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Abstract  

Notch receptors are master regulators of many aspects of development and tissue renewal 

in metazoans. Notch1 activation is essential for T-cell specification of bone marrow-

derived multipotent progenitors that seed the thymus, and for proliferation and further 

progression of early thymocytes along the T-cell lineage. Deregulated activation of 

Notch1 significantly contributes to the generation of T-cell acute lymphoblastic 

leukaemia (T-ALL). In addition to Notch1 signals, survival and proliferation signals 

provided by the IL-7 receptor (IL-7R) are also required during thymopoiesis. Our 

understanding of the molecular mechanisms controlling stage- specific survival and 

proliferation signals provided by Notch1 and IL-7R has recently been improved by the 

discovery that the IL-7R is a transcriptional target of Notch1. Thus, Notch1 controls T-

cell development, in part by regulating the stage- and lineage- specific expression of IL-

7R. The finding that induction of IL-7R expression down- stream of Notch1 also occurs 

in T-ALL highlights the important contribution that deregulated IL-7R expression and 

function may have in this pathology. Confirming this notion, oncogenic IL7R gain-of-

function mutations have recently been identified in childhood T-ALL. Here we discuss 

the fundamental role of Notch1 and IL-7R signalling pathways in physiological and 



pathological T-cell development in mice and men, highlighting their close molecular 

underpinnings.  

Keywords: Thymus, T-cell lineage, Notch, IL-7R, lympho-myeloid progenitor, 
leukaemia  

1. From Early Thymic Progenitors to Mature T Cells  

All blood lineages but T cells derive in situ within the bone marrow (BM) from resident 

haematopoietic stem cells (HSCs) that undergo a maturation process characterised by the 

progressive loss of developmental potentials and the activation of lineage-specific 

transcriptional programs. T lymphocyte development is an exception, as it occurs within 

a dedicated lymphoid organ, the thymus. T cells develop from BM-derived progenitors 

that have lost self-renewing capacity and are thus distinct from HSCs, but still display 

multi-lineage potential (Fowlkes 1985; Shortman and Wu, 1996; Weerkamp et al. 2006; 

Blom and Spits 2006). Within the thymus, these haematopoietic progenitors undergo 

tightly regulated proliferation, maturation and selection processes that require their 

dynamic relo- cation within specific niches of the thymic microenvironment (Takahama 

2006; Ciofani and Zúñiga-Pflücker 2007; Bhandoola et al. 2007; Rothenberg 2007; 

Anderson et al. 2007; Petrie and Zúñiga-Pflücker 2007). Both surface molecules and 

soluble factors from thymic stromal cells, mainly thymic epithelial cells (TECs), provide 

inductive signals that are essential for directing thymic immigrants along the T-cell 

linage. Specifically, interactions of Notch receptors on thymic precursors with their 

ligands expressed on TECs, and signalling mediated by the interleukin-7 receptor (IL-

7R) in response to TEC-derived IL-7 (Fig. 1), are crucial events that regulate 

thymopoiesis in both mouse and man (Shortman et al. 1990; Blom and Spits 2006; 

Maillard et al. 2005). Deregulation of any of these pathways is, thus, linked to the 

emergence of T-cell pathologies, largely T-cell immunodeficiencies and leukaemias. The 

details of how Notch and IL-7R signalling control physiological and leukaemic T-cell 

development in humans rep- resent the scope of this review.  

 

1.1 Two Intrathymic Checkpoints for Cellular Expansion of Developing T Cells  



The particular identity of the thymic immigrants has been elusive owing to the rarity of 

these cells. Extensive studies lend support to the current notion that in both mouse and 

man the thymus is seeded by haematopoietic progenitors with a distinctive lineage 

marker-negative (Lin-) ckit+ Flt3+ IL-7R-/lo phenotype (Allman et al. 2003; Porritt et al. 

2004; Sambandam et al. 2005; Tan et al. 2005; García-Peydró et al. 2006; Blom and Spits 

2006), equivalent to that of lymphoid- primed multipotent progenitors (LMPPs) in the 

BM (Adolfsson et al. 2005). After thymus arrival, these cells, commonly referred to as 

the earliest thymic progenitors (ETPs) (0.01–0.03 % of neonatal thymocytes) (Allman et 

al. 2003; Benz et al. 2008), can be identified within the most immature CD4- CD8- double 

negative (DN) thymocytes (termed DN1), characterised as CD44+ CD34+ in humans 

(Márquez et al. 1995; Carrasco et al. 2002; Spits 2002) and CD44+ CD25- in mice 

(Shortman and Wu 1996). Human ETPs express low levels of the myeloid marker CD33 

(Márquez et al. 1998; García-Peydró et al. 2006), while mouse ETPs express PSGL1 and 

the chemokine receptor CCR9, both involved in thymus seeding (Benz and Bleul 2005; 

Gossens et al. 2009; Love and Bhandoola 2011). ETPs have been referred to as 

‘‘canonical’’ T-cell progenitors because they robustly generate DN2 downstream 

progeny (Allman et al. 2003; Porritt et al. 2004; Benz et al. 2008) (Fig. 2), which is 

characterised in humans by up-regulation of CD1a (CD44+ CD25+ in mice) and 

commitment to the T-cell lineage (Galy et al. 1993). The ETP to DN2 transition is marked 

by a massive cellular expansion, which depends on IL-7R-mediated signalling (Fig. 1) 

and represents a fundamental checkpoint in T-cell development (Shortman et al. 1990; 

Plum et al. 1996). Thereafter, DN2 thymocytes progress to the DN3 stage, composed of 

CD4+ immature single positive (ISP) thymocytes in humans (Kraft et al. 1993) (CD44- 

CD25+ in mice). At this stage, proliferation stops and gene rearrangement at the TCRd, 

c and b loci is completed (Ramiro et al. 1996; Blom et al. 1999). DN thymocytes that 

succeed in TCR and TCR rearrangements will give rise to TCRgd T cells, while those 

expressing a functional TCRb chain will accomplish progression beyond the DN3 stage 

by signalling through a highly conserved TCRb–pTa (pre-TCR) complex (von Boehmer 

and Fehling 1997; Ramiro et al. 1996; Carrasco et al. 1999, 2001). Cell surface pre-TCR 

expression promotes cell survival and proliferation and induces progression to the CD4+ 

CD8+ double positive (DP) stage by a process known as b-selection (von Boehmer et al. 

1998), which represents the second checkpoint of intrathymic expansion in T-cell 

development (Fig. 1). Thereafter, the pre-TCR is down-regulated and DP thymocytes stop 



cell division, undergo rearrangements at the TCRa locus (von Boehmer and Fehling 

1997; Trigueros et al. 1998; Carrasco et al. 2001) and finally express a mature TCRab 

that will allow their positive selection and differentiation into mature CD4+ or CD8+ 

single positive (SP) thymocytes. SP thymocytes that survive negative selection migrate 

to the periphery as MHC-restricted self-tolerant T-cells (Takahama 2006; Anderson et al. 

2007). Therefore, thymopoiesis encompasses two checkpoints of cellular expansion 

sequentially controlled by the IL-7R and the pre-TCR, whose expression has to be tightly 

regulated to ensure physiological proliferation of developing thymocytes.  

 

1.2 IL-7R Expression Marks a Lymphoid/Myeloid Developmental Split in Human 

Thymopoiesis  

Understanding how ETPs differentiate along the T-cell lineage has been challenging 

owing to discrepancies about their level of commitment and lineage potential. The so-

called classical model proposed that the thymus is colonised exclusively by common 

lymphoid progenitors (CLP) harbouring T, NK and B lymphocyte potential (Kondo et al. 

1997). However, different studies challenged this view (Allman et al. 2003; Adolfsson et 

al. 2005; Kawamoto and Katsura 2009; Doulatov et al. 2010). Early work showed that, 

in addition to lymphoid potential, ETPs have the potential to generate dendritic cells 

(DCs) (Ardavin et al. 1993; Márquez et al. 1995), which is associated in humans to 

significant macrophage, some granulocyte and little, if any, erythroid potential 

(Kurtzberg et al. 1989; Márquez et al. 1995; Res et al. 1996; García-Peydró et al. 2006; 

Weerkamp et al. 2006). The multiple lineage potential of human ETPs has been revealed 

also in clonal assays (Márquez et al. 1998; Hao et al. 2008), indicating that at least some 

human thymus settling progenitors have combined lympho-myeloid lineage potential.  

Early reports revealed the ability of ETPs to generate multiple lymphoid (T, B and NK) 

lineages together with DCs in the mouse (Wu et al. 1991; Shortman and Wu 1996; Michie 

et al. 2000; Akashi et al. 2000; Benz and Bleul 2005). Subsequent studies confirmed the 

myeloid potential of murine ETPs in both bulk and clonal assays in vitro (Balciunaite et 

al. 2005; Benz and Bleul 2005; Bell and Bhandoola 2008; Moore et al. 2012) and also in 

vivo (Wada et al. 2008). However, more recent fate tracing data by Rodewald and 

colleagues using IL-7Ra-Cre mice showed that the lymphoid-restricted progenitors are 



the major route to murine T cells in vivo (Schlenner et al. 2010), suggesting a separate 

origin of T cells and myeloid cells in the murine thymus. Although the field remains 

controversial, functional and molecular evidence has lately been provided at the single 

cell level that the earliest progenitors in the neonatal murine thymus, as well as LMPPs 

in the BM, have combined granulocyte–macrophage, T lymphocyte and B-cell 

lymphopoietic potentials, but not megakaryocyte–erythroid lineage potential (Luc et al. 

2012; Ceredig 2012), as reported for human ETPs (Weerkamp et al. 2006; García-Peydró 

et al. 2006).  

Realization of the lympho-myeloid potential of ETPs is of crucial relevance for 

understanding how either T-cell or alternative cell fates are imposed within the thymus. 

Several studies support that T-cell commitment in mice is a sequential process, involving 

progressively increasing limitations on the non-T cell potential of ETPs. Loss of B-cell 

potential may happen immediately after thymus entry or even prior to thymus seeding 

(Benz and Bleul 2005; Harman et al. 2005; Heinzel et al. 2007), and is followed by loss 

of myeloid, DC and NK cell potentials (Ciofani and Zúñiga-Pflücker 2007; Bhandoola et 

al. 2007; Rothenberg et al. 2008; Ceredig 2012). In humans, however, our studies suggest 

that after loss of B-cell potential progression towards the T-lineage fate involves an early, 

split of ETPs into two, alternative developmental pathways that proceed through 

independent myeloid- or lymphoid-primed intermediate progenitors (Fig. 2). This 

branching point is marked both in vitro and in vivo by down-regulation of CD34 and 

either the up- or down-regulation of CD44 (Márquez et al. 1995). CD44 up-regulation 

results, in turn, in up-regulated expression of the myeloid marker CD33 and loss of T-cell 

potential. These non-T cell progenitors are, however, enriched in myeloid- DC potential 

and retain some NK cell potential. Conversely, CD44 down-regulation parallels an 

increased expression of the T-cell marker CD5, loss of myeloid-DC capability and 

progression towards the T/NK bi-potential lymphoid stage (Márquez et al. 1998; de 

Yébenes et al. 2002). Expression of CD1a in lymphoid-restricted thymocytes finally 

marks loss of NK lymphopoietic ability and T-cell commitment (Galy et al. 1993; 

Sánchez et al. 1994; de Yébenes et al. 2002) (Fig. 2). According to their restricted lineage 

potentials, intermediate thymic progenitors display exclusive myeloid or lymphoid-

associated gene transcription patterns (Martín-Gayo et al. unpublished results). Likewise, 

myeloid-specific transcriptional priming has recently been reported for myeloid 

precursors of DCs recently identified in the mouse thymus (Moore et al. 2012).  



The myeloid versus lymphoid cell fate decision in human thymus robustly associates with 

a selective expression of receptors for either granulocyte–macrophage colony-stimulating 

factor (GM-CSF) or IL-7, respectively, reflecting the cytokine-specific dependence of 

each developmental pathway (Márquez et al. 1998; de Yébenes et al. 2002, García-Peydró 

et al. 2006). Therefore, up-regulation of IL-7R marks a key lymphoid-myeloid branching 

point in human thymopoiesis, which associates with loss of myeloid (macrophage and 

DC) potentials and with T-lineage specification (Fig. 2).  

  

2.  IL-7R Signalling in Early T-cell Development  

Different studies have highlighted the conserved non-redundant role played by IL-7 in T-

cell development. IL-7 is a cytokine produced by thymic epithelium and BM stromal 

cells. Binding of IL-7 to the IL-7R, which is composed of the specific a-chain (IL-7Ra) 

and the common cytokine receptor gc (gc) chain (Fig. 3), results in a and g chain 

dimerisation. The, thereby, activated IL-7Ra-gc heterodimer transmits signals for 

survival and proliferation to T- and also B-lineage cells (Shortman et al. 1990; Akashi et 

al. 1998; Leonard 2001). Pathways activated downstream of IL-7R include JAK/STAT, 

PI3K, MAPK and Src kinases, ultimately leading to the expression of target genes such 

Bcl-2 family members, cyclin D1, SOCS-1 and c-myc (Leonard 2001). Mice deficient in 

IL-7 or IL-7R have an early block in T-cell development associated with reduced numbers 

of non-functional T cells and impaired B lymphopoiesis (Sudo et al. 1993; Peschon et al. 

1994; von Freeden-Jeffry et al. 1995). Bcl-2 is sufficient to rescue T-cell but not B-cell 

development in those mice (Maraskovsky et al. 1997, 1998; Akashi et al. 1997), 

indicating that IL-7 has a pro-survival effect in T-lineage cells. In humans, IL-7R paucity 

does not affect B lymphopoiesis, but results in severe combined immunodeficiency 

(SCID) characterised by a complete lack of T cells (Puel et al. 1998; Leonard 2001). 

Therefore, species-specific lineage-associated IL-7/IL-7R requirements and/or signalling 

pathways downstream of IL-7R are likely to be responsible for this difference (Pallard et 

al. 1999).  

These results point toward an essential function of IL-7/IL-7R during early T-cell 

development that supports the survival and the enormous expansion that experiences the 

intrathymic pool of T-cell-specified DN2 progenitors (Shortman et al. 1990; Peschon et 



al. 1994; Plum et al. 1996; Akashi et al. 1998). In addition, signalling through IL-7R at 

the DN2 stage controls TCRg locus accessibility and gene rearrangement (Durum et al. 

1998). Accordingly, DN2 cells with higher IL- 7R expression levels are biased to the gd 

T-cell lineage, at least in mice (Kang et al. 2001). IL-7 is, however, dispensable at or 

beyond the DN3 stage, although it may be required later on during positive selection of 

CD8+ thymocytes (Munitic et al. 2004; Yu et al. 2004; Van De Wiele et al. 2004). The 

stage-specific effect of IL-7 is accomplished by a dynamic regulation of IL-7R expression 

and function (Munitic et al. 2004). Of the two IL-7R components, the gc is constitutively 

expressed in thymus-seeding precursors, which have negative or low levels of IL- 7Ra 

expression, indicating that IL-7Ra is up-regulated at the ETP stage (García- Peydró et al. 

2006; Porritt et al. 2004; Allman et al. 2003). Subsequently, IL-7Ra expression increases 

progressively until the DN2 stage, declines steadily thereafter, and must be terminated 

between the b-selection and positive selection checkpoints (Munitic et al. 2004; Yu et al. 

2004, 2006; Van De Wiele et al. 2004). Besides transcriptional regulation, active 

suppression of IL-7R signalling induced by suppressor of cytokine signalling (SOCS)-1 

guarantees IL-7R-unresponsiveness in pre-selected DP thymocytes (Yu et al. 2006), 

which is obligatory to allow negative selection and death by neglect to occur at the DP 

stage. In fact, sustained IL-7R expression in Il7ra transgenic mice results in a direct 

competition between DN progenitors and DP thymocytes for the limiting amounts of 

endogenous IL-7 within the thymus (Munitic et al. 2004). Finally, restoration of IL-7R 

surface levels by positive selection will ensure homeostatic proliferation of peripheral 

mature T cells derived from CD4 and CD8 SP thymocytes (Schluns et al. 2000). Tight 

regulation of IL-7Ra expression during thymopoiesis, thus, guarantees specific survival 

and expansion of those intrathymic progenitors that have undergone T-cell specification.  

 

3 Notch Regulation of Early Thymocyte Development  

T-cell specification signals uniquely provided by the thymus microenvironment largely 

rely on the Notch signalling pathway (Takahama 2006; Petrie and Zúñiga- Pflücker 2007; 

Koch and Radtke 2011). Notch activation is required at sequential intrathymic stages to 

provide survival, proliferation or metabolic cues as well as differentiation signals, all 

necessary for efficient T-cell development (Schmitt et al. 2004; Ciofani and Zúñiga-



Pflücker 2007). The Notch pathway is an evolutionary conserved cell signalling system 

of transmembrane receptors that includes four members in mammals (Notch1–4). Notch1 

is the receptor preferentially expressed in developing thymocytes, although all members 

are expressed in the thymus (Fiorini et al. 2009; Van de Walle et al. 2011; Martín-Gayo 

et al. unpublished results). Notch receptors engage five mammalian surface ligands of the 

Delta-like (Dll-1, -3 and -4) and Jagged (Jag1 and 2) families expressed on neighbouring 

cells (Artavanis- Tsakonas et al. 1999; Bray 2006). In the thymus, all Notch ligands 

except Dll3 are expressed at different thymic niches. Amongst these ligands, Dll4 is 

specifically expressed on TECs located in the subcapsular and outer cortical regions, 

while Dll1 expression seems to be restricted to thymic blood vessels (Mohtashami et al. 

2010; Hozumi et al. 2008; Koch et al. 2008 and García-León et al. unpublished results). 

Both Jag1 and Jag2 are expressed in the thymic medulla, and Jag2 is also found in the 

inner cortex (Heinzel et al. 2007; Mohtashami et al. 2010; Van de Walle et al. 2011; 

García-León et al. unpublished results).  

Notch-ligand binding induces sequential conformational changes in the Notch receptor 

that expose specific sites for two consecutive cleavages mediated first by ADAM (a 

disintegrin and metalloprotease) members, ADAM10 (Kuzbanian) and ADAM17 (TNF-

alpha converting enzyme or TACE), and then by a g-secretase protein complex 

(presenilin, APH-1, nicastrin and PEN-2). As a consequence, the intracellular Notch 

domain (ICN or NICD) migrates to the nucleus where it associates with the transcription 

factor CSL (CBF1/RBPJk, Su(H) and LAG-1), displaces co-repressors and recruits co-

activators including p300/CBP as well as MAML-1–3, thereafter initiating the 

transcription of target genes (Kopan and Ilagan 2009). Canonical Notch targets are basic-

helix-loop-helix proteins (bHLH) such as Hey and Hes (Jarriault et al. 1995). Other Notch 

targets include CD25 (Adler et al. 2003), pTa (Reizis and Leder 2002) and molecules 

involved in cell proliferation and survival such as c-myc (Palomero et al. 2006; Weng et 

al. 2006), cyclin D1 (Ronchini and Capobianco 2001) and p21/Waf (Rangarajan et al. 

2001). More recently, IL-7Ra has been identified as a specific Notch1 target in T-lineage 

cells (González-García et al. 2009).  

The capacity of different Notch ligands and receptors to induce T-cell development has 

been best illustrated by establishment of a co-culture system that uses a stromal cell line 

(usually OP9 or S17) made to express individual Notch ligands (Jaleco et al. 2001; 



Schmitt and Zúñiga-Pflücker 2002), which has been particularly useful for human studies. 

In this assay, Dll4 appears to be the more effective inducer of T-cell differentiation 

(Mohtashami et al. 2010) and Dll1 but not Jagged1 can also induce T-cell development 

from haematopoietic progenitors (Jaleco et al. 2001; Lehar et al. 2005). In contrast, Jag2 

appears to have functional similarities to Dll ligands, at least in humans (Van de Walle et 

al. 2011). These data indicate that different Notch ligands transmit distinct activation 

signals to T-cell precursors that differentially affect their proliferation and/or 

differentiation potential, with Jagged ligands (mainly Jagged1) inducing lower Notch 

activation than Dll ligands (reviewed in Thompson and Zúñiga-Pflücker 2011). 

Supporting this idea, quantitative Notch signals have been shown to influence the TCRab 

versus TCRgd decision, likely in combination with TCR signals. TCRgd development in 

the mouse seems to be less Notch dependent than TCRab differentiation (Washburn et 

al. 1997; Ciofani et al. 2006; Garbe et al. 2006), a finding that concurs with a higher 

dependency of the former on Jagged ligands (Jiang et al. 1998). However, sustained 

Notch1 signalling in humans has been shown to favour TCRgd development at the 

expense of TCRab generation in vitro (García-Peydró et al. 2003; Van de Walle et al. 

2009), although not in vivo in a xenotransplantion assay (García-Peydró et al. 

unpublished results). These contradictory results underscore the fact that reduction of 

Notch activation at specific checkpoints is necessary to induce ab T-cell differentiation 

at the expense of gd T cells (Van de Walle et al. 2009). Likewise, they emphasise the 

potential significance of differentially expressed ligands in microenvironmental niches in 

thymopoiesis. However, only Dll4 has been shown to provide a relevant T-lineage-

inducing Notch signal in vivo (Hozumi et al. 2004, 2008; Koch et al. 2008), while the 

physiological role played by Dll1 and Jagged ligands in the thymus is still unclear. The 

possibility that important determinants of cellular outcome, such as Notch ligand density 

and binding affinity could determine an unknown role for these ligands at specific 

intrathymic locations is particularly appealing (D’Souza et al. 2008), especially because 

Dll binding affinity can be modulated by glycosylation mediated by the Fringe family of 

glycosyltransferases expressed in the thymus (Visan et al. 2006; Stanley and Guidos 

2009).  

 



3.1.  Notch1 Activation Diverts Early Thymic Progenitors from Alternative Cell 

Fates and Promotes Cell Growth  

The critical role of Notch1 in T cell development was first described by Radtke and co-

workers, by generating inducible Notch1 loss-of-function mice (Radtke et al. 1999). Total 

thymocyte numbers were reduced in those mice and T-cell development was blocked at 

the most immature T-cell stage, while B cells accumulated in the thymus. Complementary 

to these findings, constitutive expression of active Notch1 (ICN1) in a transplantation 

setting impaired B-cell differentiation, induced ectopic development of DP thymocytes 

and subsequently leukaemia (T-ALL) (Pui et al. 1999; Pear et al. 1996). The obvious 

conclusion of these studies was that Notch1 signalling critically influences the B versus 

T lineage choice of CLPs. However, as discussed above, LMPP progenitors rather than 

CLPs include the canonical T-cell precursors in the postnatal thymus, and thus the role 

that Notch1 signalling plays in early thymopoiesis has been re-examined.  

Earlier gain-of-function approaches in humans assessed the impact on ETP multi-lineage 

potential of either ligand-independent Notch1 signalling, induced by ectopic expression 

of active ICN1, or ligand-dependent Notch1 activation, sup- ported by OP9-Dll1 stromal 

cells (Fig. 4). Both strategies provided evidence that the most prominent function of 

Notch1 signalling is to inhibit non-T cell fates while supporting the expansion of T-

lineage progenitors (De Smedt et al. 2002, 2005; García-Peydró et al. 2003, 2006). In the 

human thymus, these events critically happen at the lymphoid-myeloid branching point 

and result in impaired generation of myeloid-primed intermediate progenitors (Fig. 2). 

Consequently, reduced numbers of macrophages and conventional as well as 

plasmacytoid DCs are generated from ETPs (De Smedt et al. 2005; García-Peydró et al. 

2006; Dontje et al. 2006; Martín Gayo et al. unpublished results). In addition, Notch1 

signalling blocks the development of NK cells from T/NK lymphoid progenitors, further 

enforcing T-cell specification (De Smedt et al. 2005; García-Peydró et al. 2006). 

Complementary loss-of-function approaches using c-secretase inhibitors (GSI) 

confirmed these results and showed that increasing thresholds of Notch signalling 

sequentially suppress B, myeloid/DC and NK cell lineage fates in human thymopoiesis 

(De Smedt et al. 2005).  

Notch-mediated suppression of myeloid cell fate in human lympho-myeloid progenitors 

is actively induced by repression of myeloid gene transcription that, importantly, seems 



to be ligand specific (Martín-Gayo et al. unpublished results). In addition, Notch1 

signalling triggers a T-cell lineage gene program in humans (García-Peydró et al. 2006; 

Van de Walle et al. 2011), coincident with the profile reported in mice (reviewed in 

Rothenberg et al. 2008; Thompson and Zúñiga- Pflücker 2011), a finding that supports 

an instructive role of Notch1 activation in T-cell specification. Notably, very recent 

results have shown that such an instructive role crucially relies on a transcription factor, 

TCF1, induced by Notch signals. TCF1 imposes the T-cell fate by up-regulating 

expression of other transcription factors essential for T-cell differentiation such as Gata3 

and Bcl11b, and TCR components (Weber et al. 2011). However, ICN1 gene targets that 

control T-cell proliferation are not similarly triggered by TCF1, and Notch1-induced 

proliferation may, thus, be TCF-1-independent. Indeed, proliferation induced by Notch1 

was shown to rely on unique signals provided by cytokines (Varnum- Finney et al. 2003), 

specifically by IL-7 (García-Peydró et al. 2006; González-García et al. 2009). 

Accordingly, Notch1-induced proliferation correlates with up- regulation of IL-7R 

expression (García-Peydró et al. 2006; González-García et al. 2009). As a whole, these 

data indicate that acquisition of a functional IL-7R marks the critical checkpoint of 

inhibition of non-T cell potentials and T-lineage specification of lympho-myeloid 

progenitors induced by Notch, and also controls the pivotal stage of cellular expansion of 

T-cell committed progenitors (de Yébenes et al. 2002; García-Peydró et al. 2006).  

Once T-cell specification is induced, definitive T-cell differentiation and growth 

functions triggered downstream of Notch1 become uncoupled events. It has been shown 

that enforced expression of active Notch1 in human ETPs is itself sufficient to block non-

T cell development and to trigger an almost unlimited cellular expansion in vitro in 

response to IL-7; however, it is insufficient to induce TCR rearrangements and to 

complete T-cell maturation of DN2 thymocytes, unless co	cultured with stromal cells 

(García-Peydró et al. 2006). Likewise, a DN2 developmental arrest has recently been 

observed when murine fetal liver progenitors are activated with immobilised Dll4 plus 

cytokines under stroma-free conditions (Ikawa et al. 2010). These results suggest a 

requirement of additional inductive signals provided by stromal cells supporting a 

complete differentiation program along the T-cell lineage. Alternatively, Notch1 

signalling could provide self- renewal capacity to DN2 cells, and simultaneously arrest 

development beyond the DN2 stage, thus allowing for segregation of proliferation and 

differentiation processes during thymopoiesis. Supporting the latter possibility, an early 



decrease in Notch activation is required for human thymic precursors to complete ab T-

lineage differentiation in vitro (Van de Walle et al. 2009). Moreover, in vitro production 

of mature ab-lineage cells from murine thymic precursors is contingent to decreased IL-

7 responsiveness and self-renewal arrest beyond the DN2 stage (Balciunaite et al. 2005). 

Diminished IL-7R signalling was recently shown to be necessary for DN2 mouse 

thymocytes to up-regulate Bcl11b, a transcription factor that is essential to drive full 

development along the T-cell lineage (Ikawa et al. 2010; Li et al. 2010). Therefore, it is 

likely that physiological progression through the DN2- determination step is instructed 

by environmental signals in the thymus, such as limited IL-7 availability and/or reduced 

IL-7R expression. According to this view, Bcl11b deficiency selectively impairs 

development of ab but not cd T cells (Ikawa et al. 2010), which develop from DN2 

thymocytes expressing either low or high IL-7R levels, respectively (Kang et al. 2001). 

Collectively, these data suggest that regulation of Bcl11b expression is an early T-cell 

developmental checkpoint controlled by IL-7R-mediated signalling.  

 

3.2. Notch1 Signalling Controls T-Lineage-Specific IL-7R Expression in Early 

Thymopoiesis  

The stage- and lineage-specific role of IL-7 during thymopoiesis indicates that strict 

mechanisms control the dynamic intrathymic regulation of IL-7R expression. Likewise, 

regulatory mechanisms may control the differential expression of IL-7R in T- and B-

lineage cells during lymphopoiesis. In mouse early lymphoid/B-cell progenitors, IL-7Ra 

gene (Il7ra) transcription is specifically regulated by the Ets transcription factor PU.1 

(DeKoter et al. 2002). PU.1 is expressed very early in thymopoiesis as well, but PU.1 

down-regulation is obligatory for T-cell fate specification and progression along the T-

cell lineage (Anderson et al. 2002). PU.1 function in mature T-cells seems to be replaced 

by the Ets transcription factor GA binding protein (GABP), but its role during early 

thymopoiesis is less clear (Xue et al. 2004). In B lymphopoiesis, however, GABP 

cooperates with PU.1 and regulates IL-7Ra expression in pre-B and committed B-cells 

(DeKoter et al. 2007). While these data support the existence of specific regulators of IL-

7Ra expression in B-cell development, the nature of equivalent regulators in the T-cell 

lineage has been an open question for years. Recently, molecular studies from our group 

have shown that Notch1 accomplishes this function at least in humans (González-García 



et al. 2009). Both gain- and loss-of-function approaches have shown that expression of 

IL-7Ra in developing T-lineage cells critically depends on Notch1 activation. Notch1 

regulates IL-7Ra expression at the transcriptional level and, notably, in a T-lineage-

specific manner, since IL-7Ra gene (IL7R) transcription can be inhibited by ectopic 

expression of a dominant negative form of the MAML-1 co-activator (dnMAML-1) in T- 

but not B-lineage cells (González-García et al. 2009). Chromatin immunoprecipitation 

and luciferase reporter assays have further established that IL7R gene expression is 

directly induced by active Notch1 in T-cell lines and DN2 thymocytes, indicating that 

IL7R is a transcriptional target of Notch1. Supporting the participation of CSL in Notch1- 

induced IL7R transcription, we have identified a conserved CSL-binding site in the IL7R 

promoter (Fig. 5) and show that either site-directed mutagenesis or CSL- deficiency 

impairs IL7R promoter activity induced by active Notch1. Therefore, T- lineage-specific 

IL7R transcription induced by Notch1 is CSL/MAML-1-depen- dent (González-García 

et al. 2009). More recently, ICN1 has been shown to interact with an IL7R gene enhancer 

in a human T-cell line, suggesting that additional mechanisms of regulation of IL-7Ra 

expression mediated by Notch1 could exist (Wang et al. 2011).  

The physiological role of Notch1 in the regulation of IL-7Ra expression in human 

thymopoiesis is supported by studies showing that, which encodes the IL-7R effector bcl-

2, Notch1 activity parallels expression of IL7R as well as BCL2 from the ETP to DN3 

stages. Conversely, transcription of NOTCH1 and IL7R	decreases concordantly beyond 

the DN3 stage and remains low throughout the rest of thymocyte development. 

Accordingly, defective Notch1 activation selectively results in a compromised expansion 

of the DN1-3 compartments, which can be rescued by ectopic IL-7Ra expression, 

suggesting that Notch1 signals are no longer required once T-cell specification and IL-

7R expression have been induced. However, IL-7R is unable to replace Notch1 signals at 

the b-selection checkpoint (González-García et al. 2009), a finding that concurs with the 

reported requirement of Notch1 and pre-TCR signalling during b-selection (Wolfer et al. 

2002; Ciofani et al. 2004; Ciofani and Zúñiga-Pflücker 2005; Maillard et al. 2006; 

Taghon et al. 2009). Therefore, Notch1 signals control thymocyte proliferation at two 

sequential checkpoints. First, a functional IL-7R is up-regulated on T-cell specified pro- 

genitors and second, expression of a pre-TCR complex is induced that supports 

metabolism, survival and proliferation of committed T-cell progenitors as well as 



progression to the DP stage independently of IL-7R. Between both proliferation phases, 

decreased Notch1 signalling seems to be required to induce down-regulation of IL-7R 

expression and Bcl11b up-regulation, which will finally allow T-cell-specified 

progenitors to complete differentiation along the ab lineage, as discussed above.  

 

4.  Notch1 Signalling in T-ALL  

T-cell acute lymphoblastic leukaemia (T-ALL) is a lymphoproliferative disorder 

accounting for 10–15 % of pediatric and 25 % of adult ALL cases, which results from the 

malignant transformation of normal developing T cells in the thymus (Pui et al. 2004). 

Aberrant Notch1 signalling was initially described in human T-ALLs (<1 %) with rare 

chromosomal translocations that generate a truncated Notch1 isoform lacking the 

extracellular domain (TAN1) under the transcriptional control of the TCRb enhancer 

(Ellisen et al. 1991). Subsequently, the group of Aster provided evidence that Notch1 

signals play a more prominent role in leukaemogenesis than initially suspected, as 

activating NOTCH1 mutations were found in more than 50 % of human T-ALLs (Weng 

et al. 2004). These mutations involve the extracellular heterodimerisation (HD) domain 

and, less frequently, the C-terminal PEST domain of Notch1. HD mutations increase 

ADAM cleavage and subsequent ligand-independent receptor activation, while PEST 

mutations increase the stability and half-life of ICN1. Other Notch1 activating mutations 

as well as mutants of genes that regulate turnover of ICN1 such as Fbw7, which encodes 

a ubiquitin ligase involved in ICN1 degradation, have been subsequently identified in 

mouse models of T-ALL and T-ALL patients (reviewed in Aifantis et al. 2008; Li and 

von Boehmer 2011; Aster et al. 2011; Koch and Radtke 2011). Thus, there is an increasing 

interest in under- standing the role of Notch1 in the pathogenesis of T-ALL, with the final 

aim of identifying novel therapies which target Notch1 signalling.  

The main targets of aberrant Notch1 activation leading to leukaemia are Notch-associated 

signalling pathways that control survival and proliferation in normal T-cell development. 

As highlighted above, the IL-7R and pre-TCR are the major Notch-dependent pathways 

that accomplish this function in thymopoiesis. Historically, the pre-TCR pathway was 

suggested first to interact with Notch1 signals in T-cell oncogenesis, as mice transplanted 

with BM progenitors expressing active NOTCH1 alleles rapidly developed an aggressive 



T-cell leukaemia (Pear et al. 1996; Pui et al. 1999), but only when pre-TCR signalling 

was intact (Allman et al. 2001). Likewise, T-ALL development in Notch3 transgenic mice 

was shown to be dependent on pre-TCR expression (Bellavia et al. 2002). However, a 

cooperative rather than absolute requirement of pre-TCR in Notch-induced 

leukaemogenesis has been proposed later (Campese et al. 2006). Regarding possible 

molecular mechanisms underlying this cooperation, it was found that the PTCRA gene 

encoding pTa is a transcriptional target of Notch (Reizis and Leder 2002). In addition, 

other pre-TCR components including CD3e and TCRb seem to be regulated by Notch 

signals as well, further suggesting that the Notch pathway could be upstream of pre-TCR 

assembly and expression (Aifantis et al. 2008). Nonetheless, both pathways activate 

common transcription factors and kinases, and share BCL-2A1 and cyclin D3 as common 

targets involved in G1/S cell cycle progression. This would suggest that they can act in 

parallel but converge at signalling intermediates in T-ALLs (Aifantis et al. 2008). 

Supporting this possibility, c-myc, a crucial regulator of cellular metabolism and cell 

cycle progression, whose expression picks around the b-selection checkpoint, has been 

identified as a key Notch target that cooperates with ICN1 in Notch1-dependent 

leukaemogenesis (Weng et al. 2006; Palomero et al. 2006). Importantly, Notch1 and c-

myc activate common targets required for growth of leukaemic cells, suggesting a feed-

forward loop in leukaemogenesis (Palomero et al. 2006). Notch activation positively 

regulates activity of the mTOR pathway in a c-myc-dependent manner (Chan et al. 2007). 

The PTEN/PI3K/Akt/mTOR pathway is a major pre-TCR-associated pro-oncogenic 

pathway regulated by Notch1 in T-ALL. Seminal work by the group of Ferrando showed 

that Notch1 is a negative regulator of PTEN, and identified recurrent PTEN inactivating 

mutations in T-ALLs that conferred GSI resistance (Palomero et al. 2007). The 

consequence of PTEN loss is a deregulated balance among activation/inhibition of PI3K 

and aberrant activation of Akt, a major inducer of proliferation and survival in T cells. In 

addition, Pi3K or Akt mutations have been identified in a high proportion of T-ALLs. 

Notch1 can also induce PI3K/Akt-dependent proliferation by inhibition of p53, another 

tumor suppressor downstream of pre-TCR signaling (Mungamuri et al. 2006). Other key 

downstream effectors of pre-TCR signalling activated by Notch1 in T-ALL include the 

NF-kB and NFAT pathways (Vilimas et al. 2007; Ciofani and Zúñiga- Pflücker 2005; 

Aifantis et al. 2001). Finally, it has been suggested that Notch promotes inhibition of the 

transcriptional activity of the E2A proteins in T-ALL, through a mechanism that involves 



pre-TCR-mediated ERK-dependent up-regulation of the E2A inhibitors Id1 or Id3, while 

pre-TCR-mediated induction of Id3 represses E2A-dependent transcription of Notch1 

under physiological conditions (reviewed in Li and von Boehmer 2011). Therefore, 

multiple signalling pathways driven by Notch1 and pre-TCR interact synergistically to 

promote transformation to T-ALL (reviewed in Koch and Radtke 2011; Li and von 

Boehmer 2011). These data highlight the requirement of Notch1 down-regulation after b-

selection to avoid the oncogenic properties of Notch signalling.  

 

4.1. Notch1 and IL-7R: Independent or Complementary Pathways in T-ALL?  

As discussed above, another pathway critically involved in physiological growth of 

developing thymocytes is the IL-7R signalling pathway. Several results have suggested 

that IL-7 and IL-7R may contribute to T-cell leukaemia progression. In mice, expression 

of an IL-7 transgene results in lymphoma development (Rich et al. 1993), and AKR/J 

mice that show an up-regulated expression of IL-7Ra in the thymus develop spontaneous 

thymomas (Laouar et al. 2004). More importantly, human T-ALLs commonly express 

functional IL-7R that significantly contributes to T-ALL proliferation in response to 

exogenous IL-7 (Dibirdik et al. 1991; Barata et al. 2005). Notably, PI3K is a major 

effector of IL-7-induced viability and proliferation of T-ALLs (Barata et al. 2004), a 

finding that places the PI3K/Akt pathway at the crossroads of Notch1 and IL-7R 

signalling in T-ALL. Other effectors of IL-7R signalling including Bcl2 and cyclin D1 

are also over- expressed in T-ALL (Barata et al. 2005). The recent identification of IL7R 

as a downstream target of Notch1 activity in normal human T-cell development might 

suggest a functional link between the Notch1 and IL-7R pathways in T-cell leu- 

kaemogenesis. Confirming this possibility, we found that IL7R is transcriptionally 

regulated by Notch1 activity also in T-ALL. IL-7Ra expression is, specifically, down-

regulated in T-ALL but not B-ALL cell lines when Notch1 signalling is inhibited by GSI 

treatment or ectopic expression of dnMAML-1 (González-García et al. 2009). Notch 

inhibition results in decreased proliferation and cell cycle arrest, likely involving PTEN 

up-regulation (Palomero et al. 2007). Significantly, impaired proliferation of these T-

ALL cell lines can be rescued by ectopic expression of IL-7Ra, which results in a 

selective growth advantage of IL-7Ra-expressing T-ALL cells in response to IL-7 



(González-García et al. 2009). Therefore, IL-7/IL-7R signalling is able to support the 

survival and expansion of leukaemic cells with impaired Notch1 signalling. More 

importantly, our recent studies indicate that IL-7R is an important mediator of cell growth 

in primary T- ALLs as well (González-García et al. unpublished results).  

Overall, these results support a cooperative role of Notch1 and IL-7R pathways in 

supporting leukaemogenesis. Likewise, they point to the IL-7/IL-7R pathway as a 

potential candidate to induce and/or maintain T-cell leukaemogenesis independently of 

Notch signals. The latter possibility is further supported by the observation that 18 % of 

adult and 2 % of pediatric T-ALL cases have activating mutations in JAK1 (Flex et al. 

2008), which encodes a tyrosine kinase that directly binds IL-7R and promotes signalling 

(Fig. 3). Therefore, it can be hypothesised that IL7R itself might be a target of activating 

mutations in T-ALLs. Based on analyses of the complete coding sequence of IL7R in 

pediatric T-ALL samples, others and we have recently provided evidence that 

heterozygous oncogenic gain- of-function mutations do, in fact, occur in around 10 % of 

T-ALLs (Zenatti et al. 2011; Shochat et al. 2011). Notably, IL7R mutations do not occur 

in the cytoplasmic tail that recruits signalling effectors, but consist of in-frame insertions 

or deletions insertions in the juxtamembrane-transmembrane domain at the interface with 

the extracellular region. The vast majority of IL7R mutations create an unpaired cysteine 

residue that results in disulfide-bond-mediated homo-dimerisation of IL-7Ra chains able 

to signal in the absence of cc and IL-7 ligand binding (Fig. 6). Interestingly, IL7R 

mutations were also found by Shochat and coworkers in B-ALL samples, suggesting a 

general strategy for mutational activation of type I cytokine receptors in leukaemia. 

Therefore, although therapeutic strategies directed to Notch1 inhibition, particularly 

treatment with GSI, initially emerged as a promising therapy (Weng et al. 2004), recent 

knowledge of the molecular pathology of T-ALL open new avenues for the design of 

specific targeted therapies.  

 

5. Conclusions  

The study of the molecular mechanisms underlying T-cell development and 

transformation highlights the close relationship between Notch signalling pathways 

involved in T-cell physiology and pathology. The fundamental function of Notch1 in 



thymopoiesis is to drive T-cell specification from multipotent precursors seeding the 

thymus and to support further progression along the T-cell lineage. These processes are 

associated with a unique role of Notch1 as a crucial regulator of cellular expansion at two 

critical checkpoints. Firstly, Notch1 controls IL-7R-dependent expansion of the T-cell-

specified progenitor pool, and thereafter Notch1 cooperates with the pre-TCR to trigger 

expansion of progenitors that successfully progress along the T-cell maturation pathway. 

However, deregulated Notch1 activation at these stages results in T-cell transformation 

and leukaemia. Therefore, the identification of Notch1 signalling effectors involved in 

physiological proliferation of developing T-cells is crucial for designing new therapeutic 

strategies that target relevant oncogenic pathways in T-ALL. The identification of the IL-

7R as a downstream transcriptional target of Notch1 both in physiology and pathology, 

together with the finding of oncogenic gain-of-function IL-7R mutations in T-ALL, open 

new possibilities for the development of specific targeted therapies. Ongoing preclinical 

studies exploring the efficacy of new therapies targeting the IL-7R in vivo in xenograft 

models of human T-ALL offer promise for the development of more effective T-ALL 

treatments in the near future.  
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Figure legends 

Fig. 1 Overview of thymic T-cell development. Bone marrow-derived lympho-myeloid 

progenitors enter the thymus through blood vessels located at the cortico–medullary 



junction (CMJ) and give rise to the pool of (ETPs). Subsequently, ETPs initiate migration 

towards the external thymic cortex and interact with Notch ligands expressed on cTECs 

by means of Notch1 expression. Notch1 signalling induces T-cell commitment, IL-7R 

expression and progression through the CD4- CD8- DN2 and DN3 stages. Interaction of 

IL-7R on developing thymocytes with locally produced levels of IL-7 triggers a first wave 

of expansion of the T-cell progenitor pool. DN2 or DN3 thymocytes that succeed in TCRg 

and TCRd rearrangements give rise to TCRgd T cells, while successful rearrangement at 

the TCRb locus enables the expression of a TCRb-pTa pre- TCR complex at the DN3 

stage. PreTCR signalling promotes cell survival and extensive proliferation as well as 

progression to the CD4+ CD8+ DP stage. This process, known as b- selection, represents 

the second checkpoint of intrathymic expansion in T-cell development. At this stage, 

proliferation stops and DP thymocytes undergo rearrangement at the TCRa locus and 

express the TCRab. TCRab-expressing DP thymocytes then undergo positive and 

negative selection processes by means of interactions with cTECs or medullary epithelial 

cells (mTECs) and DCs, respectively. Selected cells exit the thymus through blood 

vessels at the CMJ as CD4+ or CD8+ SP thymocytes to establish the peripheral T-cell 

pool.  

 

Fig. 2 Proposed model of lymphoid and myeloid development in human thymus. 

Human ETPs are lympho-myeloid precursors that can generate separate lymphoid- or 

myeloid-primed intermediate progenitors, characterised by the selective expression of 

either the IL-7R or the GM–CSFR, respectively. Lymphoid progenitors display T- and 

NK-cell potentials, while myeloid progenitors have lost T-cell potential, retain some NK-

cell potential, and are enriched in myeloid (macrophage and DCs) potentials. Notch1 

signalling diverts ETPs away from the myeloid pathway by blocking the generation of 

myeloid-primed progenitors, thus enforcing the lymphoid cell fate. Simultaneously, 

Notch1 induces the expression of IL-7R, which marks the lymphoid–myeloid branching 

point and triggers proliferation of lymphoid-primed progenitors. Thereafter, sustained 

Notch1 signalling blocks NK development from bipotent T/NK lymphoid progenitors and 

favours development along the T-cell lineage. This process is characterised by the 

progressive loss of CD34, CD44 and CD33 and the sequential acquisition of CD1a by 

CD4- CD8- DN thymocytes (DN2 stage) and CD4 molecules (DN3 stage). Successful 

TCRb gene rearrangement at the DN3 stage results in TCRb association with the 



invariant pTa chain and formation of a pre-TCR complex at the DN4 stage. The pre-TCR 

cooperates with Notch1 signals at the b-selection checkpoint to induce a second wave of 

intrathymic proliferation and progression to the DP stage. Further rearrangement at the 

TCRa locus in DP thymocytes enables the expression of a mature TCRab. DP cells that 

survive TCRab-mediated positive and negative selection give rise to CD4+ or CD8+ SP 

thymocytes that migrate to the periphery  

 

Fig. 3 IL-7 receptor signalling pathway. IL-7 receptor a chain (IL-7Ra) and g-common 

(gc) chains components of the IL-7R undergo dimerisation upon IL-7 binding. Thereby, 

the IL-7R heterodimer triggers activation of JAK3 and JAK1 kinases bound to the 

intracellular domain of cc or IL-7Ra, respectively. JAK1 induces phosphorylation of the 

IL-7Ra intracellular domain and promotes recruitment of PI3K and STAT proteins. 

Phosphorylation of STAT proteins by JAK results in their dimerisation and translocation 

to the nucleus and finally in the transcription of target genes including Bcl-2, SOCS-1, 

CyclinD1 and c-myc. In addition, PI3K recruited to the intracellular domain of IL- 7Ra 

becomes activated and phosphorylates Akt, which thereafter promotes cell survival 

through degradation of pro-apoptotic proteins such as Bad and Bax and glucose uptake 

through the expression of GLUT1. IL-7R signalling also involves activation of the ERK 

pathway  

 

Fig. 4 Experimental strategies used to analyse the impact of Notch1 signalling in 

human T-cell development. Ligand-independent constitutive Notch signalling is 

induced in human ETPs by retroviral transduction using a bicistronic vector encoding 

active Notch1 (ICN1) and green-fluorescent protein (GFP) as a cell tracer. For ligand-

dependent Notch activation, ETPs are co-cultured onto OP9 stromal cells ectopically 

expressing the Dll1 Notch ligand (OP9–DL1). In both systems, cells are cultured in the 

presence of a multilineage-cytokine cocktail that supports the simultaneous 

differentiation of lymphoid (T and NK cells) and myeloid (macrophages and DCs) 

lineages from ETPs. 

 



Fig. 5 Schematic representation of human IL7R and mouse Il7ra gene promoters. 

Human IL7R and mouse Il7ra gene promoters expand about 2,000 base pairs (bp) 

upstream of the transcription initiation site. Both promoters share two TATA-like boxes 

and an ETS transcription factor- binding site. The human IL7R promoter also contains a 

CSL-binding site that is conserved in the mouse Il7ra promoter. The physiological also 

relevance of the latter has yet not been confirmed. 

 

Fig. 6 Mechanisms of IL-7R activation under physiological and pathological 

conditions. a. Under physiological conditions, double negative thymocytes (DN Thy) 

express both IL-7Ra and gc chains in monomeric conformation. Binding of IL-7 

produced by TECs to the IL-7R components promotes their heterodimerisation, and 

thereby triggers IL-7R signalling leading to survival and proliferation. b. In pathological 

conditions, as in T-ALL, IL7R mutations at the juxtamembrane domain result in the 

formation of stable IL-7Ra-IL-7Ra homodimers, which promote signalling in the 

absence of IL-7, thus inducing uncontrolled survival and proliferation.  

  

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 


