al., 2006). This 

could be partly related to inadequate cleaning and disinfection protocols that result in long-

term exposure of microbial communities to subinhibitory concentrations of QACs, which 

causes the emergence of more resistant clones with changes in their susceptibility to other 

antimicrobials (Langsrud et al. 2003; Hegstad et al., 2010). Consequently, a lot of research in 

applied microbiology is focused on studying the physiological consequences of BAC and 

other biocides on bacterial resistance. To carry out this research it is necessary to generate 

BAC-adapted bacterial cells in the experimental protocols.  

Classical methods for obtaining bacterial cells adapted to antimicrobial agents are based on 

successive exposures of stationary-phase cells (Aase et al. 2000; Soumet et al., 2005; 

Taormina et al., 2001; To et al. 2006). Although this classical method is time-consuming and 

does not ensure that the maximum level of adaptation is achieved, it is the procedure most 

widely used in bacterial physiology experiments. However, some authors have found that L. 

monocytogenes only begins to show gradual adaptation to BAC after several successive 

subcultures in increasing BAC concentrations during 1 week (To et al. 2002), whereas others 

have found it necessary to wait 5 (Aarnisalo et al. 2007) or 7 days (Aase et al. 2000) with no 

growth to obtain BAC-adapted cells.  

It is known that exponential-phase cells are metabolically more active than stationary-

phase cells. This implies that exponential cells are more able to activate a change in the 

ongoing metabolic pathways in response to an external stimulus (Whistler et al., 1998; Zotta 

et al., 2009). Stationary phase cells have already activated phase-associated resistance 

mechanisms (Davies et al., 1996; Kang et al. 2004; Hengge-Aronis et al., 1991; Lange and 

Hengge-Aronis, 1991; Hu et al., 1998; Munro et al., 1995). However, no previous studies in 



Adaptation 
 

97 

 

 

which L. monocytogenes exponential-phase cells were exposed to biocides to generate 

adaptation were found in the literature. Therefore, in the present work we studied the effects 

of the concentration of bacterial cells (inoculum size) in exponential phase and the 

concentration of BAC on the level of adaptation reached by L. monocytogenes after only one 

exposure. Based on the results obtained we propose an alternative procedure for obtaining 

cells with a higher level of adaptation in a shorter period of time. 

 

3.2.2. Materials and methods 

Bacterial strains, synthetic media and biocide 

Listeria monocytogenes CECT 5873, CECT 911 and CECT 4032 were provided by the 

Spanish Type Culture Collection (Valencia). Strains were frozen and stored at -80ºC in TSB 

containing 50% glycerol (v/v) until use. Whenever required, one cryovial was thawed and 

strains were subcultured twice in Triptone Soy Broth (TSB, Cultimed, S.L., Spain) at 37 ºC 

before use. All subsequent cultures were grown in TSB at 25 ºC. In the adaptation 

experiments, TSB with different concentrations of benzalkonium chloride was used. 

Benzalkonium chloride was purchased from Sigma Chemical Co.  

Experimental method  

Inocula preparation 

One ml aliquot of an overnight culture of L. monocytogenes CECT 5873 in stationary 

phase was transferred to 49 ml of TSB (final volume: 50 ml) in a 250-ml erlenmeyer flask 

(1:5) (v:v) and incubated at 25 ºC until the required growth phase according to the 

experimental procedure applied (see below). Cultures were incubated until 1.0 optical density 

(700nm) when inoculum in stationary phase was required and to 0.4-0.5 optical density (700 

nm) when an exponential phase culture was needed, corresponding to cell densities of 2x109 

CFU/ml and 109 CFU/ml respectively according with previous calibration. 
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i. Classical multi-step (successive cultures) experimental design: 1 ml aliquots of 

successive stationary-phase subcultures of L. monocytogenes were inoculated into 49 ml of 

TSB containing increasing concentrations of BAC (Figure 3.2.1.A). The cultures were also 

carried out in a 250 ml erlenmeyer flask (1:5) (v:v) at 25ºC and shaking (100 rpm).  

 

Figure 3.2.1. Diagram outlining experimental protocols to enhance adaptation to 

BAC. A: Classical multi-step method. B: Single-step method. S1-S4: cultures after 

exposure to a number of successively increasing concentrations of BAC. E1-E4: 

cultures after exposure to several combinations of inoculum size and BAC 

concentration as defined by a first-order factorial design. Double-line circles 

represent non-BAC adapted cultures.  

ii. Single-step exposure procedure: Several non-adapted inocula of the exponential-

phase cultures of L. monocytogenes (Figure 3.2.1.B) were exposed only once to several 

concentrations of BAC. Both the inoculum size and the BAC concentrations used during 

exposures were set according to a factorial design (Table 3.2.1.). Culture conditions as in i). 

 

Table 3.2.1: Natural and codified values used in the first order ortogonal design 

 Natural values 

Codified values BAC (mg/l) Inoculum (ml) 

1;1 9 25 

1;-1 9 5 

-1;1 3 25 

-1;-1 3 5 

0;0 6 15 

 

Experimental procedures 
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Collection of BAC-adapted cells of L. monocytogenes 

After each experimental assay described above, 0,5 ml of BAC-adapted cells were 

collected by centrifugation at 2000 g during 5 minutes at 25 ºC. Obtained pelled pellet was 

washed with PBS to eliminate residual BAC concentration by centrifuging and resuspending 

twice in 0.05 M sterilized phosphate buffer. Cells were then transferred to a cryovial and 

stored at -80ºC in TSB containing 50% glycerol (v/v) until their resistance to BAC was 

determined. 

Determination of the resistance to BAC in L. monocytogenes collected cells.  

Dose-response assays in microtiter plates  

One hundred and twenty five µl of the activated inoculum diluted (1:10) twice of Listeria 

monocytogenes was added to microplate wells containing 125 µl solutions of different BAC 

concentrations (0 to 15 mg /l, step: 1 mg/l). 3 replicates of each BAC concentration were 

prepared and the microtiter plate was incubated at 37 ºC for 24 h. Absorbance at 700 nm was 

measured using a spectrophotometer (iMarkTM, Biorad). Series with sterile water instead of 

BAC was used as a control. The inhibition (I) of each BAC concentration was calculated from 

the absorbance values obtained in the dose-response assay according to the following 

equation [3.2.1]: 

I (%)= [1-(AX/A0)]*100                                        [3.2.1] 

 

 I: Inhibition (%) 

 Ax: average of the absorbance values obtained for each concentration of BAC 

 A0: average of the absorbance values obtained in absence of BAC. 

Determination of resistance  

Two different methods were used to quantify the bacterial resistance to benzalkonium 

chloride:  
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i) In terms of the minimum inhibitory concentration (MIC), defined as the minimum 

value of dose were the absence of growth in detected. Used in the screening of the 

mutants carried out in the genetic studies. 

ii) In terms of LD50, that was obtained by adjusting the inhibition values calculated 

according with Eq. [3.2.1] to the modified logistic equation [3.2.2.] (Cabo et al. 

1999) and the Solver application of Excel. Used in the rest of experiments. 

I (%) = 










  1

1

1

1
50)50( rLDDLDr ee

k               [3.2.2] 

 LD50: Dose that kills 50% of initial population  

 k: Maximum inhibition BAC value (asymptote) 

 r: Specific inhibition coefficient (dimensions: inverse of the dose)  

 D: Dose 

Proteomic assays 

Cytosolic proteins were extracted from controlled exponential-phase cultures (OD. O.4-

0.5) and then purified using the ReadyPrep™ 2-D Cleanup Kit (Biorad, S.L.). First- and 

second-dimension electrophoresis were carried out according to Sánchez et al. 2010. In the 

proteomic experiments, BAC-adapted cells (LD50=7.22 mg/l) obtained after one exposure of 

7.5 ml of exponential cells of L. monocytogenes to 5.25 mg/l of BAC were used. 

Statistics 

Factorial designs were carried out according to Box and Hunter (1989). A Student’s t test 

(α=0.05) was used to test for significant differences between means of the adaptation level 

and between the coefficients of the equations obtained in the factorial design. A Fisher test 

(α=0.05) was used to test the consistency of the models.  

Genetic procedures 

Information about bacterial strains, plasmids, culture conditions, nucleic acid manipulations, 

mutagenesis methods and cloning methods employed can be checked in Sleator et al., 2000 

and Stack et al., 2005. 
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3.2.3 Results 

Adaptation of L. monocytogenes CECT 5873, 911 and 4032 to benzalkonium chloride by 

the classical multi-step procedure after the exposure to different BAC concentrations 
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Figure 3.2.2: Increase in BAC-resistance of L. monocytogenes CECT 5873, 911 

and 4032 according to a classical multi-step procedure 
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Stationary phase cells of each strain were tested for growth under a sequence of 

successively increasing sublethal concentrations of BAC and their adaptation capacities were 

compared (Figure 3.2.2). 

The adaptation level of each strain was found to be related to its susceptibility to BAC. 

Following the classical procedure, the LD50 of CECT 5873 – the most susceptible strain – 

increased from 2.71 mg/l to 7.1 mg/l (2.61-fold) after five successive cultures in 5 days. 

However, the maximum adaptation of CECT 911 and CECT 4032 – both more resistant to 

BAC – was achieved after only one culture, with LD50 values of 5.06 mg/l (from 3.80, 

increasing 1.33-fold) and 9.19 (from 6.96, increasing 1.32-fold), respectively. 

It was thus shown that, using stationary phase cells and the classical experimental protocol, 

some L. monocytogenes strains can reach the maximum level of adaptation to BAC in only 

one culture (Figure 3.2.1). This means that it is possible to reduce the experimental time 

needed to achieve BAC-adapted cells, which in previous studies were obtained after days or 

even weeks of culture (Aase et al. 2000; To et al. 2002; Romanova et al. 2006).  

Although this experimental protocol is probably the most frequently used system for 

obtaining BAC-adapted-cells, the present results indicate that it is not optimum for all strains; 

therefore, each strain should be considered independently. In fact, the maximum adaptation 

capacity of L. monocytogenes CECT 5873 was not reached even after 5 successive cultures, 

whereas CECT 4032 and CECT 911 seemed to reach it after only one culture. This also 

indicates a higher adaptation potential of the strain CECT 5873. This strain was therefore 

chosen for subsequent studies in which the possibility of increasing the adaptation level was 

explored with exponential phase cells submitted to a single-step experimental design (see 

Figure 3.2.1 B). 

An alternative strategy for obtaining BAC-adapted L. monocytogenes cells 

Supported by the theory that exponential cells are metabolically more active than 

stationary-phase cells, in the present work we propose a new method for obtaining L. 

monocytogenes cells with a high degree of BAC adaptation in a short period of time based on 

only one exposure of exponential phase cells to sublethal concentrations of BAC. For this, the 

effects of the inoculum size and the concentration of BAC in the exposure on the level of 

adaptation achieved by L. monocytogenes CECT 5873 were explored by using a first-order 
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factorial design that allows both the individual and combined effects of these two variables to 

be determined.  

The experimental results obtained were adequately described by the following empirical 

equation (r2= 0.925), graphically shown in Figure 3.2.3 (data are showed in the supporting 

information chapter):  

LD50=7,96-0,91B+1,84I+2,46BI            [3.2.3] 

In which a significant positive individual effect of the L. monocytogenes inoculum size and 

a significant effect of the interaction between it and the concentration of BAC in the exposure 

wasfound. However, a negative individual effect of the benzalkonium chloride used in the 

exposure was also significant in the equation. 
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Figure 3.2.3. Effects of the Inoculum size and BAC concentration during the 

exposures on the resistance (LD50) of non-adapted inocula of L. monocytogenes 

CECT 5873. Independent variables are expressed in coded values.  

 

The significant first order negative term describing the individual effect of BAC reflects 

the biocide effect of BAC. This which exposing to low inoculum concentrations, could imply 

the absence of adaptation. Therefore, over  [BAC: inoculum] ratios, L. monocytogenes does 

not grow. This is the case of the combination [1,-1], in which the basal resistance level (LD50 

value of 2.71 mg/l) was used for calculation purposes. Therefore, it is recommended to 

determine the growth limits of the strain before setting the BAC concentrations to be used.  
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In the experimental ambit, the maximum resistance obtained by non-adapted CECT 5873 

cells (LD50=2.71 mg/l) was LD50=10.0 mg/l, whereas using the classical multi-step procedure, 

the maximum value obtained for LD50 was 7.1 mg/l. In addition, adapted wild-type cells were 

obtained in only 33 hours, whereas 5 days were necessary with the classical procedure.  

Proteomic patterns of non-BAC adapted and BAC adapted exponential-phase cells of L. 

monocytogenes CECT 5873. Preliminary results. 

Proteomic patterns of non-BAC adapted (LD50=2.71 mg/l) and BAC-adapted cells were 

compared (Figure 3.2.4). The statistical analysis of spots showed that 7 proteins (red circles) 

were down-regulated and 19 proteins with more than 0.1% non-BAC adapted cells were 

repressed (blue circles) as a result of adaptation to BAC. In contrast, only 4 proteins (green 

circles) were clearly up-regulated. It thus seems that the adaptation of L. monocytogenes to 

BAC leads to important protein repression. We are currently in the process of identifying 

these proteins, and the consequences of these changes will be studied in the future.  

 

 

 

Figure 3.2.4: Proteomic patterns of non BAC-adapted and BAC-adapted 

exponential-phase cultures of L. monocytogenes CECT 5873 
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Isolation of BAC mutants of Listeria monocytogenes. Identification of genes and 

proteins associated with BAC resistance in L. monocytogenes 

A bank of transposon mutants of Listeria monocytogenes EGDe and LO28 (Cao et al. 

2007) was screened for mutants with respect to their BAC sensitivity or resistance, Several 

BAC mutants were isolated and confirmed by their MIC values. The region of transposon 

insertion of the resistant mutants was determined by sequencing the PCR products obtained 

using the appropriate Marq primers (Cao et al. 2007). The proteins predicted to be encoded by 

the disrupted genes were deduced from the ListiList website 

(http:/genolist.pasteur.fr/ListiList/). The MIC’s of the selected mutants and the proteins 

encoded by the disrupted genes are shown in Table 3.2.2. 

 

Tabla 3.2.2: MIC values (mg/l) of BAC in the wild type and isolated mutants of L. monocytogenes. 
Strain MIC of BAC (mg/l) Identified protein 

L. monocytogenes EGDe 2.5  

1 sensitive mutant 2.0  

1 resistant mutant  6.5 lmo 2277: unknown protein 

1 resistant mutant 6 stress response protein encoding DNA 

L. monocytogenes LO28 2.5  

1 resistant mutant  7.0 lmo 601: cell surface protein 

 

The role of the protein encoded by lmo2277 in the BAC resistance of L. monocytogenes 

EDGe is currently under investigation using further mutagenesis and cloning strategies. 

 

4.2.4. Discussion 

In this work it has been shown that the exposure of high concentrations of exponential cells 

of L. monocytogenes to sublethal BAC concentrations is a more efficient protocol than the 

classical method used in applied microbiology for obtaining cells with a high level of BAC 

adaptation. To achieve this, the individual and combined effects of both variables, the 

inoculum size and the concentration of BAC during exposure were studied using a first order 

factorial design. 
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The equation [3.2.3] highlights the relevant positive effect of the inoculum size, with two 

significant terms (individual and combined with BAC) in the empirical equation. There are 

some previous studies that have considered the inoculum effect to initiate growth in bacteria 

(Bidlas et al., 2008; Skandamis et al. 2007; Koutsoumanis and Sofos, 2005; Pascual et al. 

2001; Robinson et al. 2001). Most of these works agree that increasing the inoculum levels 

allows Listeria monocytogenes to grow under more stressful environmental (pH, temperature, 

salt, temperature, aw) or chemical and antimicrobial conditions (bacteriocins, sodium lactate, 

sodium diacetate). Two possible explanations for the inoculum effect are considered: 1) that it 

is due to the heterogeneity of the bacterial population, which means that the larger the 

inoculum size the longer the resistant fraction of the population (Skandamis et al, 2007; 

Koutsoumanis and Sofos, 2005; Pascual et al. 2001); and 2) that a co-operative effect due to 

cell-cell signalling (quorum sensing) occurs at high cell densities. However, this last 

explanation was only partially demonstrated by Robinson et al. (2001), who found that using 

spent medium caused a decrease in the lag phase of L. monocytogenes. However, these 

authors did not observe any significant changes in the probability of growth. Moreover, 

Bidlas et al. (2008) proposed a “composite model” that demonstrated in five different 

pathogenic bacteria (one of which was Listeria innocua) According to this model, the effect 

of the inoculum size is only the consequence of the time required for a specific inoculum size 

to start growing (TTD, time to detection of growth) and it is directly related to microbial 

number. This is in agreement with the present study, the cooperative effect associated with the 

inoculum size was checked by exposing L. monocytogenes adapted cells (LD50=6.62) to 

different inoculum sizes and a concentration of BAC that allowed the BAC:inoculum size 

ratio to be constant. No significant differences were obtained in the resistance obtained after 

exposure (Table 3.2.2). The equation 3.2.3 ecuation reflects the larger the inoculums size the 

higher BAC concentration needed to kill the cells. 

So, one evident consequence of the described inoculum effect is that increasing the 

microbial inoculum exposed to a set biocide concentration (BAC in our case) will decrease 

the time to growth of the exposed strain, thus facilitating adaptation and increasing cell 

resistance (measured as LD50). This is precisely reflected by the significant I-containing terms 

of the equation [3.2.3].  

The proposed procedure significantly reduces the time needed to obtain BAC-adapted L. 

monocytogenes cells in batch cultures. This is especially important considering that all the 
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methods in the literature are based on successive exposures to increasing BAC concentrations 

without increasing the inocula, which makes them to be tedious and time consuming.  

Table 3.2.3: Effects of the inoculum size of the level of adaptation achieved by L. monocytogenes exposed to the 

same ratio BAC:cell. 

Inoculum (ml) [BAC] (mg/l) µg[BAC]/cell. LD50 

1 0.88 0.000045 5.58 

5 4.09 0.000045 5.00 

5 4.55 0.00005 6.62 

10 7.5 0.000045 5.72 

10 8.33 0.00005 6.39 

15 11.54 0.00005 No growth 

The results obtained are in agreement with two previous works which demonstrated that 

the metabolic activity of exponential cells allows them to develop adaptation mechanisms 

quicker than stationary phase cells exposed to sublethal concentrations of a biocide: Davies et 

al. 1996 studied the acid tolerance response (ATR) of L. monocytogenes and demonstrated 

that this response is growth-phase dependent and that the low metabolic activity of stationary 

phase cells implies a phase-specific resistance mechanism; and McMahon et al. (2000) found 

that L. monocytogenes has a higher adaptive response to heat-shock when working cultures 

were obtained after two successive cultures until the exponential phase instead of culturing 

twice untill stationary phase or one till stationary and the second one untill exponential phase. 

However, exponential-phase cells are more susceptible to biocides than stationary-phase cells 

(Luppens et al., 2001; Hayman et al. 2007; Weeks et al. 2006; Pascual et al. 2001). This could 

be a disadvantage of the proposed method, as biocide concentration during the exposure could 

not increase over the growth limit unless the inoculum concentration is increased sufficiently. 

But this fact will be also present in the classical method. This susceptibility of the cells to 

BAC is reflected in the negative first order term for the benzalkonium chloride, which 

indicates that it is important to control the concentration of the disinfectant carefully during 

the exposures.  

In addition, we found significant differences in the expression of proteins between BAC 

non-adapted and semi-adapted (LD50= 7.22 mg/l) L. monocytogenes CECT 5873 cells. 

Although such proteins should be identified further, the balance of protein expressed proteins 

showed that adaptation to BAC seems to imply a repression. There is little previous 
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information on this subject for L. monocytogenes. In fact, only two proteomic works were 

found with proteomics in Listeria monocytogenes (Mbandi et al., 2007; Folsom et al, 2007); 

however, only in the first changes in the protein profiles associated with the exposure to 

biocides were studied. They studied protein variations when the bacteria were exposed to the 

organic acids. Sodium diacetate treatment produced a higher number of unmatched proteins 

than sodium lactate (124 versus 53 in lactate), and a increase in protein expression (20 versus 

5 in lactate) and in the number of novel proteins (90 versus 45 in lactate). The combination of 

the treatments involved a higher number of repressed proteins (41 versus ~30 in the single salt 

treatment). Six proteins were further investigated. 

There have been few proteomic studies carried out on the resistance of bacteria to 

chemicals. Bore et al. (2007) also studied adapted tolerance to benzalkonium chloride 

Escherichia coli K-12 using transcriptome and proteome analyses. Changes in the expression 

levels of adapted cells were shown for porins, drug transporters, glycolytic enzymes, 

ribosomal subunits and several genes and proteins involved in protection against oxidative 

stress and antibiotics. However, they found that genes related to these functions were mainly 

up-regulated, which is in contrast with the present results.  

In summary, the results obtained permitted us to propose a new method for obtaining 

Listeria monocytogenes cells with a higher level of BAC adaptation in a shorter period of 

time than the classical method based on successive cultures of stationary phase cells in 

sublethal BAC concentrations. This method consists in only one exposure of a high 

concentration of exponential phase cells to sublethal BAC concentrations, always under the 

growth limit of the strain for BAC.  
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3.3. RESISTANCE TO BENZALKONIUM CHLORIDE, PERACETIC 

ACID AND NISIN DURING FORMATION OF MATURE BIOFILMS 

BY LISTERIA MONOCYTOGENES  

 

 

Increase of resistance to the application of benzalkonium chloride (BAC), peracetic acid 

(PA) and nisin during biofilm formation at 25 ºC by three strains of L. monocytogenes 

(CECT 911, CECT 4032, CECT 5873 and BAC-adapted CECT 5873) in different scenarios 

was compared. For this purpose, resistance after 4 and 11 days of biofilm formation was 

quantified in terms of lethal dose 90% values (LD90), determined according with a dose-

response logistic mathematical model. Microscopic analyses after 4 and 11 days of L. 

monocytogenes biofilm formation were also carried out. Results demonstrated a relation 

between the microscopic structure and the resistance to the assayed biocides in matured 

biofilms. The worst cases being biofilms formed by the strain 4032 (in both stainless steel 

and polypropylene), which showed a complex “cloud type” structure that correlates with the 

highest resistance of this strain against the three biocides during biofilm maturation. 

However, that increase in resistance and complexity appeared not to be dependent on initial 

bacterial adherence, thus indicating mature biofilms rather than planctonic cells or early-

stage biofilms must be considered when disinfection protocols have to be optimized. PA 

seemed to be the most effective of the three disinfectants used for biofilms. We 

hypothesized both its high oxidising capacity and low molecular size could suppose an 

advantage for its penetration inside the biofilm. We also demonstrated that organic material 

counteract with the biocides, thus indicating the importance of improving cleaning 

protocols. Finally, by comparing strains 5873 and 5873 adapted to BAC, several adaptative 

cross-responses between BAC and nisin or peracetic acid were identified.  
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3.3.1. Introduction 

Listeria monocytogenes is a psychotrophic pathogenic bacterium (O’Driscoll et al., 1996) 

that is found throughout the food industry (Kastbjerg and Gram, 2009). The ability of L. 

monocytogenes to adhere to surfaces and form biofilms has been demonstrated in numerous 

studies (Adrião et al., 2008; Beresford et al., 2001; Blackman and Frank, 1996; Palmer et al., 

2007; Smoot and Pierson, 1998; Rieu et al., 2008; Somers and Wong, 2004, Takahashi et al., 

2010). The formation of L. monocytogenes biofilms is frequently evaluated by quantifying 

the biomass (Bonaventura Di, 2008; Djordjevic et al., 2002; Harvey et al., 2007; Folsom et 

al., 2006), using sometimes in situ microscopic analyses (Borucky et al., 2003; Chae and 

Scraft, 2000; Chavant et al., 2004; Kalmokoff et al., 2001; Rodríguez et al., 2008; Moltz and 

Martin, 2005). However, quantifying the total biomass does not permit to determine the 

consequences of different biofilm structure and composition.  

One consequence of biofilm formation is the acquisition of (adaptive) resistance to 

cleaning and disinfection agents, which can lead to serious economic and health problems 

(Aarnisalo et al., 2007; Gram et al., 2007; Leriche et al., 1999; Minei et al., 2008). 

Therefore, the efficacy of different biocides against L. monocytogenes biofilms has been 

examined in various studies (Aarnisalo et al., 2000; Amalaradjou et al., 2009; Ammor et al., 

2004; Chavant et al., 2002; Rieu et al., 2010; Tyh-JenK and Frank, 1993; Yang et al., 2009). 

Industrial disinfectants including quaternary ammonium compounds, alcohols, chlorinated 

compounds, and other oxidizing agents such as peracetic acid, ozone and peroxide 

derivatives among others, have been tested in most of these studies (Aarnisalo et al., 2007; 

Frank et al., 2003; Pan et al., 2006; Krysinski and Brown, 1992; González-Fandos et al., 

2005). In contrast, there are few studies on natural antimicrobials, and only some essential 

oils (Chorianopoulus et al., 2007; Oliveira et al., 2010; Sandasi et al., 2008; Sandasi et al., 

2010; Tajkarimi et al., 2010) and lactic acid bacterial biofilms (Leriche et al., 1999; Minei et 

al., 2008; Guerrieri et al., 2009) have been tested for controlling L. monocytogenes biofilms.  

However, immature biofilms were used in most studies, which greatly affects the efficacy 

of disinfectants (72 h: Aarnisalo et al., 2007; 24 h: Bonaventura Di et al.,  2008; 40 h: 

Borucki et al., 2003; 28 h: Frank et al.,  2003; 48 h: Pan et al., 2006). Only Gram et al. 

(2007) and Kastbjerg and Gram, (2009) simulated real conditions in their studies by 

allowing the biofilms to mature for up to seven days. In addition, the experimental methods 
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used to quantify the sensitivity of biofilms to disinfectants involve determining the 

minimum inhibitory concentration (MIC), which can lead to underestimating the efficacy of 

the disinfectant under study, as noted by other authors (Kastbjerg and Gram, 2009). 

Therefore, this study aimed to compare the mature biofilms formed by three strains of L. 

monocytogenes in different scenarios by determining the increase in resistance to 

benzalkonium chloride (BAC), peracetic acid (PA) and nisin. This will allow us to elucidate 

some of the real repercussions of L. monocytogenes biofilm formation in different scenarios. 

BAC belongs to the quaternary ammonium chloride (QUACs) family and was chosen due to 

its widespread use as an industrial disinfectant. PA was chosen due to its efficacy and 

degradability (Briñez et al 2006), and nisin due to the lack of studies on it and because it is a 

natural antimicrobial agent widely used in foods (Cabo et al., 2009; Zhao et al., 2004). In 

addition, microscopic analysis was used to determine whether the increase in resistance to 

disinfectants is related to any significant changes in the structure of the biofilms formed by 

L. monocytogenes. 

 

3.3.2. Material and methods 

Bacterial strains and synthetic media 

Listeria monocytogenes CECT 5873, CECT 911, CECT 4032 were provided by the 

Spanish Type Culture Collection (Valencia). Strain 5873 adapted to BAC (5873A) was 

obtained in a previous experiment though sequential exposure of the strain 5873 to sub-

lethal concentrations of BAC (LD50: 2.71 mg/l; BAC-adapted strain: 7.22 mg/l) (see section 

3.2). Strains were frozen and stored at -80º C in TSB containing 50% glycerol (v/v) until 

use. Whenever required, one cryovial was thawed and subcultured twice in TSB (Cultimed, 

S.L., Spain) at 37 ºC before use for activation. 

Food soils media 

Mussel cooking juice (MCJ) and intervalvar water of mussel (IWM), used as culture 

media to simulate contamination of surfaces in plants processing cooked mussel and live 

mussel, were prepared as it was previously described (Saá et al. 2009). The composition of 
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MCJ and IWM are shown in Table 3.3.1. pH was adjusted to 7 in both media and 

autoclaved to 121 ºC for 15 min for sterilization. 

 

Table 3.3.1: Composition of mussel cooking juice (MCJ) 

and intervalvar water of mussel (IWM) 

 MCJ IMW 

Carbohydrate (g/l) 
9,19 2,7 

Nitrogen (g/l) 
1.70 1.85 

Biocides 

Benzalkonium chloride was purchased from Fragon Iberica S.A.U. Terrassa (Barcelona). 

Pure nisin was obtained from Applin and Barrett (Terrassa, Spain). Peracetic acid (40% in 

acetic acid/water) was obtained from Fluka (S.L. purum from disinfection). Before each 

assay, real peracetic acid concentrations were checked by using a colorimetric test 

(Merkoquant Peressigsäure-test Merck). 

Food processing surfaces 

Stainless steel (AISI-304, 2B finish, 0.8 mm thickness) and polypropylene sheets 

(compact 00226) were cut into coupons (20 mm x 20 mm). Prior to being used, PP coupons 

were cleaned with alcohol and left overnight in distilled water. New and reused SS coupons 

were soaked in 2M NaOH to remove any grease or food soils left and then rinsed several 

times with distilled water. Coupons were dried before use in a laminar flow cabinet. 

Inocula preparation 

Inoculum was prepared by adjusting the activated culture to an absorbance 0.1 at 700 nm, 

which correspond to a cell density of 108 CFU/ml according with previous calibration. Once 

centrifuged at 6000 rpm, 25 ºC during 10 min, collected cells were resuspended in the same 

volume of TSB (planctonic system) or in food soils media (MCJ, IWM) for the sessile 

system. As the biofilms were washed up (see below) before the application of the biocides, it 

was considered more adequate for comparison to use TSB instead of residual media in the 

experiments with planctonic cells. This cell suspension was directly used as inoculum in 
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experiments with sessile cells. In planctonic cells, cell suspension was diluted (1:10) to 

achieve approximately the same number of initial cells (Table 3.3.2) in both systems, 

according with previous experiments. 

Table 3.3.2: Average of total planctonic and matured biofilms cells number (CFU) of L. monocytogenes exposed to 

disinfectans for each experiment. 

 
911-PP-IWM 4032-SS-MCJ 4032-PP-MCJ 5873-PP-MCJ 5873A-PP-MCJ 

PLANT 2,95E+07 4,28E+07 4,28E+07 3,72E+07 1,78E+07 

BM.4D 1,11E+07 3,20E+08 2,78E+07 1,30E+07 1,39E+07 

BM.11D 1,74E+07  2,14E+07 1,68E+08 2,49E+07 3,83E+07 

BM 4D: Mature biofilms obtained after 4 days of incubation at 25º C 
BM 11D: Mature biofilms obtained after 11 days of incubation at 25 ºC 
PP: polypropylene. SS: stainless steel 
MCJ: mussel cooking juice. IWM: intervalvar mussel water. 
PLANT: Planctonic cells 

 

Experimental systems 

 Planctonic system: 0.5 ml of inoculum was added in each tube and immediately 

used in the dose-response assays. 

 Sessile system: cleaned coupons were placed into mini glass Petri plates for the 

assessment of biofilm formation. Polypropylene (PP) coupons were fixed by 

photo stickers to the Petri plates. Then, stainless steel and polypropylene (PP) 

coupons were packed 5 by 5 with foil and autoclaving for 20 min at 121 ºC. Once 

autoclaved 9 ml of inoculum was added in Petri plates and incubated at 25 ºC for 

biofilm formation. After 4 and 11 days, two replicate coupons were taken out of 

the incubator at each sampling time and rinsed with 10 ml of PBS for 10 s to 

release non-adhered cells and used for antimicrobial assays and microscopic 

analyses. Each experiment was repeated three times. 

According with previous studies in which different strains, media, surface material and 

surface conditioning were compared (Saá et al., 2009), the following experimental cases 

were selected for this study. They pretend to be representative of different scenarios that 

could occur when L. monocytogenes adheres in plants processing mussel giving rise to 

biofilms with different thickness: 
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 CECT 911 on polypropylene and intervalvar mussel water (PP-IMW). That 

corresponded with the conditions that gave rise to the highest level of adherence. 

 Strain 4032 in polypropylene and stainless steel using MCJ as medium. This 

strain showed the highest adhesion ability in both materials. 

 Strain 5873 in polypropylene in MCJ. It showed the lowest level of adherence out 

from 16 experimental cases assayed. In this work we use this scenario to compare 

the biofilms formed by this strain (5873 wild type) and the physiologically-BAC-

adapted (5873A).  

Dose-response assays 

In the planctonic system: 0.5ml aliquots of the biocides (benzalkonium chloride, peracetic 

acid and nisin) at various doses were added to 0.5 ml of the culture.   

In the case of sessile cells: after 4 and 11 days of incubation, coupons were drained and 

washed as previously described before the biocide dosification. 0.5ml aliquots of the 

biocides were added to the formed biofilms at various doses covering the total coupon 

surface. Doses were as follows:  

 Benzalkonium chloride (mg/l):  2.5, 5,10, 17, 25, 50, 100, 250, 500, 1000 

 Peracetic acid (mg/l): 1, 2.5, 5, 10, 17, 25, 50, 100, 250, 500 

 Nisin (UI/ml): 5, 10, 15, 20, 50, 75, 100, 125, 150, 165, 185, 200, 400, 1500. 

Several blanks with distilled water instead of antimicrobial were included in each 

experimental series. All experiments were carried out at 25 ºC. 

After dosage and a time of exposition of 10 minutes, the biocides had to be neutralised. 

BAC and peracetic acid were neutralized by adding to a ratio 9:1 (v/v), a solution 

comprising 10 ml of a buffer containing 34 g/l KH2PO4 adjusted to pH 7.2 with NaOH, 3 g/l 

soybean lecithin, 30 ml/l Tween 80, 5 g/l Na2S2O3 and 1 g/l L-histidine. This solution was 

applied during 1 min at room temperature, which was considered sufficient according with 

preliminary experiments. Nisin was neutralized by culturing surviving cells in Nutrient Agar 

previously adjusted to pH=9. The lack of effect of this pH on the growth of all the strains of 

L. monocytogenes was checked in preliminary experiments.  
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After neutralization, in the sessile system, adhered cells were collected by thoroughly 

rubbing with two moistened swabs and resuspended by vigorously vortexing swabs for 50 s 

in 9 ml of peptone water according to Herrera et al., 2007. Then adhered cells were 

determined by plating appropriate serial dilutions of this suspension on Triptone Soy Agar 

and subsequent incubation at 37 ºC for 24 h. Peptone water (Cultimed, S.A.) was always 

used as dilution medium. 

 

Percentage mortality was calculated according to equation [3.3.1]: 

M (%) =100* 





 

NTVC

NVCNTVC
, where:                      [3.3.1] 

 M: Percentage of death (%) 

 NTVC: number of total viable cells (CFU/ml) in the planctonic system or total 

adhered cells (CFU/mm2) in the sessile system. 

 NVC: number of surviving planctonic or adhered cells after treatment with the 

corresponding doses of biocides (in CFU/ml or CFU/mm2). 

Determination of the resistance: calculation of Lethal Dose 90 (LD90 ) 

LD90 values were used as a direct measurement of the biofilm resistance to the biocides. 

Values for this parameter were obtained by adjusting experimental data of mortality 

obtained in the dose-response assays to the following modified logistic equation obtained 

according with previous works (Cabo et al., 1999; Cabo et al., 2009): 

M (%) = 










  111.0

1

11.01

1
90)90( rLDDLDr ee

k               [3.3.2] 

 

 LD90: Dose that kills 90% of initial population  

 k: Maximum inhibition value 

 r: Specific inhibition coefficient (dimensions: inverse of the dose)  

 D: Dose 
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Microscopic analyses 

Sessile cells were fixed in 2% glutaraldehyde with 0.1 M cacodylate buffer (pH 7.4) for 

at least 2 h at 4º C. The fixing solution was washed out with PBS, and samples were 

dehydrated with a series of increasing concentrations of ethanol: 30, 50, 70, 80 and 95% for 

30 min each, and pure ethanol for 1 h. Ethanol was progressively replaced with 

amyloacetate and then samples were subjected to critical point drying with CO2 (73 atm; 

31.3º C). Afterwards, samples were coated with gold (10-20 nm), and later observed by 

using a Philips XL30 Scanning Electronic Microscope. 

Statistical analysis 

The fits of the models to the experimental data were performed according to a least-

squares method (quasi-Newton). Significant differences between the obtained LD90 values 

were identified by a one-way analysis of variance (Anova). 

 

3.3.3. Results 

Resistance to benzalkonium chloride (BAC) of planctonic cells and mature L. 

monocytogenes biofilms  

Values of the parameters (r and k) obtained after the mortality values were adjusted to 

equation [3.3.2] are shown in Table 3.3.3.  

We compared the LD90 values obtained for planctonic cells and maturebiofilms (4 and 11 

days old) formed by different strains of L.monocytogenes (911-PP-IWM, 4032-SS-MCJ and 

5873-PP-MCJ) after the exposition to BAC (Figure 3.3.1). To study whether the 

physiological adaptation of L. monocytogenes to BAC results in the formation of more-

resistant mature biofilms, the strain CECT 5873A was included in this and subsequent 

studies. 

LD90 obtained for the planctonic cells in TSB (Table 3.3.2) were significantly (p < 0.05) 

higher for the CECT 4032 strain, which was the most resistant to the disinfectants tested, 

followed by the wild 5873 and 911 strains. 
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Table 3.3.3:Values of the parameters (k and r) obtained after fitting of experimental data to eq [3.3.2]: 

 911-PP-IWM 4032-SS-MCJ 4032-PP-MCJ 5873-PP-MCJ 5873A-PP-MCJ 

 BM. 4D BM.11D BM. 4D BM.11D BM. 4D BM.11D BM. 4D BM.11D BM. 4D BM.11D 

KBAC 97.363 95.506 99.65 99.450 99.060 93.188 99.477 99.097 99.748 91.275 

rBAC 0.308 0.1746 0.053 0.033 0.235 0.007 0.256 0.231 0.138 0.404 

Knisin 99.595 99.056 86.413 91.913 84.872 87.189 69.412 83.274 76.843 89.048 

rnisin 0.013 0.007 0.215 0.006 0.255 0.023 0.028 0.327 0.0730 0.029 

KPA 99.342 99.810 99.704 99.736 99.998 97.457 98.976 98.560 94.353 99.883 

rPA 0.330 0.419 0.169 0.069 0.480 0.097 0.439 0.263 2.816 2.255 
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Figure 3.3.1: Values of LD90 (mg/l) obtained after the exposure of planctonic cells 

and mature biofilms of L. monocytogenes to benzalkonium chloride (BAC). 

 

A significant increase (p<0.05) in LD values (i.e. resistance) between planctonic cells and 

biofilms was observed. However, whereas no significant difference was observed between 

the resistance to BAC of biofilms formed by 5873 on polypropylene (PP) after 4 and 11 

days, the resistance of biofilms formed by the strains 911 and 4032 increased significantly 

(p<0.05) as they matured, and was quantitatively higher in the case of 4032 on both stainless 

steel and polypropylene. On stainless steel (4032-SS-MCJ), the resistance (LD90 values) in 
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biofilms incubated for 4 and 11 days was multiplied by factors of 3.7 and 6 respectively with 

respect to the planctonic system. On polypropylene (4032-PP-MCJ), the resistance increased 

by a factor of 36 after 11 days with respect to the planctonic system.  

Resistance to nisin of planctonic cells and mature L. monocytogenes biofilms 

The results obtained for planctonic cells showed that strain 911 were the most sensitive to 

nisin, followed by the strain 5873 adapted to BAC. Statistically similar results were obtained 

for the other two strains (p < 0.05).  

As for BAC, a significant increase (p<0.05) in resistance to nisin was found at both 4 and 

11 days of biofilm maturation for the planctonic cells in all the assayed scenarios (Figure 

3.3.2). No significant differences in LD90 values obtained for the biofilms formed in the 

different scenarios after 4 days were observed. However, after 11 days of incubation, 

biofilms formed by strain 4032 on stainless steel were significantly more resistant than those 

formed by the same strain on polypropylene and by those formed by strain 911.  
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Figure 3.3.2: Values of LD90 (mg/l) obtained after the exposition of planctonic 

cells and matured biofilms of L. monocytogenes to nisin. 

Biofilms formed by the strain 5873 were the most sensitive and did not show significant 

differences during biofilm maturation. However, a significant increase in resistance (p < 

0.05) in the BAC-adapted strain with respect to biofilms formed by the non-adapted strain 

was observed after 11 days of incubation. 

Beside LD90, k and r parameter values obtained from the model (Table 3.3.3) could also 

be helpful for comparative purposes. In the particular case of nisin, two important 
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observations can be made: 1) the lower maximum inhibition values (parameter k) respecting 

to those obtained for the other antimicrobial agents, and 2) the very low specific growth rate 

(parameter r), especially in the scenario 4032-SS.  

Resistance to peracetic acid of planctonic cells and mature L. monocytogenes biofilms  

Surprisingly, in the case of peracetic acid, the LD90 values were significantly higher for 

planctonic cells than for mature biofilms at both 4 and 11 days of incubation (Figure 3.3.3).  
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Figure 3.3.3: Values of LD90 (mg/l) obtained after the exposition of planctonic 

cells and matured biofilms of L. monocytogenes to peracetic acid (PA). 

 

No significant differences in PA sensitivity were observed between any of the three 

strains in their planctonic state (p > 0.05).  

During biofilm formation, a significant increase in resistance (p < 0.05) between 4 and 11 

days of maturation was only observed for strain 4032. However, in the case of peracetic acid 

this increase was independent of the host material used. Finally, a lower LD90 value was 

obtained for mature 4 and 11 day old biofilms of the BAC-adapted strain 5873 with respect 

to the corresponding wild strain  

Microscopic analysis of L. monocytogenes biofilms formed under the different 

scenarios studied 

The images obtained in all assayed scenarios after 4 and 11 days of maturation are 

showed in Figure 3.3.4. Three levels of biofilm thickness could be observed in the three 

different L. monocytogenes strains: 
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Figure 3.3.4: Scanning electronic microscopy (SEM) images of strains CECT 

4032 (4b) in SS (A) and PP (B), CECT 911 (1/2 c) in PP (C)and CECT 5873 (D) 

and 5873A in PP (E) after 4 (right side) and 11 days (left side) . 
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 Strain CECT 4032 (SS and PP) has the most complex structure, with a cloud-type 

cell distribution that makes contact between the cells and the biocide more 

difficult.  

 Strain CECT 911 shows a structure of intermediate complexity. The cells form a 

monolayer at 4 days and some isolated microcolony-type formations are visible 

after 11 days.  

 Strain CECT 5873, both the wild type and BAC-adapted (5873A), forms the 

simplest structure, namely a monolayer, and shows the least resistance to the 

biocides tested.  

Study of the relationship between the adherence kinetics of L. monocytogenes and 

mature biofilm formation 

The adherence kinetics of the different L. monocytogenes strains in all assayed scenarios 

are represented in Figure 3.3.5. Results showed that the strain 4032, which forms the 

thickest biofilms according to the microscopic images, has a slightly (but not significant) 

higher maximum level of adherence than the other two strains, with no significant 

differences between polypropylene and stainless steel. No significant differences were found 

between the maximum number of adhered Listeria cells in the rest of the scenarios.  
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Figure 3.3.5: Adherence kinetics of Listeria monocytogenes in different 

experimental cases.  

A.: CECT 911 on polypropylene (E) in the presence of intervalvar water (IWM).  

B.:CECT 4032 on stainles steel (V) in the presence of cooked mussel water 

(MCW) and on polypropylene (B) in MCW. 

C.: CECT 5873 (C) and CECT 5873A (BAC-adapted) (H) on polypropylene in 

MCW. 
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3.3.4. Discussion 

The mature biofilms formed by the three strains of L. monocytogenes in different 

scenarios were compared by studying the increase in resistance to three biocides 

(benzalkonium chloride, peracetic acid and nisin) with SEM analysis of their 

microstructures after incubation for 4 and 11 days at 25 °C. 

The results showed a clear relation between the structure of the biofilms formed and the 

acquisition of resistance to BAC and nisin from the planctonic state, with strain 4032 

(serotype 4b) developing the thickest (“cloud shape”) and most biocide-resistant structure, 

presumably as a result of reduced access to the bacterial cells. In contrast, the increase in 

resistance does not appear to be correlated with the adherence levels during biofilm 

formation or with each strain’s sensitivity in the planctonic state to the biocides tested. 

Concerning the first, when comparing obtained results with the adherence levels previously 

obtained during the initial stages of biofilm development (72 hours) (Chae et al., 2006; Saá 

et al., 2009), it can be seen that the highest adherence levels were obtained by strain CECT 

911 after 40 hours of incubation, whereas the initial adherence of strain CECT 4032 to 

stainless steel was surprisingly low. On the contrary, the material has a specific effect on the 

biofilm formed for BAC with higher resistance of biofilms formed on stainless steel, 

although the opposite effect (higher resistance of biofilms formed on polypropylene) was 

obtained for nisin.  

Furthermore, this structure-resistance relation supports the theory that the increased 

resistance associated with the formation of biofilms is due more to the population structure 

in the sessile state than to the associated metabolic and physiological changes (including 

quorum sensing) that occur at cellular level (Folsom et al., 2006; Kalmokoff et al., 2001). 

Indeed, this hypothesis could explain the results reported by other groups (Kastbjerg and 

Gram, 2009; Stopforth et al., 2002), who found no significant differences in disinfectant 

sensitivity between the planctonic and sessile stages of L. monocytogenes, as is the case with 

strain 5873 and BAC here.  

Biofilm maturation does not, however, have the same effect on the action of peracetic 

acid, with the lethal doses obtained being higher for planctonic cells in the presence of 

organic matter (present in TSB). This is likely due to interference by the organic material 

found in TSB, which reduces the effective concentration of this compound due to its high 
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reactivity and non-specificity. Indeed, it was found that using PBS as the culture medium led 

to LD values similar to those obtained for biofilms at 4 days (data not shown).  

These counterproductive effects of the organic matter highlight the importance of 

effective cleaning protocols prior to disinfection to optimize the action of disinfectants, as 

has been previously reported in other experimental systems (Briñez et al., 2006; Fatemi and 

Frank, 1999; Gram et al., 2007; González-Fandos et al., 2005). 

Moreover, the results obtained suggest that PA is more effective against biofilms than 

BAC and nisin, as reported previously (Fatemi and Frank, 1999; Stopforth et al., 2002). In 

fact, no significant increase in resistance (LD90 values) was observed in the 911 and 5873 

scenarios during biofilm maturation, and the increase in resistance during biofilm formation 

of strain 4032 was not significantly different on either of the materials. This could be due to 

the physicochemical properties of PA: 1) its high reactivity and oxidizing ability, together 

with its higher decomposition rate, facilitate its entry into the biofilm matrix and greatly 

reduce its effective concentration in systems containing large amounts of organic matter 

(such as that containing planctonic cells); and 2) its small size, which also greatly increases 

its ability to penetrate the biofilm network. In fact, previous studies performed with ozone (a 

molecule that also has high reactivity and a small size) in our laboratory showed that it is 

more effective on Staphylococcus aureus biofilms than on planctonic cells (Cabo et al., 

2009). In contrast, the structure of the biofilm presents a significant physical barrier to the 

entry of BAC and nisin, thereby reducing their ability to diffuse into the matrix and reach 

the cells, although with some differences. Indeed, the results obtained highlight two reasons 

why nisin is less effective than BAC for disinfecting surfaces potentially contaminated with 

L. monocytogenes: 1) it acts at a slower rate, as shown by the lower r values (Table 3.3.3) 

and has lower efficacy which indicates that nisin has less capacity to eliminate the entire 

bacterial population, as shown by the maximum inhibition values (k parameter, Table 

3.3.3), which in most cases are lower than 90%.  

The different mechanisms of action of BAC and nisin (destabilization of the cytoplasmic 

membrane) and PA (it is intracellular and much more non-specific) probably explain why 

mature biofilms formed by the BAC-adapted strain 5873 are more resistant to BAC and 

nisin than the wild strain (particularly after 11 days of incubation) and more sensitive to PA 

at both 4 and 11 days of incubation. Furthermore, these results also highlight why the cross-
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responses to adaptations acquired upon exposure of a strain to sub-lethal concentrations of 

industrial disinfectants should be studied: First, studies would allow risk situations that 

could arise from the use of a particular disinfectant, and which may generate positive cross-

responses (as is the case with BAC and nisin), to be identified. Second, effective treatments, 

which generate a negative cross-response (as is the case with BAC and PA) could be 

developed that could be used if resistance to a disinfectant used in a processing plant is 

detected. Only one similar study (Stopforth et al., 2002), in which the authors found no 

cross-response between the adaptation of L. monocytogenes biofilms to acid and subsequent 

exposure to PA, BAC and sodium hypochlorite, has been reported in the literature. 

Assuming that the increased biocide resistance is related to the ability of the adhered cells 

to form three-dimensional cloud-type (strain 4032-SS-11D) or flat structures (911-4D), or 

microcolonies (5873) consisting of a complicated network of bacterial cells and secreted 

extracellular polysaccharides (EPSs), it becomes clear that an understanding of the 

composition and structure of the extracellular matrix is essential in order to improve the 

efficacy of the disinfection strategies currently used. Despite this, and although several 

studies appear to indicate that the structure of L. monocytogenes biofilms differs from the 

classical fungus-type model (Dubravka et al., 2009; Blaschecket al., 2007) the chemical 

composition of these EPSs and their spatial distribution is unknown. Most of the studies 

reported are focused on the factors that affect the cell’s ability to form biofilms, such as 

variations in the fatty acid composition (Gianotti et al., 2008) or the role of N-acylated 

homoserine lactones (Belval et al., 2006). Such an understanding, and the application of 

treatments prior to disinfection that ensure disintegration of the extracellular matrix, would 

allow current cleaning protocols to be improved, thereby increasing the efficacy of those 

disinfectants that are unable to penetrate the extracellular matrix of biofilms. 

The experimental procedures considered here are also an improvement on those 

frequently used as they use pure active ingredients that avoid multi-resistance responses. 

Moreover, setting out the results in terms of microbial kinetics equations allows the bacterial 

resistance (LD90) to be quantified appropriately and an objective comparison can be made 

between different test cases. The majority of studies reported in the literature use semi-

quantitative methods (MIC) and compare commercial disinfectants with unknown 

compositions or mixtures of different active ingredients, which makes determining a cause-

effect relationship more difficult (Frank et al., 2003; González-Fandos et al., 2005; Jacquet 
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and Reynaud, 1994). Other studies only determine the response of the population on a short 

timescale and with two or three biocide concentrations (Aarnisalo et al., 2000; Thy-Jenq et 

al., 1993).  

In conclusion, we have demonstrated that 1) the acquired resistance to disinfectants 

during maduration of L. monocytogenes biofilms reflects the possible consequences of 

biofilms rather than adherence, 2) the microscopic structure of mature biofilms correlates 

with resistance to disinfectants, and 3) biofilms formed by BAC-resistant L. monocytogenes 

CECT 5873 are more resistant to BAC and nisin but more sensitive to PA. 
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3.4 ADHERENCE KINETICS, RESISTANCE TO BENZALKONIUM 

CHLORIDE AND MICROSCOPIC ANALYSIS OF MIXED BIOFILMS 

FORMED BY LISTERIA MONOCYTOGENES AND PSEUDOMONAS 

PUTIDA. 

 

 

Comparison between the resistance to BAC and the microscopic structure of mixed-species 

biofilms formed by different strains of L. monocytogenes and Pseudomonas putida CECT 845 

under different scenarios and these obtained by the corresponding mono-species L. 

monocytogenes biofilm was carried out. The association of P. putida with L. monocytogenes 

quickens biofilm formation and increases significantly (p<0.05) the BAC-resistance of the 

biofilm after 4 days of incubation at 25 ºC respect to monospecies biofilms. According with 

the adherence profiles of P. putida, two different patterns of association (A and B) were 

observed, being type A pattern much more resistant to BAC. After 11 days of incubation, in 2 

out of 5 experimental cases (4032 and BAC-adapted 5873 on polypropylene) a destructuration 

of mixed biofilms occurred, being accompanied by a sharp decrease in the number of adhered 

cells. Microscopic analyses demonstrated that the most complex three-dimensional structure 

showed the highest resistance to BAC (4032-SS). Results clearly highlight that it is necessary 

to consider natural bacterial association for improving the safety effectiveness of disinfection 

protocols.  
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3.4.1. Introduction 

Listeria monocytogenes is a pathogenic bacterium implicated in numerous foodborne 

outbreaks (Denny et al., 2008; Gilmour et al., 2010). It is widely recognized that one of the 

most frequent contamination routes of L. monocytogenes in foods is through cross 

contamination from surfaces in food processing plants (Ammor et al., 2004; Norwood and 

Gilmour, 1999; Porsby et al., 2008), where it is able to attach and form resistant biofilms 

(Aase et al., 2000; To et al., 2002; Takahashi et al., 2009). This resistance is related to the 

three-dimensional structure of the biofilm, which defines the interactions between the 

bacterial species (Wuertz et al., 2004) and determines the degree to which chemicals can 

access the cells (Bourion and Cerf, 1996, Qu et al., 2010). Moreover, it has been 

demonstrated that biofilm cells are phenotypically different from the corresponding 

planktonic cells (Nadell et al., 2008). 

But the situation is even more complicated, as it is known that more than two species 

coexist in real biofilms and it has been demonstrated that this could increase their resistance 

to biocides (Sharma and Anand, 2002; Kastbjerg and Gram, 2009). Some studies on L. 

monocytogenes have analyzed the attachment of multispecies biofilms involving this 

bacterium, with different results. It has been found that in some cases the association with 

other bacteria increases the number of adhered cells in the mixed biofilm: L. monocytogenes 

with Pseudomonas (Sasahara and Zottola, 1993; Marshall and Smimidt, 1988; Hassan et al., 

2003) or with Flavobacterium (Bremer et al., 2001). However, other studies have found that 

the number of adhered cells in the mixed-biofilm decreased: L. monocytogenes with 

Pseudomonas fragi and Staphylococcus xylosus (Norwood and Gilmour, 2001); with 

Staphyloccocus sciuri (Leriche et al., 2000); and with E. faecium (Minei et al., 2008). Lastly, 

some studies found that the number of adhered cells did not vary due to the presence of other 

species in the biofilm: L. monocytogenes with Staphyloccocus aureus (Rieu et al., 2008), 

except for one strain; and with Salmonella enterica and Ps. putida (Chorianopulos et al., 

2007).  

Although it is recognized that bacteria in nature form complex mixed-species communities, 

the European standard EN 13697 points out that adhered cells should be obtained by 

inoculation of the target microorganism and subsequent drying for testing the bactericidal 

activity of chemical disinfectants. However, following this procedure, the effectiveness of 
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disinfectants will be overestimated. Even though there are few studies on disinfection against 

mixed biofilms (Bourion and Cerf, 1996; Bremer et al., 2002; Chlorianopoulous et al., 2007; 

Fatemi and Frank, 1999; Lebert et al., 2009; Minei et al., 2007), thus, to improve the efficacy 

of disinfection systems commonly used it is necessary to continue studying the repercussions 

of the increased resistance to disinfectants related to the association between L. 

monocytogenes and other bacterial genera that are normally present in the environment, such 

as Pseudomonas species.  

Thus, the main aim of this work was to study the association between L. monocytogenes 

and Pseudomonas putida by comparing the resistance to BAC and the microscopic structure 

of the dual-species biofilm with that of L. monocytogenes mono-species biofilms. 

 

3.4.2. Material and methods 

Bacterial strains  

Listeria monocytogenes, CECT 911, CECT 4032, CECT 5873 and Ps. putida 845 were 

provided by the Spanish Type Culture Collection (Valencia). Strain 5873 was adapted to BAC 

in previous experiments after two exposures of the wild type strain 5873 to sub-lethal 

concentrations of BAC (wild strain LD50: 2.71 mg/l; BAC-adapted strain LD50: 7.22 mg/l, see 

section 3.2). Strains were frozen and stored at -80 ºC in TSB containing 50% glycerol (v/v) 

until use. Whenever required, one cryovial was thawed and subcultured twice in TSB 

(Cultimed, S.L., Spain) at 37 ºC or at 31º C for activation of Listeria monocytogenes and 

Pseudomonas putida, respectively. 

 

Food soils media 

In order to simulate contamination of surfaces in plants processing cooked mussels and 

live mussel, mussel cooking juice (MCJ) and intervalvar water of mussel (IWM) were used as 

culture media (Saá Ibusquiza et al. 2010, see section 3.2). The composition of MCJ and IWM 

is shown in Table 3.3.1. 
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Disinfectant 

Benzalkonium chloride was purchased from Fragon Iberica S.A.U. Terrassa (Barcelona).  

Food processing surfaces 

Stainless steel (SS, AISI-304, 2B finish, 0.8 mm thickness) and polypropylene sheets (PP, 

compact 00226) were cut into coupons (20 mm x 20 mm). PP coupons were cleaned with 

alcohol and left overnight in distilled water. New and reused SS coupons were soaked in 2M 

NaOH to remove any grease or food soils left and then rinsed several times with distilled 

water. Coupons were dried in a laminar flow cabinet.  

Inocula preparation 

Inoculum of each strain (Listeria and Pseudomonas) was prepared by adjusting the 

activated culture to an absorbance 0.1 at 700 nm, centrifuged (6000 rpm, 10 min, 25 ºC) and 

the pellet was re-suspended in the same volume of the corresponding residual media (MCJ or 

IWM). To form mixed-species biofilms, obtained pellets of each strain were resuspended in 

half of the total centrifuged volume, thus achieving the same final concentration of P. putida 

and L. monocytogenes cells, which correspond to a cell density of 108 CFU/ml of each species 

according to previous calibrations.  

Experimental systems 

Cleaned coupons were placed into mini glass Petri plates for the assessment of biofilm 

formation. Polypropylene (PP) coupons were fixed by photo stickers to the Petri plates. Then, 

cleaned stainless steel or polypropylene (PP) coupons were packed 5 by 5 with foil and 

autoclaved for 20 min at 121 ºC. Once autoclaved, 9 ml of cell suspension was added to Petri 

plates and incubated at 25 ºC for biofilm formation. After 4 and 11 days, two replicate 

coupons were taken out of the incubator at each sampling time and rinsed with 10 ml of PBS 

for 30s to release non-adhered cells and used for antimicrobial assays and microscopic 

analyses. Each experiment was repeated three times.  

According with previous studies in which different strains, media, surface material and 

surface conditioning were compared (Saá et al., 2009, Saá Ibusquiza et al., 2010, see sections 

3.1 and 3.2 respectively of this thesis) the following experimental cases were assayed. They 
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pretend to be representative of different scenarios that can occur when L. monocytogenes 

adheres in plants processing mussel giving rise to biofilms with different thicknes:  

 CECT 911 on polypropylene and intervalvar mussel water (PP-IMW). It 

corresponds with the conditions that gave rise to the highest level of adherence. 

 Strain 4032 on polypropylene and stainless steel using MCJ as medium. This strain 

showed the highest adhesion ability on both materials. 

 Strain 5873 on polypropylene in MCJ. It showed the lowest level of adherence out 

of the 16 experimental cases assayed. In this work we use this scenario to compare 

the biofilms formed by this strain (5873 wild type) and the physiologically-BAC-

adapted (5873A). 

Determination of the number of adhered cells 

First of all, coupons were drained and immediately immersed in 10 ml of PBS during 10s 

to release non-adhered cells. The number of adhered cells was determined according to 

Herrera et al. 2007. They were collected by thoroughly rubbing with two moistened swabs 

and resuspended by vigorously vortexing swabs for 50 s in 9 ml of peptone water (Cultimed, 

S.A.) and subsequent plating. The number of adhered cells of P. putida was determined by 

plating the prepared dilutions in Violet red bile agar with glucose (VRBG, Cultimed S.L.) and 

incubation at 37 ºC during 24 hours. Number of adhered cells of L. monocytogenes was 

determined by plating in Palcam Agar (Liofilchem, S.L.R., Italia) and incubation at 37 ºC 

during 48 hours before counting.  

Inactivation assays 

After 4 and 11 days of incubation, coupons were drained and inmediately inmersed in 10 

ml of PBS for 10 s to release non-adhered cells before the addition of biocide.  

After PBS was drained, 0.5 ml aliquots of benzalkonium chloride were added to the 

formed biofilms at various doses (mg/l): 2.5, 5, 10, 17, 25, 50, 100, 250, 500, 1000. 

Several blanks with distilled water instead of BAC were included in each experimental 

series. All experiments were carried out at 25 ºC.  
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After the addition of BAC and a time of exposure of 10 minutes, the effect of BAC was 

neutralized by adding a solution comprising 10 ml of a buffer containing 34 g/l KH2PO4 

adjusted to pH 7.2 with NaOH, 3 g/l soybean lecithin, 30 ml/l Tween 80, 5 g/l Na2S2O3 and 1 

g/l L-histidine , to a ratio 9:1 (v/v). Neutralizing solution was applied during 1 min at room 

temperature according with preliminary experiments. After neutralization, adhered cells of P. 

putida and L. monocytogenes were collected and determined as previously described. 

 

Finally, percentage of mortality was calculated according to equation [3.3.1]: 

M (%) =100* 





 

NTAC

NACNTAC
, where:                      [3.3.1] 

 M: Mortality (%) 

 NTAC: number adhered cells (CFU/mm2) in biofilms without treatment. 

 NAC: number of adhered cells after treatment with the corresponding doses of BAC 

(CFU/mm2). 

Determination of the Lethal Dose 90 (LD90).  

LD90 values were obtained by fitting experimental data of mortality obtained in the dose-

response assays to the following modified logistic equation obtained according with previous 

works (Cabo et al., 1999; Cabo et al., 2009): 

 

M (%) = 










  111.0

1

11.01

1
90)90( rLDDLDr ee

k               [3.3.2] 

 

 LD90: Dose that kills 90% of initial population.  

 k: Maximum BAC inhibition value (asymptote). 

 r: Specific inhibition coefficient (dimensions: inverse of the dose).  

 D: dose. 
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Microscopic analyses 

Cells were fixed in 2% glutaraldehyde with 0.1 M cacodylate buffer (pH 7.4) for at least 2 

h at 4 ºC. The fixing solution was washed out with PBS, and samples were dehydrated with a 

series of increasing concentrations of ethanol: 30, 50, 70, 80 and 95% for 30 min each, and 

pure ethanol for 1 h. Ethanol was progressively replaced with amyloacetate and then samples 

were subjected to critical point drying with CO2 (73 atm; 31.3 ºC). Afterwards, samples were 

coated with gold (10-20 nm), and finally observed by using a Philips XL30 Scanning 

Electronic Microscope. 

Statistical analysis 

Fits of the model to the experimental data were performed according to a least-squares 

method (quasi-Newton). A Student´s test (α=0.05) was used to test the significance of the 

differences between means of the total number of adhered cells and between the lethal doses 

values obtained in each experimental case. 

 

3.4.3. Results 

Comparison between the adherence of L. monocytogenes in monoculture and in the 

presence of Pseudomonas putida CECT 845  

Adherence kinetics of 3 strains of L. monocytogenes (CECT 911, 4032 and 5873) in 

monoculture and co-cultured with P. putida were compared in different scenarios, which were 

selected according to previous studies (Saá et al. 2009; Saá Ibusquiza et al. 2010 see sections 

3.1 and 3.3 respectively of this thesis). 

Slightly, higher adherence levels were reached by L. monocytogenes in a monoculture 

compared with a mixed culture of L. monocytogenes and P. putida at the beginning of 

incubation (compare open and closed symbols in Figure 3.4.1). Whereas adherence of L. 

monocytogenes in monoculture remained constant or even increased (as in 4032) after the 

plateau phase was reached, a sharp decrease in the number of adhered cells was detected for 

strains 4032 and BAC-adapted 5873 on polypropylene in the presence of P. putida. In the 

latter strain, adherence decreased to almost undetectable values after 14 days of incubation. 
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Figure 3.4.1: Adhesion kinetics of different Listeria monocytogenes in monoculture (O) 

and in the presence of Pseudomonas putida 845 (●).  

A.: CECT 911 on polypropylene in the presence of intervalvar water (IWM), 

B.: CECT 4032 on stainless steel in the presence of cooked mussel water (MCW), 

C.: CECT 4032 on polypropylene in MCW, D: CECT 5873 on polypropylene in MCW and  

E.: CECT 5873A (BAC-adapted) on polypropylene in MCW.  

Observed (*) and expected (continuous line) adhesion kinetics of Pseudomonas putida  

in mixed biofilms are also included in these graphs. 

 

Although modelling the experimental results could be helpful for comparing the adherence 

of L. monocytogenes in the different scenarios it was not feasible, because there were no 

experimental points before 4 days of incubation. However, in the case of P. putida, a 

satisfactory fit (r2=0,995) to a two-term additive logistic-type model [3.4.3] that adequately 

describes the increase and decrease of biofilm population (Herrera et al. 2007; Saá et al. 2009, 

see section 3.1) was obtained (Figure 3.4.1, Table 3.4.1).  

 

Table 3.4.1: Values for the parameters obtained after fitting experimental results of adhesion of Ps. putida in 

presence of different L. monocytogenes strains to equation [3.4.3] 

 911-PP-IWM 4032-SS-MCJ 4032-PP-MCJ 5873-PP-MCJ 5873-PP-MCJ 

aad 
30499 1800000 370723 199237 45000 

rad 
5,014 2,974 1,101 3,204 5,014 

mad 
0,700 1,843 0,998 1,881 0,700 

aD 
26244 1497876 268936 184311 26244 

rD 
10,425 5,500 4,173 4,965 8,500 

mD 
1,676 4,500 1,820 51,632 8,000 

PP: polypropylene. SS: stainless steel 
MCJ: mussel cooking juice. IMW: intervalvar water. 
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where, 

 NAC: number of adhered cells, log (CFU/mm2). 

 aad: maximum number of adhered cells (asymptote). 

 rad: specific adhesion coefficient (t-1). 

 mad: time at which the number of adhered cells is half of the maximum. 

 aD: total number of adhered cells which detach or die, log (CFU/mm2). 

 rD: specific detachment/death coefficient (t-1). 

 mD: time at which the number of detached/death cells is half of the maximum. 

Analysis of the adjusted experimental data permitted to distinguish two different adherence 

patterns for P. putida that gave rise to two different patterns of association with L. 

monocytogenes: 

 Type A.: This pattern was observed in the associations between P. putida and 

strains 4032 (in both materials) and the wild type strain 5873 (Fig. 3.4.1.B., C., D. 

respectively) This type has a sharp initial increase in the adherence level that 

permits higher maximum adherence levels (compare the parameters aad and rad 

shown in Table 3.4.2) to be obtained compared to type B association. The increase 

in adherence of P. putida was especially clear with strain 4032 on SS, in which a 2-

log increase in the maximum level with respect to that obtained for the type B 

pattern was observed. 

 Type B: This type has a flatter adherence profile that implies a 1-log decrease in the 

maximum adherence levels of P. putida with respect to those obtained in pattern 

type A. This profile occurs between P. putida and strains 911 and BAC-adapted 

5873 (Fig. 3.4.1.A., E. respectively). Conversely, in these experimental cases a 

slightly higher adherence level of L. monocytogenes was observed. 

As we will see further, both types of association patterns give rise to mature mixed-species 

biofilms (after 4 days) with different levels of resistance to benzalkonium chloride. 
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Comparison between the resistance to BAC of monospecies L. monocytogenes biofilms 

and dual-species biofilms formed from the association between L. monocytogenes and P. 

putida 

The comparison of the LD90 of BAC obtained in all assayed scenarios demonstrated a 

significant variation in the resistance to BAC of the dual-species biofilms after 4 and 11 days 

of incubation with respect to the single-species biofilms. This indicates that the presence of P. 

putida modifies the L. monocytogenes biofilm structure, but in different ways after 4 and 11 

days of incubation: 

After 4 days a significant increase (p<0.05) in the resistance to BAC was observed in the 

dual-species biofilms formed by L. monocytogenes and P. putida in all experimental cases 

(Figure 3.4.2). However, quantitative differences were observed depending on the type of 

association pattern between the strains. Thus, in the biofilm formed by P. putida and L. 

monocytogenes 4032-SS (type A), the LD90 value (i.e. resistance to BAC) increased until a 

factor of around 6; however, in the cases that showed a type B pattern, the resistance was 

multiplied by a maximum factor of 2. Specially significant is the case of L. monocytogenes 

5873 (WT), whose association with P. putida permits the formation of resistant biofilms at 25 

ºC.  

After 11 days of incubation the situation was completely different: a significant reduction 

in BAC resistance was shown in all mixed biofilms formed by L. monocytogenes and P. 

putida. Moreover, a significant decrease in the resistance of mixed-species biofilms compared 

with that obtained for mono-species biofilms was observed in all cases except for 4032-SS 

and 5873 (wt). 

It seems, then, that destabilization of mixed-species biofilms occurred in all experimental 

assays. However, only for 4032 and BAC-adapted 5873 strain on polypropylene this 

destructuration is accompanied by a sharp decrease in the number of adhered cells (Figure 

3.4.1.C. and E. respectively). Furthermore, for 5873, the results obtained demonstrated that 

BAC-adaptation hindered its association capacity with P. putida, giving rise to a mixed-

species biofilm that was significantly (p<0.05) less resistant to BAC and which had a higher 

biofilm destabilization rate than the corresponding wild type. Lastly, in the case of 911-IWM, 

a 1-log decrease in the number of adhered cells between 4 and 11 days of incubation was 

observed (Figure 3.4.1).  
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Figure 3.4.2: Comparison between the LD90 of BAC (mg/l) against monospecies biofilms 

and dual-species biofilms of L. monocytogenes formed from the association with P. 

putida.  

A: CECT 911 on polypropylene in the presence of intervalvar water of mussel (IWM) 

B: CECT 4032 on stainless steel and on polypropylene in the presence of cooked mussel 

water (MCW) and 

C: CECT 5873 in MCW and CECT 5873A (BAC-adapted) on polypropylene in MCW. 

 



150 Mixed biofilms 
 

 

 

Microscopic studies  

Microscopic structures of mixed-species biofilms  

The microscopic structure of 2 out of the 5 experimental cases was compared after 11 days 

of incubation (Figure 3.4.3): 

 L. monocytogenes CECT 4032-SS in association with P. putida, which forms the 

biofilms with the highest resistance after 4 and 11 days of incubation (Fig.3.4.3.B)  

 L. monocytogenes CECT 5873A-PP in association with P. putida, which forms the 

biofilms with the lowest resistance and highest level of destructuration among all 

the experimental cases (Fig. 3.4.3.D). 

 

 

Figure 3.4.3: Scanning electronic microscopy (SEM) images of 11 days-mature 

biofilms formed by the strains CECT 4032 on SS (A) and CECT 5873 adapted to BAC 

(C) in PP in monospecies and associated with P. putida CECT 845 (B and D). 
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The SEM images obtained of the biofilm formed by L. monocytogenes CECT 4032-SS 

showed that it had a similar spatial cell arrangement in both the absence (Figure 3.4.3.A) and 

in the presence (Figure 3.4.3.B) (Saá Ibusquiza et al., 2010, see section 3.3) of P. putida. In 

fact, a cloud-type structure can be observed in both cases.  

As a consequence, the LD90 values were similar (155.64 mg/l of BAC in the monospecies 

biofilms and 166.51 mg/l of BAC in the mixed-species biofilm). However, a monolayer-

biofilm without a three-dimensional cell arrangement was formed by the BAC-adapted 5873 

strain both alone (Fig. 3.4.3.C) and associated with P. putida (Figure 3.4.3D), and low values 

of LD90 were obtained (32.77 and 20.69 mg/l) in monospecies and mixed-species biofilms 

respectively). By the way, cells with a rough plasmatic membrane were observed in the mixed 

biofilms formed by BAC-adapted cells of L. monocytogenes CECT 5873.  

 

 

Figure3.4.4: Scanning electronic microscopy (SEM) images of 11 days-mature mixed 

species biofilms formed by CECT 4032 on SS (A) and in PP (B) with P. putida. 

 

FFiigg..AA  
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On the other hand, Figure 3.4.4 showed a clear effect of material on the association 

between P. putida and L. monocytogenes CECT 4032, being the destructuration of the mixed 

biofilm after 11 days of maturation significantly higher in PP (Figure 3.4.4B) than on 

stainless steel (Figure 3.4.4A) 

Microscopic analysis of the biofilm after disinfection 

A picture of the mixed 11-day matured biofilm formed by strain 4032 was taken after it 

was exposed to 100 mg/l of BAC for 10 minutes (Figure 3.4.5). Curiously, whereas a low 

number of L. monocytogenes cells were observed after the treatment, exopolysaccharide 

matrix remained attached to the stainless steel 

 

 

Figure 3.4.5: Scanning electronic microscopy (SEM) images of residues left after 

treatment of biofilms formed by the strain CECT 4032 and P. putida on SS with 100 

mg/l of BAC. 

 

3.4.4. Discussion 

The results obtained demonstrate that the presence of Pseudomonas putida in L. 

monocytogenes biofilms significantly increases their resistance to BAC with respect to the 

resistance of monospecies L. monocytogenes biofilms after 4 days of incubation.  
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These results are in agreement with those obtained by previous authors, who found a 

smaller log decrease for mixed L. monocytogenes biofilms exposed to disinfectants compared 

to the corresponding monospecies biofilm (Ammor et al., 2004).  

The presence of Pseudomonas putida quickens the biofilm maturation process compared to 

the corresponding monospecies L. monocytogenes biofilm. A possible explanation for this 

could be that the exopolysaccharide matrix secreted by Pseudomonas could facilitate the 

adhesion of L. monocytogenes, as has been previously stated by other authors (Nadell et al., 

2009). However, lower adherence levels of L. monocytogenes in the mixed biofilm were 

observed in this study, which could be due to competitive effects (specific or non-specific, 

Jameson effects) between the two strains during biofilm formation (Mellefont et al., 2008). 

This has been previously demonstrated in other bacterial species (Chorianopoulos et al., 

2007). 

Nonetheless, although after 4 days of incubation a significant increase in the resistance to 

BAC is observed when P. putida is present in the biofilm, in those cases in which an initial 

sharp increase in the adherence of P. putida was observed (type A), 4032-SS-PP and 5873-

PP, the increase in resistance was quantitatively higher than in the other two cases. It seems 

that when experimental conditions imply that P. putida has a higher affinity for the surface 

compared to L. monocytogenes, a favourable association between the two species occurs, at 

least with respect to resistance to BAC. Specially in the case of the wild type 5873 strain, in 

which the resistance to BAC increased from 20.51 mg/l to 130 mg/l in the absence and 

presence of P. putida respectively. However, the modifications derived from BAC adaptation 

in the same strain gave rise to a mixed biofilm with P. putida that is considerably less 

resistant and has a higher detachment rate.  

After 11 days of incubation, a significant decrease in the resistance to BAC with respect to 

that obtained after 4 days was observed. This was probably related to the destructuration of 

the mixed-species biofilm observed in all experimental cases. However, only in 2 (4032-PP 

and 5873A) out of the 5 experimental cases assayed was this destructuration accompanied by 

a drastic decrease in the number of adhered cells. In the case of 4032-PP, the decrease in the 

adhered L. monocytogenes cells is already observed from day 4 of incubation (Figure 3.4.1). 

This contrasts with its good capacity to form biofilms and its BAC resistance value. This 
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could be explained by the detachment of the cells in clusters and the high resistance of the 

remaining adhered cells (Stoodley et al., 2001). 

Although detachment of cells from monospecies biofilm has been previously described by 

several authors (S.aureus: Herrera et al., 2007, P. aeruginosa: Boles et al., 2005, B. cereus: 

Wijman et al., 2007), the reasons are still unclear. Some authors related it to nutritional 

(Marshall, 1988) and gas transference restrictions (Applegate and Bryers, 1991). This does 

not agree with our results, in which the low level of destructuration observed in 4032-SS and 

5873-PP contrast with the high biomass concentration and the consequent nutritional and 

respiratory restrictions. Others authors believed that EPSs can be used as nutrients by the 

cells, making it easier for starving cells to detach from the biofilm (Takhistov and George, 

2004). However, it could also be the result of competitive interactions between L. 

monocytogenes and P. putida during biofilm formation (Simões et al., 2007). Also, Rodríguez 

et al., 2007 believe that after drying, Listeria biofilms weakens adhesion forces and it causes 

cell dettachment. In fact, in our experiments with mixed L. monocytogenes-P.putida biofilms, 

progressive water lost of the media that initially covered the coupons was also observed. 

Additionally, different detachment regulating systems have been demonstrated in various 

bacterial species that could specifically disrupt the external matrix (EPS) of the biofilms 

(Sauer et al., 2004; Liu et al., 2007; Boles et al., 2005).  

In the other three cases, the decrease in BAC resistance (which probably reflects biofilm 

destructuration) was not accompanied by a drastic decrease in the number of adhered cells, 

which was only slight during the incubation time. One possible explanation for this could be 

that even a low detachment level during biofilm formation is enough to increase the 

accessibility of BAC to L. monocytogenes cells, but insufficient to be reflected in a decrease 

in the total number of adherent cells.  

Another interesting observation is that LD90 values of BAC obtained for dual-species 

biofilms were close to those obtained for P. putida biofilms in the association type A. This 

suggests that when two or more strains are integrated in a single biofilm, the effectiveness of 

the disinfectant seems to depend mainly on the cell arrangement in the final structure, being 

less relevant the particular sensitivity of the individual species involved.  

 The microscopic analysis demonstrated the risk associated to the formation of a three-

dimensional structure by adhered pathogenic bacteria. The best example is that biofilms 



Mixed biofilms 
 

155 

 

 

formed by the strain 4032 on SS, which showed similar cell arrangement (Figure 3.4.3A and 

3.4.3B) and similar values of BAC resistance, 155.64 mg/l and 166.51 mg/l, in monospecies 

and mixed-species biofilm, respectively (Figure 3.4.2). 

Additionally, results clearly demonstrated an effect of the surface on biofilm formation of 

L. monocytogenes CECT 4032. If we compare the LDs (Figure 3.4.2) and the microscopic 

structure of strain 4032 cells attached in the presence of P. putida on SS and PP (Figures 

3.4.4A and 3.4.4B), it can be observed that “cloud” shaped structures formed by the mixed 

biofilm on stainless steel (LD90 =166.51 mg/l of BAC) appeared as microcolonies in the case 

of polypropylene (LD90= 49.97 mg/l of BAC), which demonstrates that the two strains have a 

high affinity for stainless steel. In fact, P. putida reached a 1-log higher maximum adherence 

level on stainless steel than on a polypropylene surface (aAD in SS: 1800000; aAD in PP: 

370323). Lastly for this strain, the microscopic analysis of the biofilm after disinfection 

showed that the exopolysaccharide matrix remained attached to the stainless steel whereas the 

number of remaining cells were low. This matrix could function as a trap for new colonizing 

cells that would recontaminate the surface and form another mature biofilm (Pan et al. 2006). 

Furthemore, rough plasmatic membrane observed in the mixed biofilms formed by BAC-

adapted cells of L. monocytogenes CECT 5873 (See Figure 4.4.3D) could be due to the 

inactive cell metabolism as a consequence of nutrient starvation, membrane modifications 

associated with BAC-adaptation or both of these.  

Although when the LD90 values of monospecies and mixed-species biofilms are compared 

it seems to be clear that each strain has an inherent capacity to form biofilms, the results 

obtained demonstrate that the association with P. putida is relevant. Similar conclusions were 

found by Simões et al., 2009 and Davies et al., 2003 that observed the importance of the 

biofilm architecture for metabolic cooperation where antimicrobial-resistant phenotypes are 

formed. Moreover Simões et al., 2009 stated that biofilm species association promotes 

community stability and functional resilience even after chemical and mechanical treatment.  

Two facts show this clearly: 

 The wild type 5873 in the presence of Ps. Putida forms a biofilm with a higher 

BAC resistance than when the biofilm is formed by a monoculture. 

 The differences between the biofilms formed by 4032 on polypropylene and on 

stainless steel are related to the higher adherence capacity of P. putida on the latter 
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surface, on which the maximum adherence levels increased more than 1-log. As a 

consequence, biofilms with higher BAC-resistance were formed on SS, after 4 and 

11 days of incubation. However, another explanation for these differences could be 

related to a decrease in the metabolic activity derived from the formation of a more 

dense and complex biofilm on SS (Rodrigues et al. 2009), which implies more 

stability and probably a delay in the beginning of the destructuration phase. 

Moreover, the presence of intercellular connections and the proximity between 

cells of different species in the biofilm could facilitate the transfer of genetic 

material, including genes associated with resistance to external stimuli (Ammor et 

al., 2004, Wuertz et al., 2004, Nadell et al., 2009). 

Finally, the following conclusions and perspectives can be drawn: 

i. The presence of P. putida increases the resistance to BAC of the biofilms formed 

by L. monocytogenes, giving rise to situations of higher microbiological risk. This 

highlights the need to consider microbial communities and not individual genera in 

food safety studies. 

ii. Biofilm formation between P. putida and L. monocytogenes depends on the 

bacterial strains involved, their interactions and the interactions between them and 

the environmental conditions.  

iii. The resistance of mixed-species biofilms of L. monocytogenes and P. putida to 

BAC seems to be related to their microscopic structure and to the association 

between the involved strains. 

iv. This structure did not correlate with the number of adhered cells, which implies that 

indirect variables, such as the resistance to disinfectants, should be considered for 

biofilm evaluation. 

v. The application of doses of industrial disinfectants, such as a benzalkonium 

chloride that kill practically 100% of cells in the mixed P. putida-L. monocytogenes 

biofilm does not ensure the absence of organic residues (probably from the external 

EPS matrix). Therefore, new disinfection methods or improvements of the current 

disinfection strategies should be developed to ensure that there are not biofilm 

residues left which could act as a trap for new cells that could recolonize the 

surface. 
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3.5. COMPARISON BETWEEN THE RESISTANCE OF 

BENZALKONIUM CHLORIDE-ADAPTED AND NON-ADAPTED 

BIOFILMS OF LISTERIA MONOCYTOGENES TO MODIFIED 

ATMOSPHERE PACKAGING (MAP) AND NISIN ONCE 

TRANSFERRED TO MUSSELS. 

 

 

Benzalkonium chloride (BAC) adapted and non-adapted CECT 5873 L. monocytogenes 

biofilm cells were transferred by contact to cooked or live mussels and packed under CO2 and 

O2 rich atmospheres, respectively. Viability of transferred cells during storage of these packed 

samples at 2.5 ºC was compared. In addition, in cooked mussels the combined effect of CO2 

and nisin against the survival of L. monocytogenes was also studied by using a first order 

factorial design. Obtained results demonstrated that biofilms formed by BAC-adapted L. 

monocytogenes cells could be more resistant to the application of modified atmospheres rich 

in CO2 and nisin once they have been transferred to cooked mussels by contact (simulating 

cross-contamination). This implies an increase in the risk associated with the presence of 

these cells in food processing plants. Significant empirical equations obtained after 7, 11 and 

20 days showed an inhibitory effect of CO2 and nisin against L. monocytogenes. However, a 

significant positive interaction between both variables highlights an incompatibility between 

CO2 and nisin at high concentrations. Results also demonstrated that L. monocytogenes could 

persist after cross-contamination during the processing of live mussels, so L. monocytogenes 

is of concern as a contaminant in live mussels packaged in high O2 atmospheres.  
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3.5.1. Introduction 

The aim to maintain a high level of mussel (Mytilus galloprovinciales) commercialization 

in Galicia and the increase in international competitiveness have led to the development of 

alternatives of preservation that allow long distance markets to be reached such as modified 

atmosphere packaging (MAP). It has been applied extensively to fish products (Cabo et al., 

2003; Sivertsvik et al., 2002; Ohlsson and Bengtsson, 2002; Skara et al., 2003). MAP is used 

for preservation of mussels with two objectives: 1) to increase the shelf life of cooked mussels 

in a CO2-rich atmospheres; and 2) to increase the viability of live mussels in an O2-rich 

atmosphere (Pastoriza et al., 2004).  

According to Rutherford et al. (2007), Listeria monocytogenes is often found in processing 

environments as a post-processing contaminant. It is transferred to food through contact at 

food processing plants, where L. monocytogenes forms biofilms (Porsby et al., 2008, 

Rodríguez and McLandsborough 2007). Also it has been previously shown that persistent 

Listeria monocytogenes cells are resistant to Quaternary Ammonium compounds, such as 

benzalconium chloride (BAC) (Aase et al., 2000; Mullapudi et al., 2008), probably due to 

inadequate disinfection protocols that lead to residual sublethal concentrations of disinfectants 

(Langsrud et al., 2003).  

It is possible for L. monocytogenes to grow in modified atmosphere packed mussels. In 

fact, thermal soft treatments (like those applied in boiled mussels) may not eliminate this 

bacterium (Doyle et al., 2001, Huang, 2004), it can resist high CO2 atmospheres (Fang and 

Lin 1994; Jenssen and Lammert, 2002; Szabo and Cahill, 1999; Olarte et al., 2002) and the 

aerobic conditions of high O2 atmospheres are not expected to damage L. monocytogenes 

cells. In this context, the application of antimicrobials, such as bacteriocins, with a specific 

effect against these opportunistic bacteria can be useful for ensuring food safety (Cabo et al., 

2001; Cabo et al., 2005; Cabo et al., 2009¸ Cleveland et al., 2001, Delves-Broughton et al., 

1996). 

It is therefore possible that in a mussel processing plant, BAC-adapted biofilms of L. 

monocytogenes can be transferred by contact to the products during processing and it could 

survive refrigerated under MAP during storage. Nonetheless, no previous studies on the 

repercussions of BAC-adaptation of L. monocytogenes to the resistance to MAP were found. 

Therefore, the main objective of this work was to compare the viability of BAC adapted and 
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non-adapted L. monocytogenes biofilm cells in modified atmospheres rich in CO2 and O2 once 

they had been transferred by contact to cooked and live mussels, respectively. In addition, in 

cooked mussels an experimental factorial design allowed us to study the combined effects of 

CO2 and nisin against the survival of L. monocytogenes. 

 

3.5.2. Material and methods 

Bacterial strains and synthetic media 

Listeria monocytogenes CECT 5873 was provided by the Spanish Type Culture Collection 

(Valencia). Strain CECT 5873 adapted to BAC was obtained in previous experiments after 

two exposures of the wild type strain 5873 to sub-lethal concentrations of BAC (wild strain 

LD50: 2.71 mg/l; BAC-adapted strain LD50: 7.22 mg/l, see section 3.2). Strains were frozen 

and stored at -80 ºC in TSB containing 50% glycerol (v/v) until use. Whenever required, one 

cryovial was thawed and this strain was subcultured twice in TSB (Cultimed, S.L., Spain) at 

37 ºC before use. 

 

Method for biofilm formation 

Food processing surfaces 

Stainless steel sheets (AISI-304, 2B finish, 0.8 mm thickness) were cut into coupons (10 

mm x 10 mm). New and reused SS coupons were soaked in 2M NaOH to remove any grease 

or food soils left and then rinsed several times with distilled water. Coupons were dried before 

use in the laminar flow cabinet. 

 

Food soils media 

Mussel cooking juice (MCJ, Carbohydrate 9,19 g/l, Nitrogen 1.70 g/l), used as culture 

media to simulate contamination of surfaces in plants processing cooked mussel, was 

prepared as it was previously described (Saá et al., 2009).  
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Inocula preparation 

Working cultures of BAC-adapted and non-adapted strains of L. monocytogenes CECT 

5873 were adjusted to an absorbance 0.1 at 700 nm, which correspond to a cell density of 108 

CFU/ml according with previous calibration. Adjusted cultures were centrifuged at 6000 rpm 

during 10 min at 25 ºC and collected cells were resuspended in MCJ. This suspension was 

used as inoculum.  

Biofilm formation 

Mini glass Petri plates (5 cm diameter) containing cleaned coupons were packed 5 by 5 

with foil and autoclaved for 20 min at 121 ºC. Once autoclaved, 9 ml of inoculum was added 

per mini Petri plate and incubated at 25 ºC during 7 days for biofilm formation.  

 

Transference assays 

Preparation of mussels 

Fresh mussels from Galicia (Mytilus galloprovincialis) were always acquired in the same 

market. For cooking, fresh mussels were cooked during 1 minute at 100 ºC without adding 

water. After cooking, 10 g weight mussels were selected for the experiments.  

Transference of biofilms from coupons to mussels 

After 7 days of biofilm maturing, coupons were rinsed with 10 ml of PBS for 30 s to 

release non-adhered cells before transferring. Total number of adhered cells in the coupons 

after 7 days were 7,88 log CFU. The surface was rubbing with two moistened swabs which 

were resuspended by vigorously vortexing for 50 s in 9 ml of peptone water according to 

Herrera et al. 2007 and plating on Triptone Soy Agar and incubated at 37 ºC for 24 h. The 

cells of the upper superface were taking account in the counting (7.88 log CFU)the other 

superface was in touch with the glass of the petri plates. Biofilm cells were the transferred as 

follows: 

 to cooked mussel: by contact between the coupon and the meat without additional 

pressure during 120 seconds according with previous kinetic experiments that 
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showed maximum levels of adherence after 100 s. As a consequence, 5.6 log CFU 

per gram of mussel were transferred. 

 to live mussel: by contact between the coupons and the shells during 120 s 

according with previous kinetic studies. As a consequence, 7.2 log CFU of mussel 

were transferred. In this case transference was made always in a previously marked 

zone of the shell (Figure 3.5.1). 

 

 

Figure 3.5.1. The white circle indicates the area of the mussel-shell where the 

transference of the biofilm was carried out. 

 

Application of nisin 

Pure nisin was obtained from DANISCO (A/S Denmark). Different doses of nisin were 

prepared in distilled water and applied to cooked mussel by pipetting uniformly on the meat 

after transference and before packaging.  

 

Packaging 

Cooked and live mussels were placed on polyspan trays and packed into high-density 

polyethylene barrier bags (Cryobac, S.L.). Once ready, gas mixtures (Carburos Metálicos, 

Barcelona, S.L.) set according with the experimental design (see below) were injected into the 

bags, which were heat-sealed with a modified atmosphere packaging machine VP-430-20-A 

(Dordalpack, S.L.). Nitrogen was used as a filler gas. Mussels were stored at 2.5 ºC and 

removed for analysis at each sampling time. 
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Experimental design 

 In cooked mussels: a first order factorial design (Box et al., 1989) with 4 

combinations of variables and 5 replicates in the center of the domain was carried 

out. The independent variables were the proportion of CO2 (C) the gas mixture and 

the concentration of nisin applied on the meat of the mussel (N). Natural and coded 

levels for each variable are showed in Table 3.5.1. 

 In live mussels: the effect of increasing concentrations of O2 (30, 60 and 90%) on 

the survival of L. monocytogenes were assayed. 

 

Table 3.5.1: Natural and codified values used in the 

first order ortogonal design 

 Natural values 

Codified values CO2 (%) Nisin (UI/g) 

1;1 90 210 

1;-1 90 21 

-1;1 20 210 

-1;-1 20 21 

0;0 55 115 

 

Microbiological analyses 

Determination of the Number of Viable Cells of L. monocytogenes (VLM) 

In cooked mussels, determination of VLM was carried out after 7, 11 and 20 days of 

storage. At each day of sampling, 5 mussels were minced with sterilized scissors and 10 g of 

this mixture was homogenized in 90 ml of sterile peptone water (Cultimed, S.A.) in a Lab-

Blender-400 Stomacher. Number of VLM were determined by serially ten-fold diluting it in 

peptone water (Cultimed, S.A.), subsequent spread out in Palcam (Liofilchem, S.L.R., Italia) 

and Triptone Soy Agar (Cultimed, S.A.) and finally incubated at 37 ºC during 48h. TSA was 

used to assure sublethal damaged cells, that may have problems to growth in a selective media 

as PALCAM, were computed. 
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In live mussels, determination of VLM was carried out after 5, 8 and 12 days of storage. 

Adhered cells were collected by thoroughly rubbing with two moistened swabs in the marked 

area and resuspended by vigorously vortexing the swabs for 50 s in 9 ml of peptone water 

according to Herrera et al. 2007. Proper serial ten-fold dilutions were then plated on Triptone 

Soy Agar and Palcam and incubated at 37 ºC for 24 h and 48 h respectively. Peptone water 

was always used as dilution medium. 

Biofilm contaminated mussels were packed in increasing concentrations of O2 and stored 

at 2.5 ºC. The viability of the 5873 BAC adapted and non-adapted biofilm cells to the 

application of modified O2-rich atmospheres was compared after 5, 8 and 12 days of storage. 

Mortality test in mussels packaged in O2-rich atmospheres 

Mortality test were carried out according with previous studies (Pastoriza et al., 2004). 

Briefly, it was carried out after 2, 6, 8, 10, 12, 13, 14 days of storage at 2.5 ºC by tapping on 

gaping bivalve shelves and observing mussel closure. Any shells gaping after tapping were 

considered dead. 

Statistics 

A Student t-test (α=0.05) was used to test the significance of the differences between 

means of the total number of viable cells (log CFU), between the mortality (%) rate in live 

mussels and between the coefficients of the equations obtained in the factorial design. A 

Fisher Test (α=0.05) was used to test the consistence of the models.  

 

3.5.3. Results 

Studies on cooked mussels 

Effects of CO2 and nisin on the viability of BAC-adapted and non-adapted biofilms cells 

once transferred to cooked mussels. 

A first order factorial design (Box et al., 1988) was used to compare the sensitivity of 

biofilms cells of 5873 BAC adapted and non-adapted strains to the combined application of 

CO2 and nisin during storage at 2.5 ºC. Both CO2 percentage and nisin concentration used 
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during the expositions were set following the factorial design (Table 3.5.1). Viable cells of L. 

monocytogenes (VLM, in log CFU/g) in cooked mussels after 7, 11 and 20 days of storage 

could be predicted satisfactory according to the following empirical equations [3.5.1-3.5.6]: 

 

1) BAC non-adapted L. monocytogenes CECT 5873: 

After 7 days: VLM=4.25-1.18C-1.48N-1.18CN [3.5.1] 

After 11 days:  VLM=5.25-0.45C-0.74N+0.46CN  [3.5.2] 

After 20 days:  VLM=5.72-1.43C-0.86N   [3.5.3] 

2) BAC-adapted 5873 strain: 

After 7 days: VLM=3.65-0.57C-0.87N [3.5.4] 

After 11 days:  VLM=5.24-0.45C-0.94N [3.5.5] 

After 20 days:  VLM=5.47-0.37C-0.79N+0.54CN  [3.5.6] 

 

Graphycal representations of all the empirical equations are shown in Figure 3.5.2 and 

3.5.3 (data are showed in the supporting information chapter). The comparison of the effects 

of the two variables on the wild type strain and the BAC adapted strains showed that the 

biggest differences occured after 7 and 20 days of storage. At these times of storage, it can be 

clearly observed that BAC adaptation gave L. monocytogenes a higher resistance to CO2 and 

nisin. In fact, the CO2 and nisin coefficients obtained for the non-adapted strain after 7 (eq. 

[3.5.1]) and 20 (eq. [3.5.3]) days were significantly higher (p<0.05) than those obtained at the 

same times of storage for the non-adapted strain (eq. [3.5.4] and eq. [3.5.6], respectively). In 

Table 3.5.2, log reductions (LR) obtained at different combinations of CO2 and nisin in 

adapted and non-adapted biofilms of L. monocytoenes are showed. At high concentrations of 

both variables, 90% CO2 and 210 UI/ml of nisin, the model predicts log reductions (LR=log 

UFC/g transferred-log UFC/g after storage) of 3.39 and 5.12 in the number of viable L. 

monocytogenes cells per gram of the 5873 BAC adapted and non-adapted strains respectively 

after 7 days of storage of the contaminated cooked mussels. However, after 11 days of storage 

the differences between the effects of CO2 and nisin decreased and similar polynomial 

equations were obtained to predict the VLM. There was one difference: there was a 
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significant positive interaction between CO2 and nisin at this time of storage for the non-

adapted strain, which is reflected in a decrease in the effect of CO2. This positive interaction, 

also significant in equation [3.5.6], contrasts with the beneficial individual effects of the CO2 

and the nisin and can be interpreted as an increase in the viable Listeria monocytogenes 

biofilm cells in mussels preserved under high concentrations of both CO2 and nisin.  
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Figure 3.5.2. Response surfaces corresponding to the combined effects of CO2 

and nisin against viable L. monocytogenes CECT 5873 BAC-adapted biofilm cells  

(VLM, in log CFU/g) after 11 and 20 days of storage at 2.5 ºC. Variables are 

expressed as codified values (see Table 3.5.1). 
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Figure 3.5.3. Response surfaces corresponding to the combined effects of CO2 

and nisin against viable L. monocytogenes CECT 5873 BAC non adapted biofilm 

cells (VLM, in log CFU/g) after 11 and 20 days of storage at 2.5 ºC. Variables are 

expressed as codified values (see Table 3.5.1). 



172 MAP 
 

 

 

Those results have also demonstrated that the effects of the variables change during the 

time of storage. In fact, if we calculate the log reductions in L. monocytogenes at different 

combinations of CO2-nisin in the experimental design (see Table 3.5.2), it can be clearly 

observed that the effectiveness of the variables decrease with the time of storage, especially 

from 7 to 11 days. 

 

Table 3.5.2: Log reduction (LR) in L. monocytogenes biofilm cells transferred to cooked mussels and 

stored under different combinations of CO2 and nisin. 

  Vc (CO2, nis) (1,1) Vc (CO2, nis) (0,0) Vc (CO2, nis) (-1,-1) 

Non adapted 7D 5.12 1.32 -0.18a 

11D 1.08 0.35 -1.3 

 20D 2.17 -0.12 -2.41 

BAC-adapted 7D 3.39 1.95 0.51 

11D 1.75 0.36 -1.03 

 20D 0.75 0.13 -1.57 
a Negative values indicate the model predicts the growth of L. monocytogenes 

 

Studies on live mussels 

Preliminary experiments: viability of live mussels packaged under O2-rich atmospheres  

In order to assure that mussels were viable during the set time of study, preliminary 

experiments to study the effect of the different O2-rich atmospheres on the viability of live 

mussels without inoculation with L. monocytogenes were carried out. 

 

Before 13 days of storage at 2.5 ºC, no significant differences were obtained between the 

mortality of mussels packed under different O2 concentrations, being in all cases lower than 

20%. At 14 days mortality decreased from 45% in air (21%O2) till 10% in mussels packed 

under 90% O2 (Figure 3.5.4). This is in accordance with previous results that demonstrated 

mortality of mussels decreased when packaging at high O2 concentration (Pastoriza et al. 

2004). According with those results and to assure mussels were alive during the experiments, 

sampling times were set at 5, 8 and 12 days of storage. 
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Figure 3.5.4. Mortality of live mussels packaged under different O2-rich 

atmospheres (30%, 60% and 90%) and air after 14 days of storage at 2.5 ºC. 

 

Comparison of the resistance to O2 of BAC adapted and non-adapted, transferred to live 

mussels  

The results did not show significant differences between the number of viable BAC 

adapted L. monocytogenes cells compared to the non-adapted cells during storage (Figure 

3.5.5). In fact, the sensitivity of the BAC-adapted cells was only slightly higher in live 

mussels packed at 60% O2 (0.25 log/g). 
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Figure 3.5.5. Viability of L. monocytogenes cells transferred to live mussels 

packaged under different O2-rich atmospheres (30%, 60% and 90%) and air at 0, 

5, 8 and 12 days of storage at 2.5 ºC. BAC non-adpated biofilm cells are showed in 

black columns and BAC adapted CECT 5873 in grey columns. 
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3.5.4. Discussion 

Cooked mussels 

The results obtained demonstrate that biofilms cells formed by BAC-adapted CECT 5873 

L. monocytogenes cells were more resistant to the application of modified atmospheres rich in 

CO2 and nisin once they have been transferred to cooked mussels by contact (simulating 

cross-contamination). This implies an increase in the risk associated with the presence of 

these cells in food processing plants. This was particularly significant after 7 days of storage, 

when the coefficients that quantitatively described the effects of CO2 and nisin were 

significantly lower in the equation that describes the number of non-adapted L. 

monocytogenes cells (compare Eq. [3.5.1] and Eq. [3.5.4]). This is in agreement with other 

results recently published that demonstrated mature biofilms formed by BAC-adapted cells 

were more resistant to nisin compared to those formed by the non-adapted cells (Saá 

Ibusquiza et al., 2010). 

However, those effects are not constant over the storage time. In fact, after 11 days a 

decrease in the effect of the two variables was observed both in the BAC adapted and non-

adapted cells, which is reflected in the similar 3D surfaces shown in Figure 3.5.2 and 3.5.3 

respectively. Moreover, at this storage time nisin is more effective against the viability of 

BAC adapted L. monocytogenes biofilm cells than against the non-adapted cells. The 

variations observed in the effects of the variables over time reflect the kinetic conditions of 

the microbial system. And they are in agreement with those obtained by Minei et al., (2008), 

who found a significant decrease in the rate of L. monocytogenes biofilm formation after nisin 

had been added in the early stages of incubation, followed by the recommencement of biofilm 

formation after 12 hours. 

Although it is very difficult to draw conclusions at this point without carrying out 

additional mechanistic experiments, several facts taken from previously published results 

could help us to explain the appearance of the identified adaptive responses: 

 A confluence in the cross-responses of L. monocytogenes to acid (ATR) and BAC. 

It has been previously demonstrated that acid-tolerant strains of L. monocytogenes 

are more resistant to CO2 (Francis et al., 2007, Jydegaard-Axelsen et al., 2004) and 

nisin (Badaoui Najjar et al., 2009; Begley et al., 2010; Bonnet and Montville 2005). 
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The confluence of the two cross-responses suggests that adaptation to BAC and 

acid could imply similar modifications in L. monocytogenes. However, we could 

not find any previous studies on the cross-resistance response between disinfectants 

and CO2. 

 

 A confluence of the membrane as a target for the CO2, nisin and BAC action. It has 

been demonstrated that CO2 modifies bacterial membrane permeability by 

changing the lipid composition (Jydegaard-Axelson et al. 2004, Lungu et al., 2009; 

Tassou et al., 2004; Nilsson et al., 2000). Nisin forms pores in the bacterial 

membrane of its targets by interacting with lipid II, a cell wall precursor (Christ et 

al., 2007; Dalmau et al., 2002; Wiedemann et al., 2007). It has been recently 

demonstrated that BAC induces membrane damage in Bacillus cereus (Ceragioli et 

al., 2010). In addition, a direct relation between the sensitivity to BAC and the 

increase in membrane permeability has been observed in E. coli and L. 

monocytogenes (Walton et al., 2008). Changes in the components in the outer 

membrane (QAC-resistance genes such as qacA, qacB, smr, qacG and qacH code 

for efflux membrane proteins) could also participate in the resistance of L. 

monocytogenes to BAC (Soumet et al., 2005). 

 A relation between the resistance to nisin and the resistance to BAC could be 

related to the proton motive force (PMF)-efflux pump regulation system. In fact, it 

has been demonstrated that adding nisin can dissipate the basal PMF across the 

membrane (Bruno et al., 1992). However, Romanova et al., (2006) demonstrated 

that adding reserpine (an inhibitor of the efflux pump mdrL and lde caused by 

BAC) to physiologically adapted and BAC-sensitive L. monocytogenes implied a 

decrease in the MIC value of BAC, absent in those strains that are naturally 

resistant. Finally, alterations in the PMF caused by nisin and BAC could help CO2 

to act by preventing protons being expelled from the cytoplasm, as well as 

acidification (Garcia-Gonzalez et al. 2007). 

Therefore, it seems that BAC, nisin and CO2 have common points of action in the cell 

membrane, and it is biologically reasonable that some cross-resistances between them could 

appear after successive exposures.  
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Although quantitative differences between the effects of the variables against the BAC 

adapted and non-adapted L. monocytogenes transferred biofilms were identified, the signs of 

the individual and combined effects of CO2 and nisin were very similar. CO2 and nisin 

showed an inhibitor effect against both types of biofilms. This is in agreement with previous 

works with planktonic cells (effect of CO2: Sheridan et al 1995, Olarte et al 2002; effect of 

nisin: Nisson et al. 1997, López- Mendoza et al. 2007). However, no previous studies on the 

effectiveness of CO2 against L. monocytogenes biofilms were found. In the case of nisin, two 

types of studies were found: those that study controlling Listeria monocytogenes with nisin-

producing biofilms (Guerrieri et al., 2009, Leriche et al., 1999) and only one article that 

assayed controlling Listeria monocytogenes biofilms with nisin (Minei et al., 2008). In this 

last, although bacterial growth was initially reduced up to 4.6 log CFU/cm2 when compared 

with L. monocytogenes cultures on untreated coupons, after 24 h of incubation, a renewed 

biofilm was detected.  

To elucidate the real repercussions of the identified cross-responses additional experiments 

with more strains should be carried out. However, the positive interaction between CO2 and 

nisin, which reflects incompatibility at high concentrations of the two variables, contrasts with 

previous results in which a synergic effect between nisin and CO2 against the survival of L. 

monocytogenes has been demonstrated (López-Mendoza et al. 2007; Nilsson et al. 2000; 

Szabo and Cahill, 1998). This discrepancy could be explained by an increase in 

incompatibility between the effects of CO2 and nisin associated with the presence of an 

external polysaccharide matrix in the mature biofilm transferred to cooked mussels. In fact, a 

significant decrease in nisin effectiveness against mature L. monocytogenes biofilms 

compared with that observed against planktonic cells has been previously observed (Saá 

Ibusquiza et al., 2010). Moreover, the ineffectiveness of nisin in the presence of CO2 against 

an exopolysaccharide producer, Pseudomonas fragi, has been demonstrated (Fang and Lin, 

1994). Variations in the EPS composition during biofilm formation could explain the 

variations in the effect of nisin over the storage time. 

However, the results of the individual and combined effects of CO2 and nisin is that LR of 

L. monocytogenes decreased during the time of storage, thus demonstrating that L. 

monocytogenes biofilm cells (both adapted and non-adapted) can resist the preservation 

hurdles and growth in cooked mussels at this temperature. 
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Live mussels 

No significant differences were found between the number of viable L. monocytogenes 

cells transferred to live mussels from BAC adapted and non-adapted biofilms over 12 days of 

storage at 2.5 ºC. This indicates that cellular modifications in L. monocytogenes related to 

BAC adaptation do not have any significant effects on its survival under high O2 

concentrations. Moreover, no significant differences were found in the number of viable L. 

monocytogenes cells recovered from the live mussels during storage, which indicates that L. 

monocytogenes could persist after cross-contamination during the processing of live mussels. 

This is in agreement with previous results obtained by Allende et al., (2002), who found no 

significant differences in the number of viable L. monocytogenes cells inoculated into a mixed 

vegetable salad during storage at 4 and 7 ºC under different O2-rich atmospheres.  

Overall, the results allow us to conclude that BAC adapted L. monocytogenes biofilms 

transferred to cooked mussels are more resistant to CO2 and nisin than non-adapted biofilms 

but that this resistance can vary over the storage time. In addition, nisin and CO2 rich 

atmospheres are not effective enough to control a hypothetical cross-contamination of L. 

monocytogenes biofilm cells transferred from industrial surfaces to ready-to-eat fish products, 

such as cooked mussels. Finally, it must be pointed out that L. monocytogenes is a pathogen 

of concern in live mussels packaged in high O2 atmospheres.  
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CONCLUSIONS: 

 

A review of the results presented in this Ph.D. thesis has permitted to draw the following 

conclusions: 

1. Initial adhesion kinetics of L. monocytogenes depends on environmental and 

nutritional conditions, bacterial strain, physico-chemical properties of the surface and the 

interactions between any of these factors. Initial adhesion was thus shown to be higher on 

polypropylene than on stainless steel. The presence of mussel soils as a conditioning film 

enhanced adhesion, the number of cells decreased sharply after 24 hours, likely due to a 

gradual plastification of the conditioning film leading to partial detachment. Additionally, 

reducing nutrient concentration increased significantly the maximum level of adhesion. 

Experimental data were successfully fitted to a logistic model which was shown to be a useful 

tool for comparative purposes, permitting the effect of independent variables to be 

differentiated and thus obtain more accurate conclusions. 

2. Individual and combined effects of inoculum size and benzalkonium chloride 

concentration on adaptation of L. monocytogenes CECT 5873 to benzalkonium chloride were 

determined by means of an orthogonal factorial design which showed that adapted cells could 

be achieved in a short period by exposing a large inoculum of exponential-phase cells to sub-

lethal concentrations only once. An alternative procedure to generate benzalkonium chloride-

adapted cells is thus proposed. This procedure is more efficient and less time-consuming than 

classical methods based on successive exposure of stationary-phase cells to sub-lethal 

concentrations of biocide. Lastly, a significant protein repression resulting from adaptation to 

benzalkonium chloride was detected in proteomic studies. 

3. From studies carried out on mature biofilms several conclusions are drawn: 

3.1. Resistance of mature biofilms to disinfectants (measured in terms of LD90) 

increased with time in most of the cases, and it was correlated with biofilm 

thickness as observed by scanning electron microscopy. However, no correlation 

was found with cell adhesion (measured in terms of the number of adhered 

cells). These results underline the importance of the extracellular matrix, rather 

than the number of cells, to evaluate the repercussions of biofilm formation. 
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3.2. Mature biofilms formed by benzalkonium chloride-adapted L. monocytogenes 

CECT 5873 were more resistant to benzalkonium chloride and nisin (positive 

cross-adaptive response) than biofilms by the wild-type strain, which suggests 

some overlap between the effects of the two biocides. In contrast, biofilms by 

adapted cells were more sensitive to peracetic acid (negative cross-adaptive 

response). It seems therefore convenient to use peracetic acid for removal of 

persistent strains in processing plants where benzalkonium chloride has been 

routinely applied for disinfection. 

3.3. Peracetic acid was significantly more effective than benzalkonium chloride or 

nisin against L. monocytogenes biofilms formed under different conditions. On 

the basis of the mechanism of action, it is hypothesized that a high reactivity and 

small size facilitate peracetic acid to enter and disrupt biofilms. 

4. Dual-species biofilms formed by L. monocytogenes and Pseudomonas putida were 

more resistant to benzalkonium chloride than single-species biofilms by L. monocytogenes. 

This higher resistance can give rise to situations of higher microbiological risk and 

consequently highlights the need to consider microbial consortia and not individual strains in 

food safety studies. Also, it was demonstrated that the increase in benzalkonium chloride 

resistance depends on co-existing bacteria and biofilm structure, rather than on cell adhesion, 

which can not be used for assessment of biofilm structure. 

5. Benzalkonium chloride-adapted L. monocytogenes biofilms transferred to cooked 

mussels are more resistant to CO2 and nisin than non-adapted biofilms, and this resistance 

changed over the time of storage. Nisin and CO2 were found not to be effective enough to 

control L. monocytogenes cross-contamination from biofilms on industrial surfaces in cooked 

mussels packed under CO2-enriched atmospheres. L. monocytogenes was also found to be of 

concern as a microbial contaminant in live mussels packed under oxygen-enriched 

atmospheres. 
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SUPLEMENTARY MATERIAL section 3.2 

Tables related to the equation [3.2.3]. Results of factorial designs and test of significance 

for models in equations [3.2.3], that describe the effects of BAC (B) and inocula (I) on the 

Viable Cells of non-adapted L. monocytogenes (VLM) CECT 5873 against the level of 

adaptation achieved. 

        

Table related to equation 3.2.3: Effects of BAC (B) and inocula (I) on the Viable Cells of L. monocytogenes 
(VLM) CECT 5873 semiadapted cells against the level of adaptation achieved 

        

        

B I VLM VLMe Coefficients t Model 

1 1 10.00 10.49 9.00 57.94 7.82 

1 -1 2.71 3.19 3.00 4.68 -0.99 B 

-1 1 7.5 7.99 -2.00 9.44  1.42 I 

-1 -1 9.14 9.63 3.00 12.66  2.24 BI 

0 0 9.00 7.82 Average value = 8.31 

0 0 8.24 7.82 Expected average value = 7.82 

0 0 8.00 7.82 Var (Ee) = 0.2244 

0 0 8.00 7.82 t(<0,05; =3) = 3.182 

     

 SS  MS MSM / MSE = 16.506 VLMe (=0,05) = 6.590 

Model 31.871 3 10.624 MSMLF / MSM = 0.795 VLMe (=0,05) = 9.120 

Error 2.574 4 0.644 MSE / MSEe = 2.868 VLMe (=0,05) = 9.010 

Experim. 
error 

0.673 3 0.224 MSLF / MSEe = 8.473 VLMe (=0,05) = 9.550 

Lack of 
fitting 

1.901 1 1.901 r2 = 0.925 

Total 34.445 7 4.921 corrected r2 = 0.869 

VLM ( in log CFU/g); VLMe: expected response; NS: not significant coefficients; SS: sum of squares; : degrees of 
freedom; MSE, MSEe and MSLF: mean squares for total error experimental error and lack of fitting, respectively. 
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SUPLEMENTARY MATERIAL section 3.5 

Tables related to equations [3.5.1-3.5.6]. Results of factorial designs and test of significance 

for models in equations [3.5.1-3.5.6], that describe the effects of CO2 (C) and nisin (N) on the 

Viable Cells of BAC-adapted and non-adapted L. monocytogenes (VLM) CECT 5873 after 7, 

11 and 20 days of storage at 2.5 ºC. 

 

        

Table related to equation 3.5.1: Effects of CO2 (C) and nisin (N) on the Viable Cells of L. monocytogenes 
(VLM) CECT 5873 after 7 days of storage after 2.5 ºC. 

        

        

C N VLM VLMe Coefficients t Model 

1 1 0 0.41 9.00 33.01 4.25 

1 -1 5.330 5.74 3.00 6.46 -1.18 C 

-1 1 4.719 5.13 -2.00 8.14  -1.48 N 

-1 -1 5.313 5.72 3.00 6.51  -1.18 CN 

0 0 4.760 4.25 Average value = 4.65 

0 0 5.100 4.25 Expected average value = 4.25 

0 0 4.250 4.25 Var (Ee) = 0.1324 

0 0 4.500 4.25 t(<0,05; =3) = 3.182 

     

 SS  MS MSM / MSE = 15.470 VLMe (=0,05) = 6.590 

Model 19.908 3 6.636 MSMLF / MSM = 0.800 VLMe (=0,05) = 9.120 

Error 1.716 4 0.429 MSE / MSEe = 3.241 VLMe (=0,05) = 9.120 

Experim. 
error 

0.397 3 0.132 MSLF / MSEe = 9.964 VLMe (=0,05) = 10.13 

Lack of 
fitting 

1.319 1 1.319 r2 = 0.921 

Total 21.624 7 3.089 corrected r2 = 0.861 

VLM ( in log CFU/g); VLMe: expected response; NS: not significant coefficients; SS: sum of squares; : degrees of 
freedom; MSE, MSEe and MSLF: mean squares for total error experimental error and lack of fitting, respectively. 
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Table related to equation 3.5.2: Effects of CO2 (C) and nisin (N) on the Viable Cells of L. monocytogenes 
(VLM) CECT 5873 after 11 days of storage after 2.5 ºC. 

        

        

C N VLM VLMe Coefficients t Model 

1 1 4.48 4.52 9.00 52.83 5.25 

1 -1 5.04 5.08 3.00 3.22 -0.45 C 

-1 1 4.46 4.50 -2.00 5.27 -0.74 N 

-1 -1 6.87 6.91 3.00 3.28 0.46 CN 

0 0 4.95 5.25 Average value = 5.30 

0 0 5.36 5.25 Expected average value = 5.25 

0 0 5.63 5.25 Var (Ee) = 0.0792 

0 0 5.25 5.25 t(<0,05; =3) = 3.182 

 SS  MS MSM / MSE = 20.454   VLMe (=0,05) = 6.590 

MSMLF / MSM = 0.753  VLMe (=0,05) = 9.12 Model 

Error 

3.867 

0.252 

3 

4 

1.289 

0.063 MSE / MSEe = 0.796      VLMe (=0,05) = 9.12 

Experim. 
error 

0.237 3 0.079 MSLF / MSEe = 0.185    VLMe (=0,05) = 10.13 

Lack of 
fitting 

0.015 1 0.015 r2 = 0.939 

Total 4.119 7 0.588 corrected r2 = 0.893 

Notations in previous table. 
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Table related to equation 3.5.3:  Effects of CO2 (C) and nisin (N) on the Viable Cells of L. monocytogenes 
(VLM) CECT 5873 after 20 days of storage after 2.5 ºC. 

        

        

C N VLM VLMe Coefficients t Model 

1 1 3.76 3.43 9.00 130.74 5.72 

1 -1 5.35 5.15 3.00 23.15 -1.43C 

-1 1     6.50 6.29 -2.00 13.90 -0.86N 

-1 -1 8.34 8.02 3.00 1.03  0CN 

0 0 5.55 5.72 Average value = 5.46 

0 0 5.56 5.72 Expected average value = 5.72 

0 0 5.30 5.72 Var (Ee) = 0.0153 

t(<0,05; =3) = 3.182 0 0 5.43 5.72 

 

 SS  MS MSM / MSE = 44.749  VLMe (=0,05) = 6.590 

Model 11.171 2 5.585 MSMLF / MSM = 0.526  VLMe (=0,05) = 9.120 

Error 0.624 5 0.125 MSE / MSEe = 8.145  VLMe (=0,05) = 9.010 

Experim. 
error 

0.046 3 0.015 MSLF / MSEe = 9.550   VLMe (=0,05) = 10.13 

Lack of 
fitting 

0.578 2 0.289 r2 = 0.947 

Total 11.795 7 1.685 corrected r2 = 0.926 

Notations in previous table. 
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Table related to equation 3.5.4: Effects of CO2 (C) and nisin (N) on the Viable Cells of L. monocytogenes 
(VLM) CECT 5873 BAC-adapted after 7 days of storage after 2.5 ºC. 

        

        

C N VLM VLMe Coefficients t Model 

1 1 2.04 2.21 9.00 36.69 3.65 

1 -1 3.65 3.94 3.00 4.05 -0.57 C 

-1 1 3.04 3.35 -2.00 6.15  -0.87 N 

-1 -1 4.91 5.08 3.00 0.50  0 CN 

0 0 4.16 3.65 Average value = 3.89 

0 0 3.90 3.65 Expected average value = 3.65 

0 0 4.00 3.65 Var (Ee) = 0.0791 

t(<0,05; =3) = 3.182 0 0 3.50 3.65 

 

 SS  MS MSM / MSE = 14.756 VLMe =0,05) = 6.590 

Model 4.293 2 2.146 MSMLF / MSM = 0.557 VLMe (=0,05) = 9.120 

Error 0.727 5 0.145 MSE / MSEe = 1.840     VLMe (=0,05) = 9.010 

Experim. 
error 

0.237 3 0.079 MSLF / MSEe = 3.099 VLMe (=0,05) = 9.550 

Lack of 
fitting 

0.490 2 0.245 r2 = 0.855 

Total 5.020 7 0.717 corrected r2 = 0.797 

Notations in previous table. 

 

 

 

 

 

 



194 Supporting information 

 

 

 

 

        

Table related to equation 3.5.5: Effects of CO2 (C) and nisin (N) on the Viable Cells of L. monocytogenes 
(VLM) CECT 5873 BAC-adapted after 11 days of storage after 2.5 ºC. 

        

        

C N VLM VLMe Coefficients t Model 

1 1 3.78 3.85 9.00 105.19 5.24 

1 -1 5.54 5.73 3.00 6.32 -0.45 C 

-1 1   4.55 5.74 -2.00 13.35 -0.94 N 

-1 -1 6.55 6.62 3.00 0.85  0.0CN 

0 0 5.44 5.24 Average value = 5.37 

0 0 5.26 5.24 Expected average value = 5.24 

0 0 5.24 5.24 Var (Ee) = 0.0198 

0 0 5.53 5.24 t(<0,05; =3) = 3.182 

 SS  MS MSM / MSE = 51.095 VLMe (=0,05) = 5.790 

Model 4.327 2 2.163 MSMLF / MSM = 0.518  VLMe (=0,05) = 19.250 

Error 0.212 5 0.042 MSE / MSEe = 2.136     VLMe (=0,05) = 9.010 

Experim. 
error 

0.059 3 0.020 MSLF / MSEe = 3.839 VLMe (=0,05) = 9.550 

Lack of 
fitting 

0.152 2 0.076 r2 = 0.953 

Total 4.538 7 0.648 corrected r2 = 0.935 

Notations in previous table. 
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Table related to equation 3.5.6: Effects of CO2 (C) and nisin (N) on the Viable Cells of L. monocytogenes 
(VLM) CECT 5873 BAC-adapted after 20 days of storage after 2.5 ºC.. 

        

        

C N VLM VLMe Coefficients t Model 

1 1 4.90 4.85 9.00 76.06 5.47 

1 -1 5.40 5.35 3.00 3.66 -0.37 C 

-1 1     4.57 4.51 -2.00 7.79 -0.79 N 

-1 -1 7.23 7.18 3.00 5.31 0.54 CN 

0 0 5.63 5.47 Average value = 5.42 

0 0 5.14 5.47 Expected average value = 5.47 

0 0 5.44 5.47 Var (Ee) = 0.0414 

0 0 5.45 5.47 t(<0,05; =3) = 3.182 

     

 SS  MS MSM / MSE = 38.310 VLMe (=0,05) =6.590  

Model 4.233 3 1.411 MSMLF / MSM = 0.754  VLMe (=0,05) = 9.120 

Error 0.147 4 0.037 MSE / MSEe = 0.890 VLMe (=0,05) = 9.120 

Experim. 
error 

0.124 3 0.041 MSLF / MSEe = 0.560  VLMe (=0,05) = 10.13 

Lack of 
fitting 

0.023 1 0.023 r2 = 0.966 

Total 4.380 7 0.626 corrected r2 = 0.941 

Notations in previous table. 
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PERSPECTIVES 

 

The results achieved throughout this Ph.D. thesis and the consequent conclusions drawn from 

those results allows a number of future research lines to be enunciated: 

1. Search for genes and proteins associated with biofilm formation in L. 

monocytogenes, and quantitative analysis of such genes and proteins during biofilm formation 

in different strains. A high variability was observed when initial adhesion and biofilm 

formation of several strains were compared, and this seems to indicate that there might be 

biological determinants associated with the type of biofilm formed.  

2. Examine the potential of the method newly proposed for attaining benzalkonium 

chloride-adapted L. monocytogenes. This should comprise a screening of a high number of 

strains, firstly. Subsequently it should be studied if it can be extended to other biocides and 

even to further bacterial species with the aim of establishing this method as a general protocol 

in microbial physiology. 

3. Design of disinfection strategies aimed at removing mature L. monocytogenes 

biofilms. This also comprises the search of agents (of chemical, physical or biological origin) 

that can diffuse into and disturb such biofilms and have or enhance bactericidal effects. This 

search needs, in turn, to identify the chemical composition of the extracellular matrix, which 

is unknown, and determine the microstructure of those biofilms. Furthermore, bacterial 

species commonly associated with L. monocytogenes in the food environment must be 

identified and physiological characteristics of mixed biofilms formed by these consortia must 

be determined in order to design disinfection strategies correctly. Also, the study of the role of 

each microorganism could give new interesting possibilities (based in microbial ecology) to 

control high persistant biofilms. 

4. Identify cross-responses to environmental and technological factors resulting from the 

adaptation of L. monocytogenes to industrial biocides. For instance, it would be highly 

interesting to find out if the cross-adaptive response between benzalkonium chloride and CO2 

shown by L. monocytogenes CECT 5873 is also developed by other strains. Additionally, the 

mechanisms of adaptation should be clarified by using molecular biology tools. These studies 
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would permit the potential risk associated with the routine use of each disinfectant in each 

food processing plant to be better known. 



RReessuummeenn  





Resumen 
 

203 

 

 

RESUMEN 

 

Introducción 

Características biológicas: L. monocytogenes es un bacilo Gram positivo, anaerobio 

facultativo, móvil a temperaturas inferiores a 25 ºC (Seeliger and Jones, 1986) y 

altamente resistente en condiciones de estrés: pHs ácidos, baja aw, bajas 

concentraciones de O2 y baja temperatura (Ross et al., 2000, Kathariou, 2002). Todo 

ello contribuye a su ubicuidad (Cox et al. 1989, Ivanek et al. 2006) y a su condición de 

bacteria patógena, causante de listeriosis.  

Patogeneidad: está asociada a un grupo de riesgo constituido por mujeres 

embarazadas, individuos de avanzada edad e inmunodeprimidos. A pesar de su 

ubicuidad, la incidencia anual de listeriosis es de 0.3 casos al año por cada 100.000 

habitantes, baja si la comparamos con otras infecciones trasmitidas por alimentos  

(EFSA 2006). Lo que contrasta con su elevada tasa de mortandad (20-30%), haciéndola 

especialmente relevante. Existen 13 serotipos: 1/2a, 1/2b, 1/2c, 3a, 3b, 3c, 4a, 4ab, 4b, 

4c, 4d, 4e, 7 (Seeliger and Höhne, 1979; Seeliger and Jones, 1986), siendo 1/2a, 1/2b, 

1/2c and 4b los responsables del 95% de los casos de listeriosis en humanos (Farber and 

Peterkin, 1991; Doumith et al., 2004; Swaminathan and Gerner-Smidt, 2007). 

Incidencia en alimentos: Según los datos epidemiológicos, el 99% de los casos de 

listeriosis en humanos se deben al consumo de productos alimenticios contaminados. En 

Europa rara vez se detectan productos contaminados por encima del límite de seguridad 

(contaminación <10 UFC/g) pero los productos listos para el consumo en los que ha 

sido detectada son productos de la pesca, cárnicos y quesos. De entre alimentos 

anteriores, las últimas inspecciones realizadas en Europa mostraron una mayor 

incidencia en productos de la pesca listos para el consumo, en los cuales se detectaron 

una mayor proporción de muestras contaminadas por encima de 100 UFC/g (2.4%) 

(EFSA, 2009), sobre todo durante y después del procesado (Cox et al., 1989; Hu et al., 

2006; Samelis and Metaxopoulos, 1999, Autio et al., 1999, Miettinen et al., 1999; 

Norton et al., 2001; Rørvik et al., 1995; Vogel et al., 2001a, Wulff et al., 2006).).  
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Control: Dada la importancia del este patógeno en el ámbito alimentario, se han 

desarrollado diferentes estrategias para el control de Listeria monocytogenes a 

diferentes niveles, desde la consideración de medidas para evitar su aparición mediante 

la implementación del sistema de prerrequisitos y análisis de riesgo de los puntos 

críticos de control (HACCP), hasta el diseño de estrategias de conservación que 

aseguren el control de L. monocytogenes, pasando además por los esfuerzos realizados 

en la aplicación de protocolos de limpieza y desinfección efectivos. 

 

Justificación y objetivos 

Con el objetivo final de incrementar la seguridad alimentaria respecto a L. 

monocytogenes, tres razones justifican la realización del presente trabajo: 

 

1. Que L. monocytogenes puede persistir en plantas de procesado formando 

biopelículas, definidas como comunidades microbianas sésiles caracterizadas por 

células irreversiblemente adheridas al sustrato o interfase y embebidas en una matriz de 

sustancias poliméricas extracelulares (Donlan and Costerton 2002). En el desarrollo de 

estas biopelículas desde el estado planctónico se pueden diferenciar tres fases: 1) Fase 

de adherencia: reversible y dependiente de los nutrientes del medio (Kim and Frank 

1994; Mai and Corner 2007; Stepanovic et al., 2004; Hood et al., 1997), del movimiento 

flagelar (Lemon et al. 2007; Vatanyoopaisarn et al. 2000; Tresse et al., 2006 and Geeriri 

et al., 2008), del tipo de superficie (Balckman and Frank, 1996; Di Bonaventura et al., 

2008; Krysinski and Brown 1992; Meylheuc et al., 2001; Rodríguez et al. 2008; Saá et 

al., 2009; Safyan et al. 2006; Sinde and Carballo, 2000; Somers and Wong, 2004; 

Smoot and Pierson, 1998; Teixeira et al., 2008) y de variables de estado como pH 

(Herald and Zottola 1988; Tresse et al., 2006; Poimenidou et al., 2009) 2) Maduración: 

durante la que las células bacterianas se adhieren ya de manera irreversible para formar 

estructuras tipo microcolonias que segregan una matriz polimérica (EPSs) (Høiby et. al. 

2010) y forman biopelículas que van incrementando su densidad a lo largo del tiempo 

(Takhistov and George 2004, Marsh and Wang, 2003) dependiendo del medio externo 

(Folsom et al 2006; Rodrigues et al. 2009) y 3) Desprendimiento: en la que el biofilm se 
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desprende del sustrato por diversas razones tales como falta de nutrientes (Marshall, 

1988) o restricciones en la transferencia de gases (Applegate and Bryers, 1991) 

pudiendo ser fuente de contaminaciones cruzadas. En la actualidad se conocen dos 

sistemas de comunicación célula-célula que regulan la formación de biopelículas en L. 

monocytogenes: los sistemas LuxS y Agr (Belval et al. 2006; Garmyn et al., 2009).  

Pero la importancia de la formación de biofilms en bacterias en general y en L. 

monocytogenes en particular es todavía mayor si tenemos en cuenta que las biopelículas 

de una sola especie raramente se encuentran en el ambiente y que, al menos en algunos 

casos, la asociación entre diferentes especies para formar una biopelícula mixta 

incrementa su resistencia a antimicrobianos (Simões et al., 2007a). 

2: Que la persistencia de L. monocytogenes en plantas de procesado pudiera 

relacionarse con su resistencia a aquellos biocidas frecuentemente utilizados en los 

procesos de limpieza y desinfección (Gilbert et al. 2002; Lundén et al. 2000, 2003a). Y 

de hecho, en numerosos estudios se ha demostrado que los biofilms de Listeria 

monocytogenes son más resistentes que las células plantónicas a los desinfectantes 

comúnmente empleados en la industria (Aarnisalo et al., 2000; Aarnisalo et al., 2007; 

Amalaradjou et al., 2009; Ammor et al., 2004; Blackmann et al., 1996, Bremer et al., 

2002, Chavant et al., 2003; Gram et al., 2007, Kastberg 2009; Holah et al., 2002, 

Leriche et al., 1999; Minei et al., 2008, Frank et al., 2003; 48 h: Pan et al., 2006, Yang 

et al., 2009) tales como cloruro de benzalconio (perteneciente a la familia de QACs) y 

ácido peracético.  

3: Que las biopelículas de L. monocytogenes que persisten en las plantas de 

procesado (con resistencias adquiridas) pueden transferirse fácilmente por contacto al 

alimento, causando problemas graves de contaminación cruzada. 

 

De acuerdo con lo expuesto, los objetivos del presente trabajo fueron:  

1. Comparar las cinéticas de adhesión de diferentes cepas de L. monocytogenes (CECT 

5873, CECT 936, CECT 911 y CECT 4032) en polipropileno (PP) y acero inoxidable 

(SS) con y sin superficie de acondicionamiento, simulando residuos presentes en plantas 

de procesado de mejillón. A partir de los resultados obtenidos en este primer objetivo se 
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seleccionaron aquellos escenarios de mayor riesgo, que constituyeron los casos 

experimentales para el desarrollo de los objetivos subsiguientes. 

2. Desarrollar un procedimiento eficiente para la obtención de células de L. 

monocytogenes adaptadas al cloruro de benzalconio (BAC). Para ello, se estudiaron, se 

discutieron y se formalizaron los efectos del tamaño de inóculo y concentración de BAC 

durante la exposición sobre el nivel final de adaptación. Además, se compararon los 

perfiles proteicos de células adaptadas y no adaptadas al BAC.  

3. Estudiar la formación de biopelículas maduras por tres cepas de L. monocytogenes 

(CECT 4032, CECT 911, CECT 5873 y CECT 5873 adaptada al BAC) en aquellos 

escenarios seleccionados en 1. como de mayor riesgo mediante el estudio del aumento 

de resistencia a biocidas (BAC, ácido peracético y nisina) y el análisis microscópico de 

la estructura biopelicular formada en diferentes etapas de la maduración a 25 ºC. Ello 

permitió además comparar la efectividad de los biocidas e identificar algunas respuestas 

cruzadas derivadas de la adaptación al cloruro de benzalconio. 

4. Estudiar la influencia de la asociación entre Pseudomonas putida y L. monocytogenes 

sobre la resistencia al BAC y la estructura microscópica de la biopelícula mixta formada 

en diferentes escenarios respecto a la correspondiente biopelícula monoespecie de L. 

monocytogenes. 

5. Estudiar el efecto de la aplicación de atmósferas ricas CO2 y O2 sobre la viabilidad de 

células procedentes de biopelículas de L. monocytogenes no adaptadas y adaptadas al 

cloruro de benzalconio una vez transferidas a mejillón cocido y vivo, respectivamente. 

En el caso del mejillón cocido, se estudió además la aplicación combinada de CO2 y 

nisina mediante un diseño factorial de primer orden. 

 

Resultados y Discusión 

1. Efectos de la presencia de residuos de plantas de procesado de mejillón 

sobre la adherencia de Listeria monocytogenes en polipropileno y acero 

inoxidable. J. Food Protect. 72(9):1885-1890 (2009). 
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1.1. Introducción 

L. monocytogenes puede adherirse a las superficies en las superficies en la industria 

alimentaria (Kim and Frank 1995) y desarrollar un biofilm, lo cual puede contribuir a su 

persistencia (Frank and Koffi 1990; Pan et al., 2006). La adherencia bacteriana a 

superficies es la fase inicial del desarrollo de biofilms. Los estudios recogidos en 

bibliografía hasta el momento presentaban controversias entre sí (Harvey et al., 2007). 

Por tanto, el estudio llevado a cabo, trató de esclarecerlas determinando la adherencia 

no solo durante las primeras horas, y evitandom la utilización de medios comerciales 

puesto que no reproducen las condiciones reales de las plantas de procesado. 

Para ello, se compararon las cinéticas de adherencia de L. monocytogenes (cepas 

CECT 5873, CECT 936, CECT 911 y CECT 4032) en polipropileno (PP) y acero 

inoxidable (INOX). Además, se simularon dos situaciones que reproducen a escala 

experimental dos casuísticas diferentes respecto a la acumulación de residuos resultado 

de una limpieza deficitaria en una planta de procesado: 

 Contaminación con L. monocytogenes de superficies con residuos secos, 

pegados al material, formando una película de acondicionamiento: PA. 

 Contaminación con L. monocytogenes de superficies limpias con residuos de 

mejillón en disolución.  

1.2. Materiales y Métodos 

Cepas: las cepas se obtuvieron en la Colección Española de Cultivos Tipo (CECT) 

Medios residuales: en estos experimentos se utilizaron el agua de cocción de 

mejillón (ACM) y el agua intervalvar (AIV). La primera, obtenida a partir de la cocción 

de los mejillones durante 1 min., resultó tener la siguiente composición: 9,19 g/l de 

carbohidratos totales y 1698,7 mg/l de Nitrógeno; pH=7.74. El agua intervalvar, 

obtenida a partir del escurrido de mejillón vivo, resultó tener la siguiente composición: 

2,7g/l de carbohidratos totales, 185 mg/l de Nitrógeno; pH=8.80. 

El inóculo se preparó ajustando el cultivo activado a una absorbancia de 0.1 a 700 

nm correspondiente a una densidad celular de 108 CFU/ml de acuerdo con calibraciones 

previas. Una vez se centrifuga a 6000 rpm, 25 ºC durante 10 min, las células 



208 Resumen 
 
 

 

recolectadas se resuspenden en el mismo volumen del medio residual objeto de estudio 

en cada caso (tampón fosfato 0.05M diluido en agua destilada (1:1) (v:v) para aquellos 

casos con película de acondicionamiento, ACM o bien AIV). En cada cupón se 

dispensaron alícuotas de 250 μl de inóculo dentro del área circular (15 mm de diámetro) 

previamente delimitada en los cupones (20 mm x 20 mm) mediante typpex. A 

continuación se incubaron a 25 ºC y el número de células adheridas se cuantificó a 

diferentes tiempos durante un período en torno a 60-80 h mediante el método puesto a 

punto previamente en nuestro laboratorio (Herrera et al., 2007). 

1.3. Resultados y discusión 

Los valores de adherencia obtenidos en las diferentes condiciones ensayadas se 

describieron satisfactoriamente mediante un modelo logístico modificado de acuerdo 

con Cabo et al. (1999). 


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No obstante, en 3 de los 8 casos objeto de estudio en presencia de película de 

acondicionamiento, se produce un descenso pronunciado del número de células 

adheridas después de aproximadamente 24 h (CECT 911-PP y en INOX y la CECT 

936-PP (Fig.1.1)), que resultó describible mediante un modelo empírico aditivo 

representado por 2 términos logísticos: 
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 [1.2] 

 NCA: número de células adheridas (UFC/mm2).  

 aad: máximo número de células adheridas (asíntota) 

 rad: coeficiente de adherencia específico (t-1). 

 mad: tiempo al cual el número de células adheridas es la mitad del máximo. 

 aD: número total de células adheridas que mueren o bien se desprenden 

(UFC/mm2). 
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 rD: coeficiente de desprendimiento/muerte (t-1). 

 mD: tiempo al cual el número de células desprendidas/muertas es la mitad del 

máximo. 
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Figura 1.1 Cinéticas de adherencia de diferentes cepas de Listeria 

monocytogenes en cupones de polipropileno (PP) y en acero inoxidable 

(INOX) en presencia de agua de cocción de mejillón (ACM) sin (O) y con (F) 

película de acondicionamiento. Las líneas representan las estimaciones 

obtenidas empleando las ecuaciones [1.1] y [1.2]. 
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En la Figura 1.1. se representaron los ajustes de los resultados experimentales 

obtenidos a las ecuaciones [1.1] y [1.2]. Tal y como se observa, los resultados 

mostraron una mayor adherencia en polipropileno que en acero inoxidable en todas las 

cepas de L. monocytogenes excepto para la CECT 5873. Se demostró además un efecto 

positivo de la presencia de película de acondicionamiento sobre la adherencia inicial de 

L. monocytogenes, aunque en la fase más tardía del estudio se produce desprendimiento 

celular (Figura 1.1).  

Además, a partir de estos primeros resultados se seleccionaron aquellos casos 

experimentales (escenarios) que podrían dar lugar a unos mayores niveles de 

adherencia: CECT 911-PP-SPA, 4032-PP-PA, 5873-INOX-SPA, y 4032-INOX-PA. 

Precisamente en estos casos concretos, se comparó la adherencia con la obtenida en el 

supuesto de una contaminación producida en plantas de procesado de mejillón vivo, 

para lo que se utilizó agua intervalvar (AIV) de mejillón como medio de cultivo 

(Figura 1.2). 

Los resultados demostraron claramente mayores niveles de adherencia en presencia 

de agua intervalvar, especialmente en los dos casos experimentales sin película de 

acondicionamiento. Aunque para conocer la razón exacta de estos resultados sería 

necesario recurrir a experimentación adicional, se postulan como posibilidades el que la 

nueva composición del medio implique condiciones físico-químicas que incrementen la 

adherencia celular o que dejen mayor espacio disponible. 

Para los casos seleccionados a partir de los experimentos realizados como más 

representativos de los resultados obtenidos se estudió la formación de biopelículas 

maduras después de 4 y 11 días de incubación a 25 ºC (subapartado 3 de resultados y 

discusión). Asimismo, con la finalidad de simular la formación de biopelículas 

adaptadas al BAC en condiciones reales y de comparar la capacidad adaptativa a este 

desinfectante de las tres cepas objeto de estudio, a continuación se desarrolló el segundo 

de los objetivos expuestos, que permitió proponer un procedimiento para la obtención 

de células de L. monocytogenes adaptadas al cloruro de benzalconio y mejorar 

notablemente el método clásico basado en la exposición sucesiva de células en fase 

estacionaria a concentraciones subletales de BAC. 
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Figura 1.2 Comparación de las cinéticas de adherencia de Listeria 

monocytogenes bajo las condiciones de mayor riesgo en presencia de agua 

de cocción de mejillón (○) y de agua intervalvar () en diferentes casos 

experimentales. A. CECT 911 en polipropileno en ausencia de película de 

acondicionamiento (PP-SPA). B. CECT 4032 en polipropileno en presencia 

de película de acondicionamiento (PP-PA). C. CECT 5873 en acero 

inoxidable en ausencia de película de acondicionamiento (INOX-SPA). D. 

CECT 4032 en acero inoxidable en presencia de película de 

acondicionamiento (INOX-PA). Las líneas representan las estimaciones 

obtenidas empleando las ec. .[1.1] o [1.2]  

 

2. Desarrollo de un procedimiento eficiente para la obtención de células de 

Listeria monocytogenes CECT 5873 adaptadas al cloruro de benzalconio.  

2.1. Introducción 

Numerosos estudios han demostrado que las cepas persistentes de L. monocytogenes 

son resistentes a los compuestos de amonio cuaternario (QACs) (Aase et al. 2000; 
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Mullapudi et al., 2008), entre ellos el cloruro de benzalconio (BAC), biocida 

perteneciente a la familia QACs que se emplea comúnmente en la industria alimentaria. 

Sin embargo, no existen trabajos previos centrados en el estudio de la adaptación de L. 

monocytogenes al BAC.  

En general, la obtención de bacterias resistentes adaptadas a biocidas se lleva a cabo 

experimentalmente mediante subcultivos sucesivos de células en fase estacionaria en 

medio de cultivo con concentraciones crecientes de BAC hasta la ausencia de 

crecimiento, considerándose éste como el punto máximo de adaptación. Sin embargo, 

este método clásico resulta tedioso, con fases experimentales demasiado largas y no 

asegura alcanzar el máximo nivel de adaptación (To et al. 2002, Aarnisalo et al. 2007, 

Aase et al. 2000). En este sentido, y partiendo de que las células en fase exponencial son 

metabólicamente más activas (Whistler et al., 1998; Zotta et al., 2009), una alternativa 

posible podría ser diseñar un procedimiento experimental basado en la exposición de 

células en fase exponencial.  

De acuerdo con ello, en el presente trabajo se planteó en dos etapas: 1) comparación 

entre el nivel de adaptación alcanzado por 3 cepas de L. monocytogenes (CECT 4032, 

CECT 911 Y CECT 5873) una vez aplicado el protocolo experimental clásico y 

selección de aquella cepa con mayor capacidad de adaptación y 2) estudio del efecto del 

tamaño del inóculo y de la concentración de BAC sobre el nivel de adaptación 

alcanzado tras una sola exposición de células de L. monocytogenes CECT 5873 en fase 

exponencial. Para ello, se utilizó un diseño factorial de primer orden que permitió 

describir adecuadamente los resultados en el ámbito experimental ensayado. A partir de 

los resultados obtenidos, se propuso un método que mejora notablemente el actualmente 

utilizado, permitiendo alcanzar mayores niveles de adaptación en menos tiempo. 

Además, se realizaron estudios proteómicos preeliminares para identificar cambios en 

los perfiles proteicos consecuencia de la adaptación al BAC y se identificaron posibles 

genes (así como sus proteínas asociadas) relacionados con dicha adaptación. 

 

2.2. Materiales y Métodos 

Cepas: Las cepas utilizadas se obtuvieron en la CECT. 
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Procedimientos experimentales: 

i. Cultivos sucesivos en fase estacionaria (método clásico): consistente en 

siembras sucesivas de 1 ml de inóculo en fase estacionaria en 49 ml de TSB 

(Caldo de Soja y Triptona, Cultimed, S.L.) con concentraciones crecientes de 

BAC (Sigma Chemical Co) hasta la ausencia de crecimiento. Estos primeros 

experimentos se realizaron con las cepas CECT 911, CECT 4032 y CECT 

5873. 

ii. Cultivos en fase exponencial: consistente una sola exposición de 

combinaciones [inóculo de L. monocytogenes CECT 5873 (I): BAC (B)] de 

acuerdo a un plan factorial ortogonal de primer orden (Tabla 2.1). 

Recolección de células: después de cada exposición, las células se recolectaron 

mediante centrifugación (2000 g durante 5 minutos a 25 ºC) y se almacenaron 

congeladas en glicerol al 50% (v/v) hasta los ensayos para determinar su resistencia. 

Determinación de la resistencia de las células de L. monocytogenes CECT 5873 

recolectadas al cloruro de benzalconio. Mediante el cálculo de la dosis letal 50 (DL50) a 

partir de un ensayo tipo dosis-respuesta, de acuerdo con lo descrito por Cabo et al. 

1999. 

 

Tabla 2.1: Valores naturales y codificados de las variables en el diseño 
factorial 

 Valores naturales

Valores codificados BAC (mg/l) Inóculo (ml) 

1;1 9 25 

1;-1 9 5 

-1;1 3 25 

-1;-1 3 5 

0;0 6 15 

 

Ensayos de proteómica: la obtención y comparación de los perfiles proteicos de las 

células adaptadas y no adaptadas al BAC se realizó de acuerdo a los procedimientos de 

Sánchez et al. 2010.  
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2.3. Resultados y discusión 

Adaptación de células de L. monocytogenes CECT 5873, 911 y 4032 al BAC 

aplicando el método clásico. 

Los resultados obtenidos mostraron que en las cepas 911 y 4032 el nivel de 

adaptación máxima se alcanzó después de tan solo una exposición (desde DL50 de 3.80 

mg/l en la salvaje hasta 5.06 mg/l en el caso de la 911 y desde 6.96 mg/l hasta DL50 9.19 

mg/l en el caso de la 4032), lo cual demuestra la falta de optimización del método 

clásico e indica que el control de la adaptación de la cepa objeto de estudio después de 

cada exposición al BAC permitiría, al menos en algunos casos, reducir el tiempo de 

experimentación empleado en estudios previos (Aase et al. 2000; To et al. 2002; 

Romanova et al. 2006). 

Por el contrario, la cepa 5873 no alcanzó su nivel máximo de adaptación ni después 

de 5 exposiciones sucesivas al BAC, indicando una mayor capacidad adaptativa de esta 

cepa respecto a las anteriores. Dicha capacidad adaptativa se refleja en un mayor 

incremento entre la resistencia de la cepa 5873 salvaje (DL50=2.71 mg/l) y la cepa 5873 

adaptada después de 5 exposiciones (DL50=7.1 mg/l). Capacidad que justifica la 

selección de esta cepa para los estudios subsiguientes, en los que se ensayaron los 

efectos del tamaño del inóculo y de la concentración de BAC sobre el nivel de 

adaptación tras una sola exposición de células de L. monocytogenes 5873 en fase 

exponencial. 

Una estrategia alternativa para la obtención de células adaptadas de L. 

monocytogenes CECT 5873 al cloruro de benzalconio. 

Los resultados experimentales resultaron describibles mediante la siguiente ecuación 

empírica (poner el valor de r=0.925), cuya representación se observa en la Figura 2.1: 

 

DL50=7,82-0,99B+1,42I+2,24BI          [2.1] 

A partir de la ecuacion [2.1] se deduce claramente la importancia del tamaño del 

inóculo durante las exposiciones en la resistencia final adquirida así como una 
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interacción positiva entre aquél y la concentración de BAC. Sin embargo, el efecto 

individual negativo del cloruro de benzalconio refleja la necesidad de mantener la 

relación [nºde células: BAC] en un valor tal que se encuentre por encima de los límites 

de crecimiento de la cepa. En definitiva, como consecuencia de la aplicación de este 

protocolo, y dentro del ámbito experimental, se consiguió incrementar la resistencia al 

BAC aproximadamente por un factor de 3.69 (DL50=10 mg/l) con respecto a la cepa 

salvaje (células no adaptadas DL50=2.71 mg/l) después de 33 horas de exposición. Ello 

supuso una mejora considerable respecto al método tradicional, con el que la resistencia 

al BAC de L. monocytogenes CECT 5873 se incrementó por un factor de factor: 2.61 

después de después de 5 días de exposiciones sucesivas a concentraciones subletales de 

BAC.  

D
L

50
 (

m
g

/l)

 

Figura 2.1. Efectos del tamaño de inóculo y de la concentración de BAC 

durante la exposición sobre la resistencia (DL50) de células de L. 

monocytogenes CECT 5873. Las variables independientes se expresan en 

valores codificados (Tabla 2.1). 

Además, un análisis comparativo inicial entre los perfiles proteicos de células de L. 

monocytogenes CECT 5873 no adaptada y adaptada al BAC demostró que la adaptación 

al biocida parece acompañarse de una represión proteica. 

Por último, con el objetivo final de identificar aquellos genes responsables de la 

resistencia al BAC en L. monocytogenes, se llevó a cabo un estudio de sensibilidad al 

BAC de un banco de mutantes (alrededor de 10000 para ambas cepas) de Listeria 

monocytogenes EGDe y LO28, identificándose los genes y proteínas asociadas con la 

resistencia al biocida en aquellos casos que obtuvimos valores de MIC superiores a la 

cepa salvaje. La implicación exacta de la proteína codificada lmo2277 en la resistencia 
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de L. monocytogenes EDGe al BAC se está llevando a cabo mediante mutagénesis y 

estrategias de clonación. 

 

3. Resistencia al cloruro de benzalconio, ácido peracético y nisina durante la 

formación de biofilms maduros de Listeria monocytogenes. Food Microbiology. 

doi:10.1016/j.fm.2010.09.014. 

3.1. Introducción 

Una de las consecuencias de la formación de biofilms que puede provocar serios 

problemas económicos y de salud es la adquisición de resistencia (adaptativa) a biocidas 

(Aarnisalo et al., 2007; Gram et al., 2007; Leriche et al., 1999; Minei et al., 2008). De 

hecho, la eficacia de diferentes biocidas para erradicar biofilms de L. monocytogenes ha 

sido evaluada en varios estudios (Aarnisalo et al., 2000; Ammor et al., 2004; Chavant et 

al., 2003; Tyh-JenK and Frank, 2003). La mayoría se han centrado en desinfectantes 

industriales como compuestos de cloruro cuaternario, alcoholes, compuestos clorados y 

otros agentes oxidantes tales como el ácido peracético, ozono y derivados de peróxidos 

(Aarnisalo et al., 2007; Frank et al., 2003; Pan et al., 2006; Krysinski and Brown, 1992; 

González-Fandos et al., 2005). Por el contrario, existen pocos estudios de 

antimicrobianos naturales y sólo algunos de aceites esenciales (Chorianopoulus et al., 

2008; Sandasi et al., 2008; Sandasi et al., 2009) y ácido láctico y bacteriocinas 

producidos por biofilms de bacterias lácticas (Leriche et al., 1999; Minei et al., 2008; 

Guerrieri et al., 2009).  

La mayoría de los trabajos existentes en bibliografía emplean biofilms inmaduros (72 

h: Aarnisalo et al., 2007; 24 h: Bonaventura et al.,  2008; 40 h: Borucki et al., 2003; 28 

h: Frank et al.,  2003; 48 h: Pan et al., 2006). La excepción es el grupo de Gram et al., 

(2007, 2008), en cuyos estudios simulan condiciones reales con biopelículas de más de 

7 días. Sin embargo, de acuerdo con resultados previos obtenidos en esta tesis, 60 horas 

de incubación a 25ºC resultaba insuficiente para la formación de una biopelícula madura 

resistente. Por ello, en el presente capítulo se estudió la formación de las biopelículas 

maduras durante 11 días a 25 ºC en aquellos casos seleccionados como de mayor riesgo 

a partir del desarrollo del objetivo 1. y de la CECT 5873 adaptada al BAC obtenida tras 
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el desarrollo del objetivo 2. Para la evaluación del estado de maduración de las 

biopelículas se utilizaron dos criterios complementarios: la adquisición de resistencia a 

tres biocidas (cloruro de benzalconio (BAC), ácido peracético (PA) y nisina (NIS) y el 

análisis microscópico de las estructuras biopeliculares formadas. Ello supone una 

mejora importante del planteamiento experimental habitual en la bibliografía publicada, 

en donde la formación de biopelículas es evaluada frecuentemente cuantificando 

simplemente biomasa (Di Bonaventura, 2008; Djordjevic et al., 2002; Harvey et al., 

2006; Folsom et al., 2006). Y sólo en algunos casos se realizaron análisis microscópicos 

in situ (Borucky et al., 2003; Chae and Scraft, 2000; Chavant et al., 2003; Kalmokoff et 

al., 2001; Rodríguez et al., 2008; Moltz and Martin, 2005). 

 

3.2. Materiales y Métodos 

Casos experimentales estudiados:  

 

 911-PP-AIV (Biopelículas maduras de L. monocytogenes CECT 911 

formadas sobre polipropileno y con agua intervalvar de mejillón) 

 4032-PP-ACM (Biopelículas maduras de L. monocytogenes CECT 4032 

formadas sobre polipropileno (PP) y con agua de cocción de mejillón)  

 5873-INOX-ACM (Biopelículas maduras de L. monocytogenes CECT 5873 

formadas sobre acero inoxidable y con agua de cocción de mejillón). 

 5873A-INOX-ACM (Biopelículas maduras de L. monocytogenes CECT 5873 

adaptada al BAC (LD50: 2.71 mg/l; Cepa adaptada al BAC: 7.2 mg/l) 

formadas sobre acero inoxidable (INOX) y con agua de cocción de mejillón. 

Esta cepa se obtuvo en experimentos previos mediante 2 exposiciones 

sucesivas a concentraciones crecientes de inóculo y subletales de BAC de la 

cepa salvaje correspondiente. 

Medios residuales y biocidas: el agua de cocción de mejillón e intervalvar se preparó 

tal y como se describe en el primer apartado (Saá et al., 2009). Posteriormente el pH se 

ajustó a 7 y se autoclavó a 121 ºC durante 15 minutos para su esterilización.  
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Biopelículas: la formación de las biopelículas se llevó a cabo en cupones (20 mm x 

20 mm) de acero inoxidable o polipropileno previamente esterilizados y situados 

individualmente en mini placas Petri. En todos los casos, se añadieron 9 ml de inóculo 

para el desarrollo del biofilm. Y a cada tiempo de ensayo (4 y 11 días), los cupones se 

lavan mediante inmersión en PBS durante 10 s para eliminar las células no adheridas.  

Ensayos dosis-respuesta y determinación del nº de células viables  

Se añaden 0.5 ml de cada concentración de biocida (BAC (mg/l): 2.5, 5,10, 17, 25, 

50, 100, 250, 500, 1000; PA (mg/l): 1, 2.5, 5, 10, 17, 25, 50, 100, 250, 500; Nisina 

(UI/ml): 5, 10, 15, 20, 50, 75, 100, 125, 150, 165, 185, 200, 400, 1500) sobre toda la 

superficie del cupón previamente lavado. Se espera el tiempo de exposición 

predeterminado (10 minutos) y se neutraliza añadiendo 10 ml de una disolución 

neutralizante (34 g/l KH2PO4 ajustado a pH 7.2 con NaOH, 3 g/l soybean lecithin, 30 

ml/l Tween 80, 5 g/l Na2S2O3 y 1 g/l L-histidine). El número de células viables se 

determina siguiendo el método ya descrito. En los ensayos realizados en células 

plantónicas se utilizó el mismo procedimiento, pero en tubos y utilizando TSB como 

medio de ensayo. Experimentos preeliminares permitieron conseguir aproximadamente 

la misma concentración de inóculo en ambos sistemas. Todos los experimentos dosis-

respuesta se realizaron por triplicado 

3.3. Resultados 

Resistencia al cloruro de benzalconio de células plantónicas y biopelículas de L. 
monocytogenes. 

Se compararon los valores de resistencia (LD90) al BAC obtenidos en células 

plantónicas con los obtenidos en el caso de biopelículas maduras (tras 4 y 11 días). 

Además, y con el objetivo de investigar si la adaptación fisiológica después de la 

exposición al BAC desencadenaba resistencias cruzadas en las biopelículas maduras que 

pudieran formar, la cepa CECT 5873 adaptada al BAC (LD50= 7.22) se incluyó en este 

y en los siguientes estudios. 
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Figura 3.1: Valores de DL90 (mg/l) obtenidos después de la 

exposición de células plantónicas y biopelículas maduras de L. 

monocytogenes al cloruro de benzalconio (BAC).  

Los resultados obtenidos (Figura 3.1) muestran un incremento significativo (p<0.05) 

en los valores de LD90 (es decir resistencia) entre las células plantónicas y los biofilms 

al igual que para la nisina. Sin embargo, mientras que en el caso de la CECT 5873 no se 

produce un aumento significativo de la resistencia de los biofilms formados en 

polipropileno (PP) después de 4 y 11 días, la resistencia de las biopelículas formadas 

por la cepa 911 y la 4032 aumenta significativamente con el tiempo de maduración y 

fue significativamente mayor para la 4032 (p<0.05) tanto en INOX como en PP, siendo 

superior en PP donde la resistencia aumenta por un factor de 36 después de 11 días con 

respecto al sistema plantónico. Los valores de los parámetros obtenidos tras los ajustes 

de las curvas dosis-respuesta obtenidas tras la aplicación de los tres biocidas a la 

ecuación logística se muestran en la tabla 3.1. 

 

Resistencia a la nisina de células plantónicas y biopelículas de L. monocytogenes. 

En este caso, a diferencia del BAC, no se observaron diferencias significativas entre 

los valores de LD90 obtenidos para los biofilms de 4 días. Sin embargo, después de 11 

días, los biofilms formados por la cepa 4032 en INOX fueron significativamente más 

resistentes que los formados por la misma cepa en polipropileno y por la cepa 911 

(Figura 3.2).  
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Figura 3.2: Valores de DL90 (mg/l) obtenidos después de la exposición de 

células plantónicas y biopelículas maduras de L. monocytogenes a nisina. 

De nuevo, los biofilms formados por la cepa 5873 resultaron ser los más sensibles, no 

observándose diferencias significativas entre los valores de su resistencia obtenidos 

durante la maduración. Sin embargo, se produjo un incremento significativo en la 

resistencia (p < 0.05) al BAC de la cepa adaptada con respecto a los biofilms formados 

por la no adaptada después de 11 días de incubación. 

 

Table 3.1: Valores de los parámetros (k y r) obtenidos del ajuste de los datos experimentales a un modelo 

logístico (Cabo et al., 1999; Cabo et al., 2009) 

 911-PP-IWM 4032-SS-MCJ 4032-PP-MCJ 5873-PP-MCJ 5873A-PP-MCJ 

 BM. 4D BM.11D BM. 4D BM.11D BM. 4D BM.11D BM. 4D BM.11D BM. 4D BM.11D 

KBAC 97.363 95.506 99.65 99.450 99.060 93.188 99.477 99.097 99.748 91.275 

rBAC 0.308 0.1746 0.053 0.033 0.235 0.007 0.256 0.231 0.138 0.404 

Knisin 99.595 99.056 86.413 91.913 84.872 87.189 69.412 83.274 76.843 89.048 

rnisin 0.013 0.007 0.215 0.006 0.255 0.023 0.028 0.327 0.0730 0.029 

KPA 99.342 99.810 99.704 99.736 99.998 97.457 98.976 98.560 94.353 99.883 

rPA 0.330 0.419 0.169 0.069 0.480 0.097 0.439 0.263 2.816 2.255 

Por último, en el caso de la nisina, y tal y como se muestra en la tabla 3.1., se 

obtienen menores valores de k y de r que en el caso del BAC y el ácido peracético  
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Resistencia a ácido peracético (AP) de células plantónicas y biopelículas de L. 
monocytogenes. 

 

En el caso del ácido peracético, y a diferencia de los anteriores, se obtuvieron valores 

de LD90 significativamente más altos para las células plantónicas cuando se utilizaba 

TSB como medio de cultivo, que para las biopelículas maduras después de 4 y 11 días 

de incubación (Figura 3.3). Sin embargo, cuando en experimentos posteriores (data not 

shown) se sustituyó el TSB por tampón fosfato (PBS) se obtenían los mismos valores de 

resistencia que los obtenidos en los biofilms de 4 días de maduración, indicando un 

efecto de la materia orgánica presente en el medio (data not shown). 

 

Únicamente en el caso de la cepa 4032 se observó un incremento significativo en la 

resistencia (p < 0.05) entre 4 y 11 días de maduración en ambos materiales. Finalmente, 

en el caso de la cepa 5873 adaptada al BAC, los valores de resistencia de las 

biopelículas maduras formadas tras 4 y 11 días de incubación fueron significativamente 

menores que en el caso de las formadas por la cepa salvaje correspondiente. 
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Figura 3.3: Valores de DL90 (mg/l) obtenidos después de la exposición de 

células plantónicas y biopelículas maduras de L. monocytogenes al ácido 

peracético (AP) 
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Análisis microscópico de biopelículas de L. monocytogenes formadas en los 
escenarios ensayados. 

 

Figura 3.4: Imágenes de microscopio electrónico (SEM) de la cepa 

4032 (4b) en acero inoxidable (INOX) (A) y polipropileno (PP) (B), 

CECT 911 (1/2 c) en PP (C) y la CECT 5873 (D) y 5873A (E) en PP 

después de 4 (derecha) y 11 días (izquierda). 

FFiigg..  CC  

FFiigg..  AA  

FFiigg..BB  
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Las imágenes obtenidas después de 4 y 11 días de maduración mostradas en la 

Figura 3.4 permitieron diferenciar tres niveles de densidad celular, siendo claramente la 

CECT 4032 la que muestra una estructura tridimensional más compleja.  

Estudio de la relación de las cinéticas de adherencia y la formación de biopelículas 

de L. monocytogenes. 

Las cinéticas de adherencia obtenidas (Figura 3.5) muestran la ausencia de 

diferencias significativas entre el número máximo de células adheridas de Listeria en 

los diferentes escenarios. 
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Figura 3.5: Cinéticas de adherencia de Listeria monocytogenes en 

diferentes casos experimentales. CECT 911 en polipropileno (E) en 

presencia de agua intervalvar (AI). CECT 4032 en acero inoxidable (V) en 

presencia de agua de cocción de mejillón (ACM) y en polipropileno (B) en 

ACM C: CECT 5873 (C) y la CECT 5873A (adaptada al BAC) (H) en 

polipropileno en ACM. 

3.4. Discusión 

Los resultados obtenidos demostraron que la cepa 4032 es la que forma biopelículas 

maduras más resistentes después de 11 días de incubación a 25 ºC (Figuras 3.1, 3.2, 

3.3) con respecto a los 4 días y al estado plantónico. Además, las imágenes obtenidas 

tras el análisis microscópico mostraron que es también esta cepa la que forma 

estructuras tridimensionales más complejas (Figura 3.4). Los resultados demostraron, 

por tanto, una relación entre la estructura tridimensional de las biopelículas maduras de 

L. monocytogenes y su resistencia a los biocidas ensayados. Esta aparente relación entre 

estructura-resistencia apoya la teoría de que el aumento de resistencia observado en 

biopelículas bacterianas tiene más que ver con la disposición de las células que con 
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cambios fisiológicos o metabólicos a nivel celular (Folsom et al., 2006; Kalmokoff et 

al., 2001) y explica aquellos casos en los que no se observan diferencias significativas 

con respecto a las células planctónicas (Kastbjerg and Gram, 2009; Stopforth et al., 

2002). Sin embargo, dicho incremento de resistencia a biocidas y complejidad parece no 

depender de la adherencia inicial (Figura 3.5), lo que indica la necesidad de considerar 

biopelículas y no células plantónicas cuando se trata de optimizar protocolos de 

desinfección. De hecho, parece que la capacidad de formación de biopelículas maduras 

es inherente a cada cepa de L. monocytogenes y que no depende estrictamente de la 

capacidad inicial de las células de adherirse. Prueba de ello es que los mayores valores 

de adherencia inicial se observaron en los casos 911-PP-AI y 4032-PP-ACM, siendo 

mucho menores en aquellos casos donde se utilizó como superficie experimental el 

acero inoxidable. Estos resultados evidencian además la necesidad de conocer la 

composición de la matriz extracelular para mejorar las estrategias actuales de 

desinfección actuales.  

El ácido peracético parece ser el más efectivo de los tres desinfectantes empleados en 

biopelículas (Figura 3.3). Su elevada capacidad oxidante junto con su bajo peso 

molecular podría facilitar su penetración dentro del biofilm. Sin embargo, tiene una 

aplicabilidad reducida en superficies sucias ya que su elevada reactividad implica la 

disminución de su acción en presencia de materia orgánica disuelta, mucho más 

abundante en cultivos líquidos que en las células adheridas lavadas previamente a la 

exposición al desinfectante. En el extremo opuesto se encuentra la nisina, para la que el 

aumento de complejidad de la biopelícula proporciona valores de inhibición máxima 

por debajo del 90 % (tabla 3.1) debido probablemente a que la formación de la matriz 

de exopolisacáridos dificulta más la efectividad de este antimicrobiano, lo cual pudiera 

relacionarse con su enorme capacidad de adsorción en superficies.  

Si comparamos la cepa 5873 salvaje con la adapatada (5873A) al BAC, se 

identificaron varias respuestas cruzadas: una de signo positivo, entre el BAC y la nisina, 

y otra de signo negativo, entre el BAC y el ácido peracético. Estos resultados ponen de 

manifiesto la importancia del estudio de respuestas cruzadas en biofilms para preveer 

posibles situaciones de riesgo derivadas de la adaptación a desinfectantes de amplio uso 

industrial. En este sentido, sólo hemos podido encontrar un estudio (Stopforth et al., 

2002) en el cual los autores no encontraron respuestas cruzadas entre la adaptación de 
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biofilms de L. monocytogenes al ácido y la exposición subsiguiente al AP, al BAC y al 

hipoclorito sódico.  

Finalmente, los resultados obtenidos muestran que la utilización de ingredientes 

puros activos mejora los empleados habitualmente, productos comerciales mezclas de 

varios compuestos, ya que evitan posibles respuestas de resistencia múltiples (Frank et 

al., 2003; González-Fandos et al., 2005; Jacquet and Reynaud, 1994) Paula, yo este 

párrafo lo sacaría, realmente no hacemos ninguna comparación entre los desinfectantes 

puros y los comerciales.  

La determinación de la resistencia del biofilm (DL90) a partir de principios básicos de 

la cinética microbiana permite su adecuada cuantificación y posibilita la comparación 

objetiva entre los distintos casos estudiados. Ello supone además una alternativa útil a la 

utilizada en la mayoría de los trabajos previos, en donde sólo se estudian 2 o tres 

concentraciones de biocidas en los ensayos dosis-respuesta (Aarnisalo et al., 2000; Thy-

Jenq et al., 1993), se dosifican mezclas de desinfectantes (en algunos casos de 

composición desconocida) y se cuantifica la resistencia del biofilm mediante métodos 

semicuantitativos (MIC) y durante un periodo demasiado corto de incubación.  

 

4. Cinéticas de adherencia, resistencia al cloruro de benzalconio y análisis 

microscópico de biopelículas mixtas formadas por Listeria monocytogenes y 

Pseudomonas putida. 

4.1. Introducción 

Una de las vías frecuentes de contaminación alimentaria es mediante contaminación 

cruzada a través de superficies de plantas de procesado de alimentos (Ammor et al., 

2004; Norwood and Gilmour, 1999; Porsby et al., 2008) donde L. monocytogenes puede 

adherirse y formar biofilms (Aase et al., 2000; To et al., 2002; Takahashi et al., 2009). 

Esta resistencia se relaciona con la estructura tridimensional de las células que 

constituyen el biofilm, la cual es el resultado de interacciones entre las especies 

bacterianas presentes (Wuertz et al., 2004) y determina el grado de acceso de los 

biocidas a las células (Bourion and Cerf, 1996, Qu et al., 2010). Además, se ha 

demostrado que las células de los biofilms son fenotípica y genotípicamente diferentes a 
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las células plantónicas (Nadell et al., 2008). Esta situación se complica aún más debido 

a que en situaciones reales más de dos especies bacterianas coexisten formando biofilms 

y se ha demostrado que esto podría incrementar su resistencia a los biocidas (Sharma 

and Anand, 2002; Kastbjerg and Gram, 2009). 

4.2. Matreriales y métodos 

En el presente trabajo se estudió el efecto de la presencia de P. putida CECT 845 

sobre la resistencia al cloruro de benzalconio de biopelículas maduras formadas por L. 

monocytogenes en los 5 escenarios considerados en el apartado 3. Se utilizó el mismo 

diseño experimental que el descrito en dicho apartado, salvo la inoculación simultánea 

de P. putida y L. monocytogenes a la misma concentración (108 UFC/ml en ambos 

casos).  

4.3. Resultados y discusión 

Comparación entre la adherencia de L. monocytogenes en monocultivo y en presencia 

de Pseudomonas putida CECT 845  

Se compararon las cinéticas de adherencia de 3 cepas de L. monocytogenes (CECT 

911, 4032 and 5873) en monocultivo y co-cultivo con P. putida en diferentes escenarios 

seleccionados de acuerdo a los estudios previos (Saá et al. 2009; Saá Ibusquiza et al. 

2010). 

A. B.

0 2 4 6 8 10 12 14

tiempo (dias)

C.

0 2 4 6 8 10 12 14

tiempo (dias)

D. E.

0 2 4 6 8 10 12 14

tiempo (dias)

0 2 4 6 8 10 12 14

tiempo (dias)

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14

lo
g 

ce
l. 

ad
h.

  (
U

FC
/m

m
2)

. 

tiempo (dias)  

Figura 4.1: Cinéticas de adherencia de Listeria monocytogenes en monocultivo (O) 

y en presencia de Pseudomonas putida 845 (●). A: CECT 911 en polipropileno y 

agua intervalvar (AIV); B: CECT 4032 en acero inoxidable y agua de cocción de 

mejillón (ACM); C: CECT 4032 en polipropileno en ACM; D: CECT 5873 en 

polipropileno en ACM and E: CECT 5873A (adaptada al BAC) en polipropileno en 

ACM. Además se incluyen en esta gráfica las cinéticas de adherencia observadas de 

P. putida (*) y esperadas (línea continua) en las biopelículas mixtas.  
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Tal y como muestra la figura 4.1, el resultado más significativo es el descenso 

pronunciado del número de células adheridas en presencia de P. putida observado en el 

caso de la cepa 4032 y la 5873 adaptada al BAC en polipropileno (Figura 4.1.B. y 

4.1.E.).  

Aunque el modelado de los datos experimentales facilita su comparación, en el caso 

de L. monocytogenes la ausencia de puntos antes en los 4 primeros días imposibilitó el 

ajuste matemático. No así en el caso de P. putida, donde los resultados de adherencia 

resultaron describibles (r2=0.995) mediante un modelo aditivo de los ecuaciones 

logísticas que describen adecuadamente el incremento y descenso de la población de la 

biopelícula (ecuación 1.2) (Herrera et al. 2007; Saá et al. 2009). Y este ajuste de los 

datos experimentales permitió identificar 2 patrones de adherencia de este 

microorganismo en presencia de L. monocytogenes, que, como veremos, van a dar lugar 

a dos patrones de asociación del inóculo mixto: 

 Patrón tipo A: que tiene lugar cuando Pseudomonas se asocia con las cepas 

de Listeria 4032, especialmente en INOX, y con la 5873 salvaje (Fig. 4.1.B. 

C. y D. respectivamente). Se caracteriza por mayores niveles de adherencia 

máxima (veánse valores de parámetro aad y rad en la tabla 4.1) que los 

obtenidos en el patrón B. 

Tabla 4.1.: Valores de los parámetros obtenidos tras ajuste de los resultados experimentales de adherencia 

de Ps. putida en presencia de diferentes cepas de L. monocytogenes a la ecuación [1.2] 

 911-PP-IWM 4032-SS-MCJ 4032-PP-MCJ 5873-PP-MCJ 5873-PP-MCJ 

aad 
30499 1800000 370723 199237 45000 

rad 
5,014 2,974 1,101 3,204 5,014 

mad 
0,700 1,843 0,998 1,881 0,700 

aD 
26244 1497876 268936 184311 26244 

rD 
10,425 5,500 4,173 4,965 8,500 

mD 
1,676 4,500 1,820 51,632 8,000 

 Patrón tipo B: que tiene lugar cuando Pseudomonas se asocia con las cepas 

de Listeria 911 y la 5873 adaptada al BAC (Fig. 4.1.A. y E. 
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respectivamente). En este caso, los valores máximos de adherencia de P. 

putida descienden 1-log con respecto al patrón de tipo A.  

Estos dos patrones identificados van a dar lugar a biopelículas maduras de 4 días de 

maduración con diferente resistencia  al cloruro de benzalconio. 

Comparación entre la resistencia al BAC de biopelículas monoespecie de  L. 

monocytogenes y biopelículas mixtas formadas tras la asociación de L. monocytogenes 

y P. putida 

Los resultados obtenidos mostraron que P. putida tiene un papel determinante en la 

formación de las estructuras biopeliculares mixtas, observándose que su asociación con 

L. monocytogenes modifica significativamente (p<0.05) la resistencia al BAC después 

de 4 y 11 días de incubación a 25 ºC respecto a los biofilms monoespecie (Figura 4.2). 

No obstante, los efectos de la presencia de P. putida fueron diferentes tras 4 y 11 días de 

incubación.  

Después de 4 días de incubación, los resultados obtenidos demostraron que la 

presencia de P. putida en la biopelícula supone un incremento significativo de la 

resistencia al cloruro de benzalconio en todos los casos experimentales ensayados 

(Figura 4.2.). Estos resultados están de acuerdo con los obtenidos previamente por 

otros autores (Ammor et al., 2004; Bourion and Cerf 1996). Sin embargo, en todos los 

escenarios ensayados los niveles de adherencia de L. monocytogenes disminuyen 

significativamente en presencia de Pseudomonas putida respecto a los observados en 

monocultivo (Figura 4.1).  

A este tiempo de maduración, y tal y como se anunció previamente, los resultados de 

resistencia al BAC permitieron diferenciar los casos experimentales en dos grupos de 

acuerdo con las cinéticas de adherencia de P. putida desde el inóculo mixto: i) patrón 

favorable para la formación de biopelículas, que ocurre en 3 de los 5 escenarios 

estudiados (cepas 4032 y 5873 salvaje, Fig. 4.1.B. C. y D. respectivamente) y se 

caracteriza por una mayor velocidad de adherencia de P. putida respecto a L. 

monocytogenes. Y que después de 4 días de incubación da lugar a las biopelículas más 

resistentes al BAC, llegándose a multiplicar los valores de la resistencia (medida en 

términos de la DL90) por un factor de 6 y ii) patrón desfavorable para la formación de 
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biopelículas, que ocurre en los escenarios de las cepas 911 y 5873 adaptada al BAC, 

(Fig. 4.1.A. y E. respectivamente) en los que la velocidad de adherencia de P. putida es 

menor que la de L. monocytogenes. En estos casos la resistencia aumenta por un factor 

de 2. Especialmente significativo es el aumento de resistencia observado en la CECT 

5873, cuya asociación con L. monocytogenes le permite formar biopelículas resistentes. 
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Figura 4.2: Comparación entre la DL90 de BAC (mg/l) frente a biofilms 

monoespecie y biofilms mixtos de L. monocytogenes en presencia de P. 

putida empleando diferentes cepas de L. monocytogenes. A.: con la CECT 

911-PP-AI; B.: CECT 4032-INOX-ACM, 4032-P-ACM; C.: CECT 5873-PP-

ACM y CECT 5873A (adaptada al BAC)-PP-ACM 
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Por el contrario, después de 11 días de incubación se observa una disminución 

significativa (p<0.05) de la resistencia al cloruro de benzalconio de la biopelícula 

constituida por L. monocytogenes y P. putida respecto a los valores obtenidos a los 4 

días de incubación que refleja una desestructuración de la biopelícula mixta ocurrida en 

todos los casos experimentales ensayados, estando acompañada además en 2 de los 5 

casos ensayados (4032 y 5873A en polipropileno) por un descenso pronunciado del 

número de células adheridas (Figura 4.1.C. y E.). Mientras que el desprendimiento de 

células de biofilms de monoespecie ha sido descrito previamente por varios autores  

(S.aureus: Herrera et al., 2007, P. aeruginosa: Boles et al., 2005, B. cereus: Wijman et 

al., 2007), las razones por las cuales se produce son todavía inciertas (Marshall, 1988, 

Takhistov and George, 2004, Rodríguez et al., 2007, Sauer et al., 2004; Liu et al., 2007; 

Boles et al., 2005). Además, los resultados obtenidos demuestran que la adaptación de 

la cepa 5873 al BAC disminuye su capacidad de asociación con P. putida, 

proporcionando biopelículas mixtas significativamente menos resistentes (p<0.05) al 

BAC y con una mayor tendencia a desestabilizarse que la cepa salvaje. 

 

Análisis de microscopio 

El análisis microscópico de las estructuras formadas demostraron una mayor 

complejidad tridimensional para el biofilm formado por la cepa CECT 4032-INOX 

(Figuras 4.3 A y B) tanto en presencia como en ausencia de P. putida tras 11 días de 

incubación. En el extremo opuesto se encuentra la CECT 5873A, cepa cuya asociación 

al BAC proporciona biopelículas de menor resistencia y con el mayor nivel de 

desestructuración de todos los casos ensayados (Figura 3.3.C y D) 

Además, la distribución de las cepas de acuerdo a su resistencia al BAC se mantiene 

en presencia de P. putida respecto a la obtenida en las correspondientes biopelículas 

maduras monoespecie, siendo la 4032 (serotipo 4b) la más resistente y la cepa 911 la 

que presenta valores de DLs iguales en ambos casos a 4 y 11 días de incubación. La 

excepción es la cepa 5873 salvaje, que en presencia de P. putida  forma una biopelícula 

mucho más resistente al BAC que en el monocultivo, donde no se produce un aumento 

de la resistencia con el tiempo de incubación. En cualquier caso, y salvo este caso 

concreto, los resultados obtenidos apoyan la teoría de que la capacidad de L. 
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monocytogenes de formar biofilms y el tipo de arquitectura del biofilm formado no es 

un proceso estocástico, sino regulado a nivel celular y poblacional (quorum sensing) de 

manera específica en cada cepa, tal y como ha sido demostrado en otros géneros 

bacterianos.  

 

 

Figura 4.3: Imágenes de microscopía electrónica (SEM) de biofilms 

maduros de 11 días formados por las cepas CECT 4032-INOX (3A) y la 

CECT 5873A (3C)-PP monoespecie y asociados con P. putida CECT 845 

(3B y 3D). 

 

Los resultados obtenidos mostraron además un claro efecto del material sobre la 

asociación entre P. putida y L. monocytogenes CECT 4032, tal y como se refleja en la 

Figura 4.4., en donde se observa cómo la desestructuración de la biopelícula mixta 

después de 11 días de maduración es significativamente mayor en polipropileno (4.4. B) 

que en acero inoxidable.  

 

FFiigg..DD  FFiigg..CC  

FFiigg..BB  FFiigg..AA  
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Figura 4.4: Imágenes de microscopía electrónica (SEM) de biofilms 

maduros de 11 días formados por la cepa CECT 4032 en INOX (4A) y en 

PP (4B) con P. putida. 

 

En conjunto, estos resultados reflejan que la consideración de las asociaciones 

bacterianas que ocurren en la naturaleza en el diseño de protocolos de desinfección 

redundaría en una mejora de los sistemas de control suponiendo un incremento de la 

seguridad alimentaria. Pero además, la aplicación de biocidas debe de asegurar la 

eliminación de materia orgánica residual, que puede servir de anclaje para 

recontaminaciones y formación de nuevas biopelículas. De hecho, el análisis 

microscópico realizado demuestra la presencia de materia orgánica residual después de 

la desinfección con cloruro de benzalconio de 100 mg/l (Figura 4.5). Por tanto, se hace 

necesario el diseño de protocolos de desinfección que aseguren la eliminación completa 

de la matriz después de la desinfección.  

FFiigg..AA  

FFiigg..BB  
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Figura 4.5: Imágenes de microscopía electrónica (SEM) de los residuos de 

los biofilms formados por la cepa CECT 4032 en INOX y P. putida tras la 

acción del BAC empleando una concentración de 100 mg/l.  

Aunque tanto los resultados obtenidos en el capítulo previo como en este dejan claro 

que la mayor o menor capacidad de formar biopelículas es inherente a cada cepa 

bacteriana, también ponen en evidencia que la presencia de P. putida en el biofilm no es 

irrelevante. Dos hechos principales observados apoyan esta afirmación: 

1) Que la cepa salvaje 5873 en presencia de Ps. putida forma biofilms con una 

mayor resistencia al BAC que los correspondientes biofilms monoespecie 

(Figura 4.2 C). 

2) Que las diferencias entre los biofilms formados por la cepa 4032 en polipropileno 

y en acero inoxidable se deben a una mayor capacidad de adherencia de P. putida 

esta última, con máximos de adherencia incrementados en más de 1-log. Como 

consecuencia, se forma un biofilm con una mayor resistencia al BAC en INOX, 

después de 4 y 11 días de incubación (Figura 4.2. B). Sin embargo, otra explicación 

para estas diferencias podría deberse a un descenso en la actividad metabólica 

derivada de la formación de un biofilm más denso y complejo sobre acero inoxidable 

(Rodrigues et al. 2009), lo cual implica una mayor estabilidad y probablemente un 

retraso en el comienzo de la fase de desestructuración del biofilm. Además, la 

presencia de conexiones intercelulares y la proximidad entre las células de diferentes 

especies en el biofilm podría facilitar la transferencia de material genético, incluídos 

los genes asociados a la resistencia a estímulos externos (Ammor et al., 2004, Wuertz 

et al., 2004, Nadell et al., 2009). 
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El desarrollo de los objetivos anteriores, permitió concluir que la cepa 4032 (4b), 

sola o asociada con P. putida, es la que forma estructuras biopeliculares más resistentes 

a desinfectantes y que el incremento de dicha resistencia se relaciona sin duda con su 

capacidad de formar estructuras tridimensionales complejas. Sin embargo, para los 

estudios de adaptación al BAC se eligió la cepa CECT 5873 por ser la que mostraba la 

mayor capacidad adaptativa al cloruro de benzalconio, demostrándose a posteriori su 

condición de mala formadora de biopelículas y como consecuencia, su mayor facilidad 

para su transferencia a alimentos.  

 

5. Efectos combinado de CO2 y nisina sobre células de Listeria monocytogenes 

transferidas a mejillón desde biopelículas adaptadas y no adaptadas al cloruro de 

benzalconio. Accepted in Journal of Food Protection 

5.1. Introducción 

De acuerdo con las últimas inspecciones realizadas por la EFSA (2009, 2010), uno 

de los tipos de alimentos con mayor incidencia en L. monocytogenes son los productos 

de la pesca listos para el consumo. Tal y como se ha descrito, su presencia en alimentos 

se asocia a su transferencia por contacto desde las plantas de procesado, donde L. 

monocytogenes persiste formando biopelículas (Porsby et al. 2008, Rodríguez and 

McLandsborough 2007 dicho en el apartado anterior). Y también, en algunos casos se 

ha demostrado que las cepas de L. monocytogenes persistentes son resistentes a QACs 

como el cloruro de benzalconio (BAC) (Aase et al 2000). Por otro lado, el envasado en 

atmósferas modificadas (EAM) es una  técnica de conservación aplicada con éxito en 

alimentos de origen marino (Pastoriza et al. 1996a, 1996b, 1998, 2002, 2004; Cabo et 

al. 2003), pudiendo, sin embargo, favorecer el crecimiento de microorganismos 

anaerobios facultativos como L. monocytogenes. En estas situaciones, la aplicación de 

bacteriocinas constituye una solución útil para incrementar la calidad y seguridad (Cabo 

et al. 2001, 2005, 2009). De este modo, en una planta de procesado de mejillón puede 

existir el riesgo de que células de Listeria monocytogenes adaptadas al BAC persistan 

formando biopelículas y se transfieran por contacto al mejillón antes del envasado. Sin 

embargo, no existen estudios previos acerca de los efectos de la adaptación de L. 
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monocytogenes a desinfectantes de amplio uso industrial sobre su resistencia a la 

aplicación de atmósferas modificadas. 

El principal objetivo de este trabajo es comparar la viabilidad de células procedentes 

de una biopelícula adaptada y no adaptada al BAC en atmósferas ricas en CO2 y O2 una 

vez han sido transferidas por contacto a mejillón cocido y vivo, respectivamente, y 

almacenadas a 2.5ºC. Además, en el caso concreto del mejillón cocido, se recurrió a un 

diseño factorial de primer orden (Box & Hunter, 1988) para el estudio adicional del 

efecto combinado del CO2 y la nisina. 

5.2.Materiales y métodos 

Cepas: Listeria monocytogenes CECT 5873 adaptada al BAC (DL50=7.2 mg/l) se 

obtuvo en experimentos previos a partir de dos cultivos sucesivos de la cepa salvaje 

(DL50=2.7 mg/l) en concentraciones subletales de BAC.  

Medios residuales, inóculo y formación e biopelículas: La preparación de los medios 

residuales y el procedimiento para la formación de biopelículas se realizó como se 

describe en los apartados previos. Se utilizaron biofilms de L. monocytogenes CECT 

5873 adaptada y no adaptada al BAC formados en cupones de INOX (10 mm x 10 mm) 

después de 7 días de incubación a 25 ºC. Tras el lavado con PBS durante 30 segundo, el 

número  

Ensayos de transferencia: la transferencia de las células adheridas a los mejillones se 

realizó mediante el contacto del cupón y la vianda (mejillón cocido) o concha (mejillón 

vivo) durante 2 minutos. El tiempo de contacto (10 min) se determinó a partir de 

estudios preliminares, alcanzándose 5.6 log UFC de L. monocytogenes por de mejillón 

cocido y 7.2 log UFC por gramo de mejillón vivo.  

Aplicación de la nisina: se dosificó en disolución acuosa (en concentraciones de 210, 

115, 21 UI/ml) mediante pipeteo sobre la vianda. Dicha dosificación se realizó después 

de la transferencia de L. monocytogenes y antes del envasado. 

Envasado: Las muestras así preparadas se envasaron en bolsas tipo barrera (Cryovac, 

SL) y se insuflaron a continuación las mezclas de gases (Carburos Metálicos, 

Barcelona) correspondientes, almacenándose posteriormente en cámara de refrigeración 
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a 2.5ºC hasta la toma de muestra. A cada tiempo prefijado, se determinó del número de 

células viables de L. monocytogenes mediante los métodos tradicionales de siembra en 

placa y utilizando agar Palcam (Liofilchem, S.L.R., Italia) a pH=9 como medio de 

cultivo. El pH del agar se ajustó a 9 para asegurar la inactivación de la nisina.  

5.3. Resultados y discusión 

En mejillón cocido 

El número de células viables de L. monocytogenes (LMV) obtenidos resultaron 

describibles mediante las siguientes ecuaciones empíricas significativas después de 7, 

11 y 20 días de almacenamiento, representadas en las Figuras 5.1 y 5.2: 

 L. monocytogenes CECT 5873 no adaptada (DL50=2.7 mg/l): 

Despúes de 7 días: LMV=4.25-1.18C-1.48N-1.18CN [5.1] 

Despúes de 11 días:  LMV=5.25-0.45C-0.74N+0.46CN  [5.2] 

Despúes de 20 días a:  LMV=5.72-1.43C-0.86N   [5.3] 

 Cepas 5873 adaptada (DL50=7.2 mg/l): 

Después de 7 días: LMV=3.65-0.57C-0.87N [5.4] 

Después de 11 días:  LMV=5.24-0.45C-0.94N [5.5] 

Después de 20 días:  VLM=5.47-0.37C-0.79N+0.54CN  [5.6] 

 

Las ecuaciones obtenidas mostraron el conocido efecto inhibitorio del CO2 (C) y de 

la nisina (N) frente a L. monocytogenes (efecto del CO2: Sheridan et al 1995, Olarte et al 

2002; efecto de la nisina: Nilson et al. 1997, López- Mendoza et al. 2007). Sin embargo, 

no fue posible encontrar estudios previos sobre la efectividad del CO2 en biofilms y solo 

uno en el caso de la nisina (Minei et al., 2008). Por otro lado, la interacción de signo 

positivo puso de manifiesto la incompatibilidad de ambas variables a concentraciones 

altas. Esto último contrasta con estudios previos en donde se demostró un efecto 

sinérgico entre CO2 y nisina sobre la supervivencia de células planctónicas de L. 

monocytogenes (López-Mendoza et al. 2007, Nilsson et al. 1997, Nilsson et al 1999, 
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Szabo et al. 1998). Esta diferencia entre el efecto conjunto de ambas variables en 

sistemas plantónicos y sésiles podría reflejar un aumento de la incompatibilidad entre 

antimicrobianos con acción a nivel de membrana derivada de la presencia de 

exopolisacáridos en las biopelículas transferidas al mejillón cocido. De hecho, Fang and 

Lin (1994) demuestran la inefectividad de la nisina en presencia de CO2 frente a P. fragi 

productora de exopolisacáridos.  

 

Los resultados obtenidos demostraron que las biopelículas formadas por células 

adaptadas de BAC podían ser más resistentes a la aplicación de atmósferas modificadas 

ricas en CO2 y nisina una vez transferidas al mejillón cocido por contacto (simulando 

contaminación cruzada) tal y como reflejan las ecuaciones obtenidas tras 7 y 20 días de 

almacenamiento siendo los coeficientes obtenidos tanto para el BAC como para la 

nisina significativamente mayores (p<0.05). Después de 7 días, el modelo predice una 

reducción logarítmica (RL) de 3.39 log y de 5.12 log en L. monocytogenes adaptada y 

no adaptada, respectivamente, una vez transferidas a mejillón cocido y envasado bajo 

condiciones de 90% de CO2 y 210 UI/ml de nisina (ec. 5.1 y 5.4). Esto supone un 

incremento en el riesgo asociado a la presencia de este género en las plantas de 

procesado. Aunque no se encontraron estudios previos sobre resistencias cruzadas 

derivadas de la resistencia a desinfectantes, sí se ha demostrado una respuesta cruzada 

entre la tolerancia a ácido de L. monocytogenes y su mayor resistencia al CO2 (Francis 

et al. 2007). Además, estos resultados concuerdan con el estudio previo desarrollado en 

el apartado 3 (Saá Ibusquiza et al., 2010) en el que se obtenía que los biofilms maduros 

adaptados al BAC eran más resistentes a la nisina que los no adaptados al BAC. 

 Sin embargo, después de 11 días de incubación las diferencias entre ambas células 

biopeliculares de L. monocytogenes (adaptadas y no adaptadas) decrecen y se obtienen 

ecuaciones polinómicas (ec. 5.2 y 5.5) y superficies de respuesta (Fig 5.2 y 5.3) 

similares, lo que sin duda responde a la variación de los efectos de las variables 

resultado de la condición cinética de los sistemas microbianos en alimentos. 

Por último, el hecho de que los efectos de las variables decrezcan con el tiempo de 

almacenamiento demuestra que los biofilms de L. monocytogenes resisten los 

tratamientos empleados en mejillón cocido a esta temperatura.  
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Figura 5.2: Superficies de respuesta correspondientes al efecto combinado del 

CO2 y de la nisina frente a las células viables de L. monocytogenes CECT 5873 

procedentes de una biopelícula adaptada al BAC (LMV en log UFC/g) después 

de 7, 11 y 20 días de almacenamiento a 2.5 ºC. Las variables se expresan en 

valores codificados. 
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Figura 5.3: Superficies de respuesta correspondientes al efecto combinado del 

CO2 y de la nisina frente a las células viables de L. monocytogenes  

procedentes de una biopelícula CECT 5873 no adaptada al BAC  (LMV en Log 

UFC/g) después de 7, 11 y 20 días de almacenamiento a 2.5 ºC. Las variables 

se expresan como valores codificados. 

 

A pesar de que la explicación de los resultados obtenidos necesitaría de experimentos 

adicionales, una revisión bibliográfica permitió encontrar algunas razones posibles, que 

abrirían varias posibilidades para futuras investigaciones: 

 

 Que el BAC, la nisina y el CO2 actúan sobre la membrana celular (CO2: 

Jydegaard-Axelson et al. 2004, Lungu et al., 2009, Tassou et al., 2004, Nilsson et al., 
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2000; nisin: (Christ et al., 2007, Dalmau et al., 2002, Wiedemann et al., 2007; BAC: 

Ceragioli et al., 2010, Soumet et al., 2005, Walton et al., 2008)  

 Que cepas de L. monocytogenes tolerantes al ácido son también más resistentes 

al CO2 (Francis et al., 2007, Jydegaard-Axelsen et al., 2004) y a la nisina (Badaoui 

Najjar et al., 2009; Begley et al., 2010; Bonnet and Montville 2005).  

 Que la resistencia al BAC y a la nisina podría estar relacionada con las bombas 

de protones (nisin: Bruno et al., 1992, BAC: Romanova et al., 2006) lo que podría 

disminuir el efecto del CO2 (García-González et al. 2007)  

 

En mejillón vivo 

Dado que en un ensayo previo se observó que hasta el día 13 de almacenamiento no 

había diferencias significativas entre los valores de viabilidad del mejillón vivo 

almacenado atmósferas con concentración creciente de O2, la toma de muestra se fijo 

tras 14 días de almacenamiento. A este tiempo, se observa una clara relación entre el 

porciento de viabilidad y la concentración de oxígeno en la atmósfera, tal y como se 

muestra en la Figura 5.3. 

Aire 30% O2 60% O2 90% O2
0

20

40

60

80

100

M
o

rt
a

lid
a

d
 (

%
)

 

Figura 5.3 Mortalidad de mejillones vivos envasados bajo diferentes 

atmósferas ricas en O2 después de 14 días de almacenamiento a 2.5 ºC. 

 

Los resultados de viabilidad obtenidos (Figura 5.4) demuestran que L. 

monocytogenes puede persistir después de una contaminación cruzada durante el 

procesado de mejillón vivo por ello es necesario incrementar las condiciones de 

seguridad durante el empaquetado en atmósferas ricas en O2. 
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Figura 5.4 Viabilidad de mejillones vivos envasados bajo atmósferas 

ricas en O2 después de 5, 8 y 13 días de almacenamiento a 2.5 ºC. 
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