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1 | INTRODUCTION

The Etruscan shrew (Suncus etruscus; also known as the Etruscan pygmy
shrew or the white-toothed pygmy shrew) is the smallest known ter-
restrial mammal by mass, weighing only about 1.8 g on average (Fons
et al.,, 1984; Jirgens, 2002). This tiny mammal has a body length of
about 4 cm excluding the tail, and its brain is the smallest of all mam-
malian species, with a brain mass of only about 0.06 g (e.g., Fons
et al., 1984). Furthermore, the neocortex of the Etruscan shrew is the
thinnest among all mammals, with a thickness of only 400—500 pm
(Naumann et al., 2012; Roth-Alpermann et al., 2010; Stolzenburg et al.,
1989) and an extremely high density of neurons—as high as 170,000
neurons per mm? (Stolzenburg et al., 1989). Another peculiarity of
these animals is their very fast metabolism—they have been reported
to eat up to 6 times their own body weight per day (Brecht et al.,
2011). The Etruscan shrew can hunt animals the same size as itself,
showing remarkable speed and accuracy to recognize prey shape based
on whisker-mediated tactile cues (Brecht et al., 2011; Naumann et al.,
2012).

The neocortex of the Etruscan shrew is a cytoarchitectonically
heterogeneous sheet with distinct cortical areas. In human, around
200 cortical areas have been distinguished (Amunts & Zilles, 2015),
whereas in the Etruscan shrew 13 cortical areas have been distin-
guished (Naumann et al., 2012). Considering that the human cortex
is 50,000 times larger (Ribeiro et al., 2013), the number of distinct
cortical areas must be due to a species specialization of the brain, as
opposed to a consequence of scale alone.

Sensory cortical areas in the Etruscan shrew occupy a large por-
tion of the total cortical volume (Brecht et al., 2011). In fact, 25%
of the neocortical neurons are located in the somatosensory cortex
(Naumann et al., 2012), pointing to the key functional importance of
the somatosensory cortex. Around 75% of the shrew cortex responds
to tactile stimuli (Roth-Alpermann et al., 2010), which mostly relies
on somatosensory cortical regions. As mentioned above, the Etruscan
shrew has a highly specialized system of tactile object recognition
based on its whiskers, which is critical for prey capture, and, con-
sequently, for survival (Anjum et al., 2006; Roth-Alpermann et al,,
2010).

The aim of the present study was to analyze the primary somatosen-
sory cortex of the Etruscan shrew at the ultrastructural level, to
determine whether the cortical synapses show any peculiarities that
may be related to its small brain size, thin cortex and high neuronal den-
sity. For this purpose, we examined all cortical layers (1, 2, 3, 4, 5, 6)
using Focused lon Beam/Scanning Electron Microscopy (FIB/SEM) to
obtain quantitative information on cortical synapses. Specifically, we
analyzed the synaptic density of 7239 3D-reconstructed synapses as
well as a variety of their structural characteristics including the type
of synapse (asymmetric or symmetric, corresponding to excitatory and
inhibitory synapses, respectively), the size of each 3D reconstructed
synapse, as well as the 3D spatial distribution of each synapse. In

addition, a further aim was to determine the synaptic shape and the

postsynaptic targets of thousands of axon terminals. This was possible
since we could navigate through the image stack to determine whether
the postsynaptic elements of 3D reconstructed synapses were den-
dritic spines or dendritic shafts. The results are discussed comparing
with data obtained from the human cerebral cortex using the same
technology (Cano-Astorga et al., 2021; Dominguez-Alvaro et al., 2018;
2021). From an evolutionary point of view, it is of particular interest
to compare the cortical synaptic organization of this extremely small
mammal with that of the much larger human brain (Hofman, 1988),
whose synaptic organization is thought to have reached the highest

level of complexity.

2 | MATERIALS AND METHODS
2.1 | Tissue preparation

Brain tissue from 3 male Etruscan shrews (Suncus etruscus) were
used for this study: MS1 (20-month-old), MS2 (8-month-old), and
MS3 (12-month-old). The animals were briefly anesthetized using
isoflurane and subsequently given an intraperitoneal injection of 20%
urethane prior to intracardial perfusion of a fixative solution contain-
ing 2% paraformaldehyde and 2.5% glutaraldehyde in 0.1 M phosphate
buffer. The brain was extracted from the skull and fixed overnight
in the same fixative solution at 4°C. Brain sections (150 pm thick)
were obtained coronally (Vibratome Sectioning System, VT1200S
Vibratome, Leica Biosystems, Germany), and processed following the
protocols described below. All animals were handled in accordance
with the guidelines for animal research set out in European Community
Directive 2010/63/EU.

2.2 | Electron microscopy

Brain sections were postfixed for 24 h in a solution containing
2% paraformaldehyde, 2.5% glutaraldehyde (TAAB, G002, UK) and
0.003% CaCl, (Sigma, C-2661-500G, Germany) in sodium cacody-
late (Sigma, C0250-500G, Germany) buffer (0.1 M). The sections
were treated with 1% OsO,4 (Sigma, 05500, Germany) and 0.003%
CaCl, in sodium cacodylate buffer (0.1 M) for 1 h at room temper-
ature. They were then stained with 1% uranyl acetate (EMS, 8473,
USA), dehydrated and flat-embedded in Araldite (TAAB, E021, UK)
for 48 h at 60°C (DeFelipe & Fairén, 1993). The embedded sec-
tions were then glued onto a blank Araldite block. Semithin sections
(2 pm thick) were obtained from the blocks and stained with 1% tolu-
idine blue (Merck, 115930, Germany) in 1% sodium borate (Panreac,
141644, Spain). For each block, the last semithin section (correspond-
ing to the section immediately adjacent to the block surface) was
examined under light microscope and photographed to accurately
locate the neuropil regions to be examined by electron microscopy
(Figure 1).
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FIGURE 1 Correlative light-electron microscopy study of the Etruscan shrew cerebral cortex. (a) Low power photograph of a 150 um Nissl|
stained coronal vibratome section of the Etruscan shrew brain. The delimitation of cortical areas and layers is based on Naumann et al. (2012).

(b) Higher magnification of the boxed area in (a), showing the laminar pattern of Som cortex (layers 1 to 6 are indicated). (c) 1 um-thick semithin
section stained with toluidine blue. (d) Higher magnification of the boxed area in (c), showing delimitated layers based on the staining pattern. The
semithin section is adjacent to the block for FIB/SEM imaging. (e) SEM image illustrating the block surface with trenches made in the neuropil (one
per layer). Arrows in (d) and (e) point to the same blood vessel, showing that the exact location of the region of interest was accurately determined.
Scale bar shown in (e) represents 200 um in (a), 60 pmin (b), 105 pm in (c), 50 umin (d) and 55 um in (e). Cing—Cingulate Cortex; Pm—Parietal
Medial Cortex; Som—Somatosensory Cortex; Ins—Insular Cortex; Pir—Piriform Cortex.

2.3 | Three-dimensional electron microscopy

Images were obtained from the neuropil, which is where the vast
majority of synapses are found (DeFelipe et al., 1999). The neuropil is
composed of axons, dendrites and glial processes, so the samples did
not contain cell somata, proximal dendrites in the immediate vicinity of
the soma, or blood vessels.

Three-dimensional brain tissue samples of the somatosensory cor-
tex were obtained using a Neon40 EsB electron microscope (Carl Zeiss
NTS GmbH, Oberkochen, Germany). This instrument combines a high-

resolution field emission SEM column with a focused gallium ion beam

(FIB), which mills the sample surface, removing thin layers of mate-
rial on a nanometer scale. After removing each slice (20 nm thick),
the milling process was paused, and the freshly exposed surface was
imaged with a 1.7 kV acceleration potential using the in-column energy
selective backscattered (EsB) electron detector. The milling and imag-
ing processes were sequentially repeated, and long series of images
were acquired through a fully automated procedure (Merchan-Perez
et al, 2009), thus obtaining a stack of images that represented a
three-dimensional sample of the tissue (see an example of a series of
images in Supplementary video). Eighteen samples (stacks of images)

of the neuropil from the somatosensory cortex were obtained in the
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six layers (one sample per layer and per animal, in layers 1, 2, 3, 4, 5,
and 6).

Image resolution in the xy plane was 4.652 nm/pixel. Resolution in
the z axis (section thickness) was 20 nm and image sizes were 2048 x
1536 pixels. These parameters allowed a field of view where synaptic
junctions could be clearly identified, within a reasonable image acqui-
sition timeframe (approximately 12 h per stack of images). The number
of sections per stack ranged from 200 to 301 (accumulative total: 4335
sections). The volumes of the stacks ranged from 339 to 527 pm?3, and
a total volume of 7460 pm? was sampled (considering the corrected
volume that accounted for tissue shrinkage). All measurements were
corrected for the tissue shrinkage that occurs during the processing of
sections (Merchan-Perez et al., 2009). To estimate the shrinkage in our
samples, we photographed and measured the area of the brain sections
with ImageJ (ImageJ 1.51; NIH, USA), both before and after processing
for electron microscopy. The section area values after processing were
divided by the values before processing to obtain the volume, area,
and linear shrinkage factors (Oorschot et al., 1991), yielding correction
factors of 0.803, 0.864, and 0.929, respectively. Nevertheless, in order
to compare with previous studies—in which no correction factors had
been included or such factors were estimated using other methods—in

the present study, we provide both sets of data.

2.4 | Three-dimensional analysis of synapses

Stacks of images obtained by the FIB/SEM were analyzed using EspINA
software (EspINA Interactive Neuron Analyzer, 2.1.9; https://cajalbbp.
es/espina/). As previously discussed (Merchan-Perez et al., 2009),
there is a consensus for classifying cortical synapses into asymmetric
synapses (AS; or type |) and symmetric synapses (SS; or type Il). The
main characteristic distinguishing these synapses is the prominent or
thin postsynaptic density, respectively (Gray, 1959; Colonnier, 1968;
Peters et al., 1991; Figures 2 and 3). Also, these two types of synapses
are associated with different functions: AS are mostly glutamatergic
and excitatory, while SS are mostly GABAergic and inhibitory (Ascoli
et al., 2008; DeFelipe & Farifias, 1992; Houser et al., 1984). Neverthe-
less, in single sections, the synaptic cleft and the pre- and postsynaptic
densities are often blurred if the plane of the section does not pass at
right angles to the synaptic junction. Since the software EspINA allows
navigation through the stack of images, it was possible to unambigu-
ously identify every synapse as AS or SS, based on the thickness of the
postsynaptic density (PSD) (Merchan-Perez et al., 2009).

EspINA provided the 3D reconstruction of every synapse and
allowed the application of an unbiased 3D counting frame (CF), which
is a rectangular prism enclosed by three acceptance planes and three
exclusion planes marking its boundaries. All synapses within the CF
were counted, as were those intersecting any of the acceptance planes,
while synapses that were outside the CF, or intersecting any of the
exclusion planes, were not counted (Figure 4). Thus, the number of
synapses per unit volume was calculated directly by dividing the total
number of synapses counted by the volume of the CF (Merchan-Prez
etal., 2009), in all 18 stacks of images.

Synaptic size was calculated using the Synaptic Apposition Surface
(SAS), which was automatically extracted by EspINA (Figure 4c). The
SAS represents both the active zone (presynaptic density) and the PSD,
resulting in a functionally relevant measurement of the synaptic size
(Morales et al., 2013). Estimations of the SAS were made for each indi-
vidually 3D reconstructed complete synapse in all FIB/SEM stacks,
with the SAS area providing a reliable synaptic size measurement.

EspINA also allowed us to visualize each of the reconstructed
synapses in 3D and to detect the possible presence of perforations or
deep indentations in their perimeters. Regarding the shape of the PSD,
the synapses were classified according to the categories proposed by
Santuy et al. (2018a): macular (disk-shaped PSD); perforated (with one
or more holes in the PSD); horseshoe-shaped (with an indentation);
and fragmented (two or more disk-shaped PSDs with no connection
between them).

In addition, to identify the postsynaptic targets of the axon termi-
nals, we navigated through the image stacks using EspINA to determine
whether the postsynaptic element was a dendritic spine (spine, for
simplicity) or a dendritic shaft. As previously described in Dominguez-
Alvaro et al. (2021), unambiguous identification of spines requires the
spine to be visually traced to the parent dendrite, in which case we
refer to them as “complete spines.” When synapses are established on a
spine-shaped postsynaptic element whose neck cannot be followed to
the parent dendrite, we identify these elements as “incomplete spines.”
These incomplete spines were identified based on their size and shape,
the lack of mitochondria and the presence of a spine apparatus (a
term coined by Peters et al., 1991)—or because they were filled with
a characteristic fluffy material (used to describe the fine and indistinct
filaments present in the spines) (see also del Rio & DeFelipe, 1995).

2.5 | Spatial distribution analysis of synapses

In addition, the positions of the centers of gravity (centroids) of each
reconstructed synapse were also calculated by EspINA in all FIB/SEM
stacks of images.

To analyze the spatial distribution of synapses, Spatial Point Pat-
tern analysis was performed on the centroids as described elsewhere
(Antén-Sanchez et al., 2014; Merchan-Pérez et al., 2014). Briefly, we
compared the actual position of synapse centroids with the Complete
Spatial Randomness (CSR) model—a random spatial distribution model
which defines a situation where a point is equally likely to occur at any
location within a given volume. To do this, we generated an envelope
simulating 99 instances of random distributions of the same number of
points as our experimental sample.

Then, for each of the 18 FIB/SEM stacks of images, we calculated
three functions commonly used for spatial point pattern analysis: F,
G, and K functions. When these functions lay within the envelope, we
concluded that the distributions of synapses were random. Otherwise,
the distribution of points may be clustered (when points are closer to
each other than expected by chance) or regular (when points tend to
separate from each other further that expected by chance). The F func-

tion, also known as the empty space function or the point-to-event
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FIGURE 2 Images of neuropil in layer 3 of Etruscan shrew somatosensory cortex obtained by FIB/SEM. (a) Two synapses are indicated as
examples of asymmetric (AS, green arrow) and symmetric (SS, red arrow) synapses. (b, c) Higher magnification of AS (b) and SS (c) indicated in (a).
Synapse classification was based on the examination of the full sequence of serial images (see Figure 3). Scale bar in (c) represents 500 nm in (a),

and 250 nm in (b) and (c).

distribution, is the cumulative distribution of distances between the
centroids of synapses and the closest point in a regularly spaced grid
of points superimposed over the sample. The G function, also called
the nearest-neighbor distance cumulative distribution function or the
event-to-event distribution, is the cumulative distribution of distances
between each centroid and its nearest neighbor. The K function is also

called the reduced second moment function or Ripley’s function. An

estimation of the K function is given by the mean number of points
within a sphere of increasing radius centered on each sample centroid.
See Merchan-Perez et al. (2014) and Anton-Sanchez et al. (2014) for
examples of studies in which this methodology was used to investi-
gate the spatial distribution of synapses. The present study was carried
out using the Spatstat package and R Project program (Baddeley et al.,
2015).
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FIGURE 3 Sequence of FIB/SEM serial images of an AS (a-h) and an SS (i-p) indicated in Figure 2. Numbers on the top right of each panel
indicate the number of each section from a stack of serial sections. Synapse classification was based on the examination of full sequences of serial
images, see Section 2.4 for further details. Asterisks (in d-h) indicate a spine apparatus in a postsynaptic dendritic spine head. Scale bar shown in

(p) represents 500 nmin (a-p).

2.6 | Statistical analysis

To study whether there were significant differences between synap-
tic characteristics among the different layers, we performed a multiple
mean comparison test on the 18 samples of the six cortical layers. If the
necessary assumptions for ANOVA were not satisfied (the normality
and homoscedasticity criteria were not met), we used the Kruskal-
Wallis test (KW) and the Mann-Whitney test (MW) for pair-wise
comparisons. y2 tests were used for contingency table analysis. Fre-
quency distribution analysis of the SAS area was performed using

Kolmogorov-Smirnov (KS) nonparametric test. Statistical studies were

performed with the GraphPad Prism statistical package (Prism 9.00
for Windows, GraphPad Software Inc., USA), Spatstat package for R
Project program (Baddeley et al., 2015) and Easyfit Professional 5.5
(MathWave Technologies).

3 | RESULTS

The following results were obtained in the neuropil, so they represent
synapses located among cell bodies, excluding perisomatic synapses

and synapses established on thick proximal dendritic trunks.
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FIGURE 4 Screenshot of the EspINA software user interface. (a) In the main window, the sections are viewed through the xy plane (as
obtained by FIB/SEM microscopy). The other two orthogonal planes, yz and xz, are also shown in adjacent windows (on the right). (b) 3D
reconstructions of segmented AS (green) and SS (red). (c) Computed SAS for each reconstructed synapse (yellow). (d) Table of synaptic 3D
morphometric data from AS automatically obtained by EspINA software. Scale bar in (c) represents 5 umin (b) and (c).

3.1 | Synaptic density

The number of synapses per volume was calculated in the 18 stacks
of images obtained from 3 animals, in 6 layers per animal. A total of
9033 synapses were individually identified and reconstructed in 3D.
Of these, 7239 synapses were analyzed after discarding synapses that
were truncated by the margins of the stack or those touching the exclu-
sion edges of the counting frame (CF). Summing all the CFs that were
applied yielded a total volume of 5578 um3 (Table 1). The synaptic
density values were obtained by dividing the total number of synapses
included within each CF by its total volume. Since the synapses were
fully reconstructed in 3D, it was possible to classify them as AS and SS
based on the thickness of their PSDs, allowing us to compute the densi-
ties and proportions of AS and SSin each cortical layer (Merchan-Perez
et al., 2009).

The overall synaptic density—obtained by averaging all layers and
animals—was 1.31 synapses/um® (Table 1). The total synaptic den-
sity and AS density reached the highest values in layer 1 (1.70 and

1.62 synapses/um?3, respectively), and the lowest values in layer 6

(1.01 and 0.91 synapses/pum?3, respectively; Figure 5a, Tables 2 and 3).
Regarding SS, the density was highest in layer 3 and lowest in layer 1
(Table 2).

The general proportion of AS:SS, computed for all animals and lay-
ers collected was approximately 90:10 (Tables 1 and 2). Although no
differences in the AS:SS ratio were found between animals, compari-
son among layers revealed a statistically significant difference in layer
1 (¥2; p < .0001), which displayed a higher proportion of AS than the
other layers (96% AS and 4% SS; Tables 2 and 3; Figure 5b).

3.2 | Three-dimensional spatial synaptic
distribution

To analyze the spatial distribution of the synapses, the actual posi-
tion of each of the synapses in each stack of images was compared
with a random spatial distribution model (Complete Spatial Random-
ness, CSR). For this, the functions G, K, and F were calculated in the
18 stacks (Figure 6). We found that in half of the stacks (9 out 18)
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Plots of the synaptic analysis of the Etruscan shrew somatosensory cortex. (a) Mean of the overall synaptic density from each layer.

upper right-hand corner. (b) Proportion of AS and SS per layer expressed as

percentages, showing that layer 1 was different from the other layers (y2; p <.0001). (c) Mean SAS area per synaptic type shows larger synaptic
size of AS compared to SS (MW, p =.0015). (d) Cumulative frequency distribution graph of SAS area illustrating that small SS (red) were more
frequent (KS, p <.0001) than small AS (green). Asterisks indicate statistically significant differences.

the spatial distribution of synapses was compatible with a random
distribution. In the other half of the samples, a slight tendency for areg-
ular pattern was detected by the G function, which identified slightly
larger distances to the nearest neighbor than those expected by chance
(Figure 6).

The mean distance from each synapse centroid to its nearest
neighboring synapse within the counting frame was also calculated.
Synapses that were closer to the boundaries of the counting frame
than to any other synapse were excluded from the calculations, since
their nearest neighbor could be placed outside the counting frame at
an unknown distance (Baddeley et al., 1993; lllian et al., 2007). The
estimated intersynaptic distance was 591 + 33 nm (mean =+ SD) for all
animals and layers. These measurements were calculated separately
per layer, yielding the highest value in layer 6 (631 + 43 nm) and the
lowest inlayer 1(532 + 68 nm; Tables 2 and 3), although the differences
were not statistically significant (KS, p <.05).

3.3 | Synaptic size
The study of the synaptic size was carried out analyzing the area of
the SAS of each 3D reconstructed synapse (n = 7239) in the FIB/SEM
stacks (Figure 4c). To characterize the distribution of SAS area data,
we performed goodness-of-fit tests to find the theoretical probabil-
ity density functions that best fitted the empirical distributions of SAS
areas in each layer and in all layers pooled together. We found that
the best fit corresponded to log-normal distributions (Figure 7). These
log-normal distributions, with some variations in the location (u) and
scale (o) parameters (Table 4), were found in all layers for both AS and
SS, although the fit was better for AS than for SS, probably due to the
smaller number of SS.

The analysis of the SAS areas showed that AS were significantly
larger than SS considering all layers (MW; p = .0087; Figure 5c,

Tables 1-3). These differences were also found in the frequency
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FIGURE 6 Analysis of the 3D synaptic spatial distribution in somatosensory cortex from the Etruscan shrew. Red dashed traces correspond to
a theoretical homogeneous Poisson process for each function (F, G, K). The black continuous traces correspond to the experimentally observed
function in the sample. The shaded areas represent the envelopes of values calculated from a set of 99 simulations. Plots show a distribution which
fits into a Poisson function, but the experimental function from layer 3 for the G-function is partially out of the envelope. Plots obtained in layer 1
and layer 3 from animal MS1.
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FIGURE 7 Frequency histograms of SAS areas and their corresponding best-fit probability density functions. (a, b) Frequency histograms of
SAS areas in the six cortical layers are represented for AS and SS in a and b, respectively. (c, d) Frequency histograms (white bars) and best-fit
distributions of the theoretical probability synaptic density functions (magenta traces) have been represented. The best-fit probability functions
were log-normal distributions. Curve fitting was always better for AS (c) than for SS (d), probably because of the smaller sample size of SS (Table 4).

The parameters p and o of the log-normal curves are shown in Table 4.

distribution analyses (KS; p < .0001), showing that the proportion of
small SAS areas were higher in SS than in AS (Figure 5d). Analysis of the
SAS area per layer showed that SAS areas of AS are larger than those
from SSin all layers except in layer 6, where AS had smaller values than
SS (MW, p < .05, Table 2).

3.4 | Synaptic shape

A total of 2681 synapses reconstructed in 3D, from all layers, were
classified into four types according to their synaptic shape: macular
(with a flat, disk-shaped PSD); perforated (with one or more holes in
the PSD); horseshoe (with an indentation in the perimeter of the PSD);
and fragmented synapses (with two or more physically discontinuous
PSDs) (Figure 8; for a detailed description, see Santuy et al., 2018a;
Dominguez-Alvaro et al., 2019). However, fragmented synapses were

excluded from further analysis since only 2 AS fragmented synapses

were found (less than 0.1% of all synapses), making it impossible to
draw statistically reliable conclusions. Considering all cortical layers,
the vast majority of the 2472 identified AS presented macular mor-
phology (83%), followed by perforated (11.3%), and horseshoe-shaped
(5.7%). A total of 209 SS were identified—the majority of which pre-
sented macular morphology (89%), while 7.7% were perforated and
3.3% were horseshoe-shaped. Synaptic shape data were analyzed sep-
arately for each cortical layer (Table 5; Figure 8). Similar values were
found in all layers, with layer 6 showing the highest proportion of
macular synapses and layer 1 the lowest (y2, p <.0001; Figure 8).
Analyzing all layers together and determining the proportions of
the two categories (i.e., AS and SS) for each synapse shape revealed
that, of the total macular synapses, 91.7% were AS and 8.3% were
SS. In the case of perforated synapses, this proportion was 94.6% AS
versus 5.4% SS, while in the case of the horseshoe-shaped synapses,
95.1% were AS and 4.9% were SS. No differences in the frequencies

were found considering either all layers together or each individual
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FIGURE 8 Study of the different synaptic shapes. (a) Schematic representation of the synaptic shapes: macular synapses, with a continuous
disk-shaped PSD; perforated synapses, with holes in the PSD; horseshoe-shaped, with a tortuous perimeter with an indentation in the PSD. (b)
Proportions of the different synaptic shapes of AS per cortical layer. Significantly fewer macular AS were found in layer 1, compared to the rest of

the layers (42, p < .0001).

layer separately, regarding to the general proportion of AS:SS (¥2,
p>.001).

We also determined whether the shape of the synapses was related
to their size. For this purpose, the area of the SAS was analyzed for each
synaptic shape (Table 6). We found that analyzing all layers together
and each layer separately, the mean SAS area of the macular AS was
smaller than the mean area of the perforated and horseshoe-shaped
AS (KW, p < .0001). The same differences were found in the frequency
distribution of the SAS area of AS (KS, p > .01) in all layers (Figure 9).
Concerning SS, the number of synapses was not sufficient to perform
a robust statistical analysis for each layer, but the comparison of the
SAS areas from all layers revealed that the macular SS were also, on
average, smaller than the perforated and horseshoe-shaped SS (MW,
p <.0001).

3.5 | Study of the postsynaptic elements

Postsynaptic targets were identified and classified as dendritic spines
(including both complete and incomplete spines, as detailed above)
or dendritic shafts (Figure 10). The postsynaptic elements of 2589
synapses from all cortical layers were identified; of these, 77.9% were
AS established on spines, 13.9% were AS on dendritic shafts, 7.1% were
SS on dendritic shafts, and 0.8% were AS on spines.

Considering all types of synapses established on the spines, the
proportion of AS:SS was 99:1; while in those established on dendritic
shafts, this proportion was 66:34. Since the overall AS:SS ratio was
90:10, the present results show that AS and SS show a “preference” for
a particular postsynaptic element; that is, AS show a preference for the

spines (y2, p < .0001), while the SS show a preference for the dendritic
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FIGURE 9 Frequency distribution plots of SAS area of AS per cortical layer. Different colors correspond to each synaptic shape, as denoted in
the key. Statistical comparisons showed differences in the frequency distribution of the SAS area of macular synapses compared to perforated and

horseshoe-shaped synapses (KS, p <.0001).

shafts (¥2, p < .0001; Table 7). The same analysis was performed in each
cortical layer separately, and in all the layers together, with AS show-
ing a preference for spines (x2, p < .0001; Table 7; Figure 11) and the SS
showing a preference for dendritic shafts (y2, p < .0001; Table 7).

To determine whether there was a difference between the different
cortical layers with regard to the postsynaptic elements, the distribu-

tion of the postsynaptic elements was analyzed in each cortical layer

separately. Differences between layers were found regarding the pro-
portions of AS on spines and on dendritic shafts—AS on spines were
more frequentinlayers 1 and 3, while AS on dendritic shafts were more
frequent in layers 5 and 6 (¥, p < .0001; Table 7; Figure 11).
Additionally, we studied synaptic size regarding the postsynaptic
targets. This was carried out with the data of the SAS area of each

synapse whose postsynaptic element was identified. The mean SAS
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FIGURE 10 3D reconstruction of a dendritic segment from FIB/SEM serial images. (a-f) Images 121, 129, 134, 136, 140, and 155 from a stack
of serial sections obtained with FIB/SEM, showing a dendritic segment partially reconstructed (in purple). An asymmetric synapse (green arrow) on
adendritic spine, and a symmetric synapse (red arrow) on the shaft are indicated. (g-h) 3D reconstructions of the same dendritic segment are
displayed, after rotation about the major dendritic axis. The dendritic spine is shown establishing an asymmetric synapse (green)—and one
symmetric synapse (red) on the shaft is also visible. Note that the shape of the asymmetric synapse can be identified as perforated (h). Scale bar (in

h) indicates 1400 nmin a-fand 700 nmin g, h.

area of AS on dendritic shafts (68,231 nm2) was similar to the area of
AS on spines (61,402 nm?Z; MW, p > .05). Separate analyses per cor-
tical layer showed no differences regarding the area of the SAS from
AS (Table 8). Concerning SS, the number of synapses was not suffi-
cient to perform a robust statistical analysis for each layer, but the
comparison of the SAS areas from all layers together revealed no differ-
ences between synapses established on spines and those established
on dendritic shafts (MW, p = .246).

4 | DISCUSSION

The present study constitutes the first description of the ultrastruc-
tural synaptic characteristics of the neuropil from the cerebral cortex
of the Etruscan shrew. The following major results were obtained: (i)
cortical synaptic density was very high, particularly in layer 1; (ii) the
vast majority of synapses were excitatory—the highest proportion was

found in layer 1; (iii) excitatory synapses were larger than inhibitory
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FIGURE 11 Proportions of postsynaptic targets—dendritic spines and shafts—of AS per cortical layer. AS show a significant preference for
spines in all layers (y2; p <.0001). Layers 4, 5 and 6 displayed a greater proportion of AS on spines than layers 1, 2, and 3 (¥2; p < .0001).

synapses in all layers except in layer 6; and (iv) synapses were either
randomly distributed in space or showed a slight tendency for a reg-
ular pattern; (v) most synapses displayed a macular shape, and were,
on average, smaller than complex-shaped synapses (horseshoe-shaped
and fragmented); and (vi) most AS were established on dendritic spines,
while most SS were established on dendritic shafts.

What follows is a discussion of the above results in comparison with
data obtained from the human cerebral cortex (unless otherwise spec-
ified). From an evolutionary point of view, it is of particular interest to
compare the synaptic organization of the brain of the smallest mammal
with that of the much larger human brain, whose synaptic organization
is thought to have reached the highest level of complexity. Fortunately,
data is available from the human cerebral cortex that was obtained
using the same methodology (Cano-Astorga et al., 2021; Dominguez-
Alvaroetal., 2018;2021) as that used in the present study, avoiding the
difficulties that are inherent when comparing different studies using
different approaches. Thus, similarities and differences in the synaptic
organization can be directly compared to examine what characteristics

are conserved in evolution.

4.1 | Number of synapses and spatial distribution

Synaptic density is a useful parameter for describing synaptic organiza-
tion, in terms of connectivity and functionality. In the Etruscan shrew,
high densities of synapses were found in all layers of the somatosen-
sory cortex, with a mean synaptic density of 1.31 synapses/um?3. No
quantitative analysis of the synapses in the Etruscan shrew cerebral

cortex has been performed previously and, thus, it is not possible to

compare our results with those of others. However, the values for the
synaptic density of the Etruscan shrew are almost triple those obtained
in cortical samples from human temporal and entorhinal cortex using
the same 3D EM method and image analysis (Cano-Astorgaet al., 2021;
Dominguez-Alvaro et al., 2021; Table 9).

The highest synapse density was found in layer 1 (1.70
synapses/um?3; Table 2), which has a very low density of neurons
(Figure 1). In addition, the thickness of layer 1 in the Etruscan shrew
somatosensory cortex represents about 20% of the total cortical
thickness (Naumann et al., 2012). That is, in the Etruscan shrew, given
the high synaptic density in layer 1 and its relatively large proportion,
this layer greatly contributes to the total number of synapses in the
somatosensory cortex.

The present study was carried out in adult Etruscan shrews of differ-
ent ages, but we did not consider possible effects of age. For example, in
aged rhesus monkey, a lower number of synapses have been reported
in prefrontal cortex related to a cognitive decline; however, other stud-
ies in rats and monkeys have shown no evidence of synaptic loss with
age in mesial temporal lobe structures (reviewed in Morrison & Baxter,
2012).

In the present study, the AS:SS ratio was 90:10 (ranging from
88:12 to 96:4), which is within the range of the cortical values
reported from other species. The percentage of AS and SS varies
between 80—95% and 20—5%, respectively—in all the cortical layers,
cortical areas and species examined so far using transmission elec-
tron microscopy (Beaulieu & Colonnier, 1985; Bourne & Harris, 2011;
DeFelipe, 2011, 2015; DeFelipe et al., 2002; Megias et al., 2001) or
FIB/SEM (Cano-Astorga et al., 2021; Dominguez-Alvaro et al., 2018,
2021; Montero-Crespo et al., 2020; Santuy et al., 2018a). However,
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TABLE 1 Accumulated synaptic data per animal

Total no. of

Total

Intersynaptic
distance (nm;

synapses/
pm?3

No. of

Analyzed
Volume
(um?)
1831

Total no.
of

Area of SAS SS
(nm?2; mean =+ SE)

Area of SAS AS
(nm?; mean + SE)

No. of SS/um?
(mean =+ SD)

0.13+0.05

(

AS/um?®

% SS

% AS

No. of
SS

No. of
AS

mean + SD)

629 +51

(mean + SD)
1.08 +0.21

(

(mean + SD)
0.95+0.22

(

(mean + SD)

12.6 +5.3

(mean + SD)

87.4+53

synapses
1999

Animal
MS1

774+ 3950

63,

249 + 5557

77,
(66,

249

1750
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)

584 +47

(

(55,064 + 3411)

)

699 +4798

1.35+0.26)

)

) 0.16 +0.06

1.19+0.27

(1469)
1957

(533 +50)

574 + 54
570+ 51

53,290 + 2813

0.10+0.03 1.30+0.39 70,672 + 4102

1.2+04

8.6+3.1

914 +3.1

209 2432

2223

MS2

(46,012 + 2429)
64,071 + 5507

(61,020 + 3542)

(1.62 +0.49)
1.55+0.31

(1.49 +0.5) (0.13+0.04)
0.12+0.08

143+0.29

(1570)
1790
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74,067 + 4380

79+15

921+15

2591 217 2808

MS3
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(529 +47)
591+ 33

(55,321 +4755)
60,378 + 6140

(63,952 +3782)
73,996 + 3289

(1.78 +0.37) (0.15+0.04) (1.93+0.39)
0.12+0.01 1.31+0.23

1.19+0.24

(143¢)
5578

ot 2255

90.3+25

675 7239

6564

Total

(549 +31)

(63,890 + 2840) (52,133 +5302)

(1.49 +0.29) (0.15+0.02) (1.63 +0.29)

(4475)

Note: Data in parentheses are not corrected for shrinkage.

AS: asymmetric synapses; SAS: synaptic apposition surface; SE: standard error of the mean; SD: standard deviation; SS: symmetric synapses.

layer 1 of the Etruscan shrew displays the highest proportion of AS
(approximately 96:4, AS:SS) compared to other cortical layers where
this proportion was similar (89:11). This suggests that there is a
layer-specific excitatory-inhibitory balance.

Regarding the spatial organization of synapses, we found that the
synapses either fitted to a random distribution in the neuropil or
showed a slight tendency for a regular pattern, where points tend to
separate from each other more than expected by chance. In the latter
case, this may be because the spatial statistical functions are applied
to the centers of gravity or centroids of the synaptic junction. How-
ever, it is important to take into account that synaptic junctions cannot
overlap, and thus the minimum distances between their centroids are
limited by the sizes of the synaptic junctions themselves, resulting in
a slightly dispersed distribution of the centroids. This type of spatial
distribution, which is based on a random distribution with a minimum-
spacing rule, has also been found in the rat somatosensory cortex
(Merchan-Perez et al., 2014; Anton-Sanchez et al., 2014) and several
regions of the human brain including frontal cortex, transentorhinal
cortex, entorhinal cortex, temporal cortex and CA1 hippocampal field
(Blazquez-Llorca et al., 2013; Cano-Astorga et al., 2021; Dominguez-
Alvaro et al., 2018; 2021; Montero-Crespo et al., 2020). As proposed
by Merchan-Perez et al. (2014), in a random distribution, a synapse
could be formed anywhere in space where an axon terminal and a den-
dritic element may touch, provided this particular spot is not already
occupied by a pre- existing synapse. However, spatial randomness does
not necessarily mean non-specific connections. Spatial specificity in
the neocortex may be scale-dependent. It is well known that, at the
macroscopic and mesoscopic scales, the mammalian nervous system
is a highly ordered and stereotyped structure where connections are
established in a highly specific and ordered way. Even at the micro-
scopic level, it is clear that different areas and layers of the cortex
receive specific inputs. However, at the ultrastructural level, synapses
are often observed to be distributed in a nearly random pattern. This
could mean that, as the axon terminals reach their destination, the spa-
tial resolution achieved by them is fine enough to find a specific cortical
layer, but not sufficiently fine to make a synapse on a particular tar-
get, such as a specific dendritic branch or dendritic spine within a layer.
Therefore, the present results indicating the random spatial distribu-
tion of synapses are in line with the proposed widespread “rules” of the

synaptic organization of the mammalian cerebral cortex.

4.2 | Synaptic size and shape

It has been proposed that synaptic size is directly related to neuro-
transmitter release probability, synaptic strength, efficacy and plastic-
ity (e.g., Ganeshina et al., 2004a; Holderith et al., 2012; Matz et al.,
2010; Montes et al., 2015; Nusser et al., 1998; Stidhof, 2012; Tarusawa
et al., 2009). Hence, the analysis of the synaptic size provides useful
information about the synaptic function of a particular brain region.

In the present study, we used the values obtained from the SAS,
which is equivalent to the interface between the active zone and the

postsynaptic density (Morales et al., 2013). Thus, investigating SAS
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TABLE 4 Areaofthe SAS datadistribution in the six cortical layers

AS SS
n y o n u a
Layer 1 1462 10.79 0.90 75 10.50 0.73
Layer 2 989 11.05 0.80 114 10.75 0.65
Layer 3 1414 10.91 0.79 171 10.80 0.59
Layer 4 872 11.08 0.68 114 10.81 0.56
Layer 5 921 11.02 0.73 94 10.93 0.71
Layer 6 906 10.74 0.74 107 10.93 0.72
Layers 1-6 6564 10.91 0.80 675 10.80 0.66
Note: Number of SAS analyzed (n), the location (u), and scale (o) of the best-fit log-normal distributions.
AS: asymmetric synapses; SAS: synaptic apposition surface; SS: symmetric synapses.
TABLE 5 Proportions of the different shapes of synaptic junctions per layer
Cortical layer Type of synapse Macular Perforated Horseshoe-shaped
Layer 1 AS 77.3% (566) 14.3% (105) 8.3% (57)
SS 87.5% (42) 12.5% (6) 0.0% (0)
Layer 2 AS 83.9% (251) 11.7% (35) 4.3% (13)
SS 90.5% (19) 4.8% (1) 4.8% (1)
Layer 3 AS 82.2% (410) 11.2% (56) 6.6% (33)
SS 96.0% (48) 4.0% (2) 0.0% (0)
Layer 4 AS 85.0% (277) 11.0% (36) 4.0% (13)
SS 87.5% (28) 9.4% (3) 3.1% (1)
Layer 5 AS 86.4% (286) 10.6% (35) 3.6% (12)
SS 88.9% (24) 7.4% (2) 3.7% (1)
Layer 6 AS 92.5% (259) 4.3% (12) 3.2% (9)
SS 80.6% (25) 6.5% (2) 12.9% (4)
Total AS 83% (2050) 11.3% (279) 5.7% (137)
SS 89% (186) 7.7% (16) 3.3% (7)

Note: Data are given as percentages with the absolute number of synapses studied in parentheses.

AS: asymmetric synapses; SS: symmetric synapses.

area is an appropriate approach to analyze the synaptic size (Morales
et al., 2013). Analysis of the somatosensory cortex of the Etruscan
shrew has shown that SAS area was larger in AS than in SS (Figure 5),
which is similar to previous data obtained in other cortical areas and
species using the same method (Cano-Astorga et al., 2021; Dominguez-
Alvaro et al., 2021; Montero-Crespo et al., 2020). In addition, the
SAS area of both types of synapses (asymmetric and symmetric) fol-
lows log-normal distributions, as do many other neuroanatomical and
physiological variables such as synaptic strength, axonal width, and
corticocortical connection density (Buzsaki & Mizuseki, 2014; Markov
et al.,, 2014; Robinson et al., 2021).

However, we observed that the SAS area for AS was much smaller
(73,996 nm?2) compared to that found in the human temporal cortex
and entorhinal cortex (110,243 nm? and 117,247 nm?2, respectively;

Table 9). However, the SAS area for SS was similar to that found

in other species and cortical regions (Table 9), which may indicate
that SS are more homogeneous across species than AS (Santuy et al.,
2018b).

Moreover, the present results show that most synapses presented
a macular shape, which is in line with previous reports in other
brain areas and species (Cali et al., 2018; Cano-Astorga et al., 2021;
Dominguez-Alvaroetal.,2019,2021; Geinisman et al., 1987; Hsu et al.,
2017; Jones et al., 1991; Montero-Crespo et al., 2020; Santuy et al.,
2018a). The lowest and the highest proportions of macular synapses
were found in layer 1 and layer 6, respectively, which suggests specific
layer-dependent differences. In all layers, complex-shaped synapses
were, on average, larger than macular ones. It has been widely reported
that complex-shaped synapses have more AMPA and NMDA recep-
tors than macular synapses (Ganeshina et al., 2004a, 2004b; Luscher

et al., 2000; Montes et al., 2015). Therefore, macular synapses may
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TABLE 6 Mean area of the SAS (nm?2) of the macular, perforated, and horseshoe-shaped synapses per cortical layer

Cortical layer Type of synapse
Layer 1 AS
SS
Layer 2 AS
SS
Layer 3 AS
SS
Layer 4 AS
SS
Layer 5 AS
SS
Layer 6 AS
SS
Total AS
)

Macular Perforated Horseshoe-shaped
45,874 139,441 119,080
(566) (105) (57)
41,705 82,422 -

(42) (6) (0)
72,335 160,184 169,133
(2519) (35) (13)
53,402 61,168 137,854
(19) (1) (1)
52,137 123,600 108,561
(4109) (56) (33)
58,940 164,670 -

(489) (2 (0)
63,715 152,512 132,028
(2779) (36) (13)
52,942 99,540 50,924
(289) (3) (1)
75,486 132,872 125,359
(286) (35) (12)
74,714 153,084 53,651
(24) (2) (1)
62,397 132,917 118,328
(260) (12) (9)
68,330 145,728 124,590
(25) (2) (4)
59,260 140,825 122,331
(2050) (279) (137)
59,004 109,449 100,489
(186) (16) ()

Note: All data are corrected for shrinkage. Absolute numbers of synapses are in parentheses.

AS: asymmetric synapses; SS: symmetric synapses.

constitute a population of synapses with more dynamic functionality
than complex synapses.

It should be kept in mind that the SAS area of the AS is rather
variable (Table 3). Larger and more complex synapses have been pro-
posed to have more receptors in their postsynaptic elements than
small synapses, and are thought to constitute a synaptic population
with long-lasting memory-related functionality (e.g., Ganeshina et al.,
2004a, 2004b; Geinisman et al., 1993; Lischer et al., 2000; Toni et al.,
2001)—whereas, small active zones may play a special role in synaptic
plasticity (Kharazia & Weinberg, 1999). Thus, the presence of rela-
tively small AS in the neuropil of the somatosensory cortex of the
Etruscan shrew may indicate a lower release probability, synaptic
strength and efficacy. In fact, hippocampal mossy fibers in Etruscan
shrew have shown lower long- and short-term plasticity, as well as
reduced expression of synaptotagmin-7 (a key synaptic protein in the
regulation of presynaptic function) compared to mice (Beed et al.,

2020). Inthis regard, it has been shown that mammalian brain synapses
contain thousands of synaptic proteins resulting a high level of synapse
diversity (Biederer et al., 2017; Zhu et al., 2018), which may result
in synaptic species-specific differences (Curran et al., 2021). Thus,
it is likely that molecular characterization of the synaptic proteins
in the Etruscan shrew cortex may reveal additional specific synaptic

characteristics.

4.3 | Postsynaptic targets

The present results show that AS have a clear preference for den-
dritic spines, since 85% of AS are established on spines (axospinous).
SS, on the contrary, show a preference for dendritic shafts, as 90%
of SS are established on dendritic shafts (axodendritic). Given that
AS outnumber SS in a proportion of 90:10, the proportion of AS:SS
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TABLE 7 Distribution of AS and SS on spines and dendritic shafts per cortical layer

Cortical layer Type of synapse
Layer 1 AS
SS
Layer 2 AS
SS
Layer 3 AS
SS
Layer 4 AS
SS
Layer 5 AS
SS
Layer 6 AS
SS
Total AS
SS

RESEARCH IN
SYSTEMS NEUROSCIENCE 409
THE JOURNAL OF COMPARATIVE NEUROLOGY W l I I .

On spines On shafts Total
94.9% (655) 5.1%(35) 100% (690)
17.4% (8) 86.4% (39) 100% (47)
87.1% (256) 12.9% (38) 100% (294)
4.8% (1) 95.2% (20) 100% (21)
96.5% (469) 3.5% (17) 100% (486)
12.2% (6) 87.8% (43) 100% (49)
75.9% (245) 24.1% (78) 100% (323)
3.1% (1) 96.9% (31) 100% (32)
68.0% (221) 32.0% (104) 100% (325)
15.4% (4) 84.6% (22) 100% (26)
67.0% (179) 33.0% (87) 100% (266)
3.3% (1) 96.7% (29) 100% (30)
84.9% (2025) 15.1% (359) 100% (2384)
10.2% (21) 89.8% (184) 100% (205)

Note: Synapses established on spines include those classified as complete and incomplete spines (as detailed in Section 2). Data are given as percentages with

the absolute number of synapses studied in parentheses.
AS: asymmetric synapses; SS: symmetric synapses.

established on spines is 99:1. Moreover, AS also predominate over SS
on dendritic shafts, although the proportion is more evenly balanced
at 66:34.

In other rodents, the percentage of AS established on spines is simi-
lar to the Etruscan shrew—for example, in the somatosensory cortex of
the young rat (Santuy et al., 2018b) and of the adult mouse (Cali et al.,
2018), where 84% and 86% of AS are axospinous, respectively. These
percentages are lower in the human temporal cortex, where 75% of AS
are axospinous (Cano-Astorga et al., 2021), whereas in the entorhinal
cortex this value was 57% (Dominguez-Alvaro et al., 2021). Numerous
publications have also shown a clear preference of glutamatergic axons
(forming AS) for spines and GABAergic axons (forming SS) for dendritic
shafts in a variety of cortical regions and species (reviewed in DeFelipe
etal.,, 2002).

In addition, we have found remarkable differences between corti-
cal layers, showing maximum proportions of AS on spines in layers 1
and 3 (95% and 97%, respectively) and minimum proportions in layers
5 and 6 (68% and 67%, respectively). The higher proportion of AS on
spines might be related to the higher proportion of AS found in layer
1. It is possible that layers with more axospinous AS contain a higher
proportion of dendritic spines, but this would need to be further exam-
ined using other methods. Therefore, differences in the proportion of
AS on spines might represent another microanatomical specialization
of the cortical layers. Whether these laminar differences are also found
in other cortical areas and species remains to be elucidated using the
same methodological approaches.

Differences between cortical layers and species regarding the tar-
gets of SS are more difficult to interpret because of the scarcity of SS.
Nevertheless, the present data do come from a relatively large num-
ber of serially reconstructed SS (n = 205), which is similar to other data

sets obtained in our laboratory in other species. In the present study,
we have also observed that the majority of SS (89.8%) were established
on dendritic shafts, whereas in the human temporal and entorhinal cor-
tex, this proportion was 85% and 83%, respectively (176 SS and 254
SS were analyzed, respectively; Cano-Astorga et al., 2021; Dominguez-
Alvaro et al., 2021). Furthermore, a lower percentage of axodendritic
SS has been reported in the young rat somatosensory cortex, in which
75% of 574 serially reconstructed SS were axodendritic (Santuy et al.,
2018b). Thus, GABAergic synapses appear to be organized differently

in different species.

4.4 | Layer-specific differences

In general, the structure of cortical layer 1 is highly conserved across
cortical areas and mammalian species and it shows distinctive char-
acteristics. It has sparse neurons, which are GABAergic interneurons
(Schuman et al., 2019), and most of its volume is occupied by neu-
ropil (Alonso-Nanclares et al., 2008; Santuy et al., 2018c). Layer 1 is
the predominant input layer for top-down information, relayed by
abundant projections that provide signals to the tuft branches of the
pyramidal neurons (reviewed in Schuman et al., 2021). In particular,
layer 1 receives axons from the thalamus and other cortical areas
(corticocortical connections), as well as from local neurons from
deeper layers (Muralidhar et al., 2014; Schuman et al., 2021). It has
been proposed that layer 1 mediates the integration of contextual and
cross-modal information in top-down signals with the input specific
to a given area, enabling flexible and state-dependent processing of
feed-forward sensory input arriving deeper in the cortical column
(reviewed in Schuman et al., 2021). In addition, layer 6 also showed
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TABLE 8 Mean area of the SAS (nm?2) of the synapses on different postsynaptic targets per cortical layer

Onincomplete

Layer Type of synapse spines
Layer 1 AS 46,353
(445)
SS 54,608
(6)
Layer 2 AS 61,498
(158)
55 =
()
Layer 3 AS 45,407
(293)
SS 48,254
(5)
Layer 4 AS 62,828
(159)
SS =
(0)
Layer 5 AS 65,393
(157)
SS 33,750
()
Layer 6 AS 47,169
(84)
SS 74,496
(1)
Total AS 54,775
(1296)
SS 52,777
(14)

On complete spines On spines (total) On shafts
75,169 64,383 74,813
(210) (655) (35)
36,289 57,939 44,448
(2 (8) (38)
103,722 89,943 82,645
(98) (256) (38)
39,793 46,086 60,063
(1) (1) (20)
70,815 63,630 65,552
(176) (469) (17)
55,094 57,205 65,842
(1) (6) (43)
77,026 78,536 73,935
(86) (245) (78)
41,623 48,205 57,540
(1) (1) (31)
80,101 80,668 90,938
(64) (221) (104)
51,388 49,301 82,058
(2) 4 (22)
66,410 66,454 72,073
(95) (179) (87)

- 86,277 82,500
(0) (1) (29)
78,874 71,112 79,021
(729) (2025) (359)
44,837 56,406 63,845
@ (21) (184)

Note: All data are corrected for shrinkage. Absolute numbers of synapses are in parentheses.

AS: asymmetric synapses; SS: symmetric synapses.

some particular characteristics, including the lowest synaptic density,
a lower SAS area for AS than SS and a relatively low proportion of AS
on spines compared to layer 1. Thus, synaptic characteristics show
layer-specific differences. However, the specific functional significance
of the laminar differences in the synaptic organization of the Etruscan
shrew remains to be elucidated.

Regarding the density and number of synapses, the Etruscan shrew
has a high synaptic density of around 1300 x 10° synapses per mm?,
which is almost triple the estimated synaptic density (about 500 x 10¢
synapses per mm3) in the human cortex. Since the estimated volume of
the Etruscan shrew cerebral cortex is 10.6 mm3 (Nauman et al.,, 2012),
the total number of synapses would be about 14,000 x 108, whereas
in the human cortex this number can be up to 138,000,000 x 10°
synapses (based on a total cortical volume of 553,000 mm?3, as reported
by Ribeiro et al., 2013). That is, the cortical volume of the human

brain is about 50,000 times larger than the cortical volume of the
Etruscan shrew, but the total number of cortical synapses in human
is “only” around 20,000 times the number of synapses in the shrew.
Furthermore, the synaptic junctions are about 35% smaller in the Etr-
uscan shrew, which may be considered a relatively small difference.
Thus, these differences in the number and size of synapses cannot be
attributed to a brain size scaling effect, but rather to adaptations of
synaptic circuits to particular functions.

In summary, a number of features of the synaptic organization of
cortex of the Etruscan shrew seems to be species-specific. However,
there are certain general synaptic characteristics that are remarkably
similar to those found in the human cerebral cortex including the fol-
lowing: (i) the vast majority of synapses are excitatory; (ii) synapses fit
quite closely to a random spatial distribution; (iii) the size of synap-
tic junctions follows a lognormal distribution; (iv) excitatory synapses
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TABLE 9 Summary of synaptic data from FIB/SEM studies for comparison

Intersynaptic
Areaof SASAS Areaof SASSS distance (nm;

(nm2; mean)

73,996

Total no. of

AS:SS

Total no. of

No. of
SS

No. of
AS

No., sex
(age)
3M

mean)

(nm2; mean)

synapses/pm?
1.31(1.63)

(percentage)

90:10

synapses
7239

Reference

Layer
1-6

Brain region

Species

591(549)

60,378

675

6564

Present study

Somatosensory

Etruscan

(52,133)
73,196

(63,890)
110,243

(adult)
5M;3F

cortex

Shrew

756 (735)

0.60(0.67)

93:7

327 4945

4618

Cano-Astorga

&

Middle temporal

Human

(68,072)

(102,526)

(24-53
y.0.)

4M

etal.(2021)

gyrus

826(802)

66,721

117,247

0.42(0.47)

93:7

267 3567

3300

2,3 Dominguez-

Entorhinal cortex

Human

Alvaroetal.
(2021)

(62,051)

(109,039)

(40-63
y.0.)

Note: Data in parentheses are not corrected for tissue shrinkage.

AS: asymmetric synapses; F: female; M: male; SAS: synaptic apposition surface; SS: symmetric synapses.

are larger than inhibitory synapses; (v) most synapses display a macu-
lar shape and are, on average, smaller than complex-shaped synapses;
and (vi) most AS are established on dendritic spines, while most SS
are established on dendritic shafts. Therefore, these synaptic charac-
teristics might be considered as basic bricks of the cortical synaptic

organization in mammals.
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