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Abstract: Hydrogen cyanide, HCN, is considered a fundamental molecule in chemical evolution.
The named HCN polymers have been suggested as precursors of important bioorganics. Some novel
researches have focused on the role of mineral surfaces in the hydrolysis and/or polymerization of
cyanide species, but until now, their role has been unclear. Understanding the role of minerals in
chemical evolution processes is crucial because minerals undoubtedly interacted with the organic
molecules formed on the early Earth by different process. Therefore, we simulated the probable
interactions between HCN and a serpentinite-hosted alkaline hydrothermal system. We studied
the effect of serpentinite during the thermolysis of HCN at basic conditions (i.e., HCN 0.15 M, 50 h,
100 ◦C, pH > 10). The HCN-derived thermal polymer and supernatant formed after treatment were
analyzed by several complementary analytical techniques. The results obtained suggest that: (I) the
mineral surfaces can act as mediators in the mechanisms of organic molecule production such as
the polymerization of HCN; (II) the thermal and physicochemical properties of the HCN polymer
produced are affected by the presence of the mineral surface; and (III) serpentinite seems to inhibit
the formation of bioorganic molecules compared with the control (without mineral).

Keywords: hydrogen cyanide; alkaline hydrothermal environments; organic molecules; serpentine
minerals; prebiotic chemistry

1. Introduction

Currently, it is undoubted that several cyanide species may have had a crucial role
in the previous steps for the origin of life [1–3], either as an important source of pre-
cursors to building blocks of RNA, proteins, and lipids [4–13] or as important chemical
intermediates in phosphorylation reactions [14]. These cyanide species may have been
scattered throughout some primitive environments such as the hydrothermal systems,
either submarine or subaerial [15–20]. Hydrothermal environments, both subaerial and
submarine, are considered ideal systems that allowed chemical evolution on Earth [21–23].
It has been proposed that serpentine-hosted hydrothermal systems may support favorable
conditions for prebiotic pathways due to the coexistence of different geochemical variables
on them [21,24–26]. Serpentinites are rocks formed mostly of serpentine-group minerals
derived from metamorphism of mafic–ultramafic rocks that were abundant during the
Hadean–Archean eons [27–30]. In general, these hydrous magnesium silicates are formed
after low-temperature ( <400 ◦C) hydration of ferromagnesian or magnesian minerals (e.g.,
olivine, orthopyroxene) formed in basic and ultrabasic rocks [31].

Life 2021, 11, 661. https://doi.org/10.3390/life11070661 https://www.mdpi.com/journal/life

https://www.mdpi.com/journal/life
https://www.mdpi.com
https://orcid.org/0000-0003-3087-4457
https://orcid.org/0000-0002-8059-1335
https://orcid.org/0000-0003-4709-4676
https://orcid.org/0000-0002-9193-1761
https://doi.org/10.3390/life11070661
https://doi.org/10.3390/life11070661
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/life11070661
https://www.mdpi.com/journal/life
https://www.mdpi.com/article/10.3390/life11070661?type=check_update&version=2


Life 2021, 11, 661 2 of 23

Because hydrothermal activity and the serpentinization process should have been
common and widely distributed in the first 1000 Ma of the Earth’s history [24,26,29,32–35],
some authors have highlighted the interactions among cyanide species and geochemi-
cal variables present in hydrothermal environments and their aftermath in origin of life
scenarios [2,36–41].

Recent papers have shown that hydrothermal fluids, during the serpentinization
process, can lead to the occurrence of carbonaceous matter on mineral surfaces [42–44].
In addition, it has been shown that alkaline conditions and the dynamic surroundings
that are present in hydrothermal systems are crucial for the transformation of cyanide
species (e.g., cyanide salts and hydrogen cyanide, HCN) into other organic precursors
with interesting roles in pre-RNA world scenarios [11,12,45–48]. Therefore, it seems nec-
essary to study the role of serpentinite during the polymerization of HCN in order to
simulate a feasible primitive geochemical scenario such as the surroundings of an alkaline
hydrothermal system.

The polymerization of HCN has been widely studied [49–55]; however, few reports
have focused on the polymerization of HCN onto mineral surfaces. Ferris et al. [56] found
that the presence of montmorillonite inhibits the formation of oligomers because the clay
decomposes the tetramer of HCN (i.e., diaminomaleonitrile, DAMN); this effect increases
at higher temperatures [47]. However, Boclair and coworkers [57] reported that layered
double hydroxides (LDH) can favor the self-addition of cyanide at alkaline pH. On the other
hand, the -irradiation of an heterogeneous sample of HCN/Na-montmorillonite inhibited
the amount of carboxylic acids formed [58]. In addition, it has been shown that the proper-
ties (e.g., structure, kind of deposition, morphology) of aminomalononitrile-based films
are modified by the presence of surfaces (e.g., quartz, glass, and silica; [59]). There is no
comprehensive information about the role of mineral surfaces during HCN polymerization.

The dynamism of hydrothermal systems offers an interesting place for chemical
reactions. For instance, the continuous transport of material along the surroundings of
hydrothermal systems (i.e., the vent field that includes all active hydrothermal fluids
(both at low (<100 ◦C) and high temperatures (<400 ◦C)) may involve the occurrence of
thermolysis and polymerization reactions of raw material. Recently, we characterized a
polymer formed from the thermolysis of HCN (i.e., HCN-DTP) [46] simulating a simple
alkaline hydrothermal system. In this work, using the same synthesis conditions (i.e.,
HCN(l) 0.15 M, 50 h, 100 ◦C, pH > 10), we studied the role of serpentinite related to the
physicochemical properties of the formed polymer (HCN-DTP/serpentinite) as well as the
nature of the supernatant and the mineral coated by an organic layer (Figure 1). Finally, we
discuss the implications for chemical evolution studies.
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Figure 1. Processes followed for the synthesis and characterization of the HCN-DTP in presence of
serpentinite.

2. Materials and Methods
2.1. Mineral/HCN Samples

Serpentinite was provided by Professor Fernando Ortega-Gutiérrez (Geology Insti-
tute, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Cd. Mx,
Mexico). The sample was obtained from the Acatlán Complex, SW México [60]. In order
to remove all the organic material on the sample, the following procedure was carried
out: fragments of mineral (< 1 cm) were washed with a KOH solution (3% v/v) for 30 min
(1 g mineral/10 mL solution). After that, the mineral was stirred in distilled water (30 min)
to remove the KOH excess. Later, the sample was washed with HNO3 solution (3% v/v)
(1 g mineral/10 mL solution) for 30 min. Finally, the mineral was cleaned with distilled
water to remove the acid excess. Mineral was dried at room temperature. XRD analysis
was performed for mineralogical characterization of the serpentinite sample. The lizardite
polymorph predominated in the sample. XRD spectra (Figure 2) showed distinctive diffrac-
tion peaks corresponding to lizardite (91%), antigorite (5%), and minor traces of magnetite
and brucite (≈4%). Lizardite has the structural formula M3T2O5(OH)4, where M is mainly
Mg and T is Si, although several common elements can be present in Table 2. Al3+, Ni,
Mn2+, or Zn2+ [61–63]. In this mineral, 1:1 flat layers of sheets of SiO4 tetrahedra and sheets
of MgO2(OH)4 octahedra are linked by hydrogen bonds. The most common polytypic is
the stacking of three layers without any lateral shift [64].
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Figure 2. X-ray pattern for the serpentinite rock sample. Diffraction peaks were assigned based
on previous works [61,63]. Legend: (L) lizardite Mg3Si2O5 (OH)4, (M) magnetite (Fe3O4), and (B)
brucite (Mg(OH)2).

To confirm that the mineral sample was not contaminated, a mass spectroscopy
thermal analysis was carried out for the cleaned serpentinite sample. Peaks related to OH−

and H2O (at 619 and 696 ◦C) were detected; this corroborated that all organic material was
removed from the serpentinite (figure not shown).

The HCN-DTP was synthesized in the presence of serpentinite as follows. HCN
solution was produced in situ by the reaction between KCN and H2SO4 under argon
atmosphere (for further details, please see Villafañe-Barajas et al., 2020 [46]). Once the
desired concentration was reached (0.15 mol L−1), the pH of the HCN solution was adjusted
(pH > 10) with KOH solution (0.1 mol L−1) to favor the availability of –CN and the
formation of HCN-polymers. Finally, aliquots of HCN solution (0.15 mol L−1, 5 mL) were
prepared with 500 mg of the previously cleaned serpentinite in glass tubes and heated
in a static system at 100 ◦C for 50 h. The selected temperature was consistent with the
one found in the surroundings of alkaline hydrothermal environments. After treatment,
three phases could be distinguished in the sample: I) supernatant (yellow soluble part),
II) HCN-DTP (black polymer that was not adhered to mineral surface), and III) mineral +
HCN-DTP (serpentinite covered by polymer). The three phases were analyzed by different
analytical techniques (for more details, see Figure 1).

2.2. Analysis of Samples
2.2.1. FT-IR Spectroscopy (FT-IR)

The spectra were collected with a FT-IR spectrometer (Nicolet Thermo Fisher ®, model
Nexus 67, MA, USA, software OMNIC ) using CsI pellets. Using a DRIFT reflectance
accessory (Harrik, model Praying Mantis DRP, New York, NY, USA), the spectra of Phases
II and III in the 4000–450 cm−1 spectral region (spectral resolution of 2 cm−1) were obtained.

2.2.2. Thermal Analysis (TA)

A thermal analysis (thermogravimetry (TG), differential thermal analysis (DTG), and
differential scanning calorimetry (DSC)) was performed with a TA instrument® (SDTQ-
600/Thermo Star). The method involved operating in isothermal mode (20 min) and a heat-
ing ramp of 10 ◦C min−1 until 1000 ◦C under inert atmosphere (argon, flux 100 mL min−1).
The analysis of the main released species along dynamic thermal decomposition from
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fragmentation process, were carried out with a coupled TG–MS system using an electron-
impact quadrupole mass-selective detector (model Thermostar QMS200 M3).

2.2.3. XPS Spectroscopy Analysis

X-ray photoelectron spectroscopy analysis of Phase III was carried out in an ultrahigh-
vacuum chamber equipped with a hemispherical electron analyzer and with the use of an
Al Kα X-ray source (1486.6 eV) with an aperture of 7 mm × 20 mm. The base pressure in the
chamber was 3 × 10−8 mbar, and the experiments were performed at room temperature.
The sample was analyzed by preparing a pellet containing a sample of approximately
100 mg obtained after grinding and pressing the Phase III (mineral + HCN-DTP). Phase
III was also analyzed as raw sample (rock covered by the polymer). The peak analysis
in different components was shaped, after background subtraction, as a convolution of
Lorenztian and Gaussian curves. Binding energies were calibrated against the binding
energy of the C 1s peak at 285.0 eV. Calculation of the atomic relationships between the
identified elements was derived from integral peak intensities and sensitivity factors
supplied by Handbook of XPS [65].

2.2.4. Hydrolysis and GC–MS Analysis

To conduct a comparative analysis, a basic (NaOH 0.1N, 100 ◦C, 6 h) and acid (HCl
6N, 110 ◦C, 24 h) hydrolysis procedure was performed following previous reports [46,66].
After treatment, the samples (Phases I, II, and III) were analyzed by a GC system coupled
to a 5975 VL MSD (Agilent®). The detection and characterization of different signals were
performed as previously reported [9,46].

3. Results and Discussion
3.1. Fourier Transform Infrared (FT-IR) Spectroscopy

The FT-IR spectra of Phases II and III were registered and compared with their respec-
tive control samples. That means that the Phase II was compared to the polymer control
HCN-DTP synthesized in the absence of mineral and the Phase III to a control serpentinite
sample (Figure 3). This was done as a first step to evaluate the effect of the serpentinite in
the cyanide polymerization process.

There were no appreciable differences between the spectra of the mineral alone and the
Phase III (Figure 3A). The lack of differences between the naked mineral spectrum and the
coated serpentinite is probably because the spectrum of the Phase III was registered using a
pellet of the raw sample. As will be discussed below, the organic film represents a very low
amount (in % weight) of the raw Phase III. Therefore, in relative proportion, the intensities
of the mineral FT-IR features are much higher than those of the organic film; therefore, it
was not possible to characterize the polymeric coating by this methodology. The FT-IR
spectrum of the serpentinite described here (Figure 3A) is very similar to others spectra
previously reported, with characteristic peaks centered at 3682 cm−1, related to MgO-H
stretching vibration modes, and at 974 cm−1 with a shoulder at 1068 cm−1, corresponding
to the Si–O–Si asymmetric stretching mode (for a detailed description of these FT-IR spectra,
see, e.g., Rivero Crespo et al., 2019; [67]).
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Figure 3. FT-IR spectra of (A) net serpentinite (clean control mineral) and serpentinite coated in
a HCN-derived polymeric film (Phase III); (B) HCN-DTP polymer synthesized in the presence of
serpentinite (Phase II) and control HCN-DTP polymer (synthesized in the absence of serpentinite);
and (C) subtraction of the FT-IR spectra of the Phase II and the control HCN-DTP polymer.
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On the other hand, the FT-IR spectra of the Phase II and the polymer control HCN-DTP
present the same main features (Figure 3B). Detailed interpretations of these spectra were
presented in Villafañe-Barajas et al. [46] indicating the generation of a highly conjugated
macrostructure dominated by oxygenated functional groups. However, some slight but
significant differences can be observed between the Phase II and the polymer control
HCN-DTP (inset plot in Figure 3B and the subtraction of the spectra in Figure 3C). The
subtraction of the FT-IR spectra of the Phase II and the polymer control HCN-DTP (pink
line in Figure 3C) presents a clear feature at 3682 cm−1 and additional features at 959 and
1067 cm−1, which can be related with the presence of residual serpentinite in the Phase
II. The bands at 1803, 1675, and 1595 cm−1 may indicate a greater oxidation state for the
Phase II, since these bands can be assigned to carbonyl compounds such as esters, ketones,
amides, and carboxylic acids. Furthermore, the band at 1348 cm−1 can be related to -COO-

groups in carboxylic acids salts (in this case, the counterions can come from the residual
serpentinite). The features centered at 2168, 2121, 2074, and 2043 cm−1 identified in the
Phase II (inset plot Figure 3C) can be assigned to azide (-N=N=N), carbodiimide (-N=C=N),
and isonitrile (N≡C) functional groups. Therefore, it seems that the serpentinite increases
the hydrolysis in the HCN polymerization, resulting in highly oxidized products.

3.2. Thermal Analysis

Thermal analysis allowed characterization of the thermal behavior of the samples
and finding notable differences between HCN polymers that were not evident using FT-
IR spectroscopy. DTG and DSC curves are considered fingerprints to characterize and
distinguish among HCN polymers with very similar FT-IR spectra [68,69]. As was done
in the previous sections with the FT-IR spectra, the thermal curves of the Phase II were
compared with those of the polymer control HCN-DTP and the curves for the Phase III
with the control clean serpentinite (Figure 4). In addition, the thermal analysis of the Phase
III was carried out under an air atmosphere. In accordance with previous reports, the
thermogravimetric behavior of the samples was divided into three stages: I) drying stage
(<150 ◦C), II) pyrolysis stage (150–450 ◦C), and III) carbonization stage (>450 ◦C) [46,68–72].
The total weight loss of serpentinite was 12.6%, which agrees with previous reports,
together with the DTG doublet in the carbonization stage (Figure 4A,C; Table 1) and
with the DTA sharp exothermic peak at 823 ◦C [73]. The thermal decomposition of this
mineral leads to the dehydroxylation of the structure; the bound hydroxyl groups are
removed from the serpentinite and liberated as water vapor [74]. The release of these
groups reaches its maximum peaks at ~619 and ~696 ◦C as shown in the DTG curve
(Figure 4C; Table 1). Likewise, the DSC and DTA curves (Figures 4E and 5) show a sharp
exotherm peak at ~823 ◦C, which indicates the complete formation of olivine (i.e., forsterite;
Mg2SiO4) ([74,75].
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Figure 4. (A) and (B) TG curves; (C) and (D) DTG curves; (E) and (F) DSC curves. Note that an important amount of residue
remained even at high temperatures. The most important decomposition step occurred along the third thermal stage. The
identified stages were (I) drying stage (<150 ◦C), (II) pyrolysis stage (150–450 ◦C), and (III) carbonization stage (>450 ◦C).
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Table 1. Characteristic temperatures for the thermal decomposition of samples. DTG maxima with the corresponding rates
of weight loss, dW/dt, and DSC peaks observed in the samples.

Stage I
(25–150 ◦C)

Evaporation

Stage II
(150–450 ◦C)

Low Thermal Decomposition

Stage III
(450–1000 ◦C)

High Thermal Decomposition

DTG DSC DTG DSC DTG DSC

Sample Tmax (◦C) dW/dt
(wt%/◦C)

Tpeak
(◦C) Tmax (◦C) dW/dt

(wt%/◦C)
Tpeak
(◦C) Tmax (◦C) dW/dt

(wt%/◦C) Tmax (◦C)

Serpentinite 619 0.07 619
696 0.07 823

Phase II

61 0.18 71 178 0.04 164 550 0.04 649
290 0.04 654 0.08

691 0.07 800
794 0.03 846

Phase III
619 0.06 619
696 0.05 823

Phase III
(Air)

619 0.06 617
696 0.05 827

HCN-DTP
55 0.11 71 167 0.15 168 642 0.05 636

124 0.20 127 279 0.11 906 0.34 910
288 0.11 301 921 0.27 938

Figure 5. DTA analysis of serpentinite, phase III and phase III (air).

As with the FT-IR analysis, the thermal analysis does not show appreciable differences
between the Phase III and serpentinite (Figure 4A,C,E and Figure 5; Table 1). There was a
mass loss of only ~2% during the last thermal stage (> 450 ◦C) (Figure 4A). This suggests
that there was not a significant amount of polymer covering the mineral surface, and,
in consequence, the thermal profile obtained was dominated by the thermal behavior of
serpentinite. However, for the Phase III, the total weight loss was 10.8%, an amount lower
than the weight loss for the control sample, the clean serpentinite. Since dehydration is
the unique thermal degradation processes for the serpentinite, it seems that the polymeric
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coating might partially prevent the release of water. This also would influence the phase
change, because a reduction in the exothermicity of the forsterite formation was observed
(Figures 4E and 5). In addition, no thermal degradation of the coating was observed
in the thermal curves herein considered. The next section discusses that this thermal
decomposition seems to be minor. Furthermore, the thermal degradation of the Phase III
in the presence of air led to an additional weight loss of 0.6 % compared to the weight
loss obtained by heating under Ar atmosphere (Figure 4A). This result can be related to
the total degradation of the polymeric coating, indicating a very low organic contribution
(relative percentage in weight) from the film covering the mineral.

On the other hand, the presence of air did not affect the thermal behavior of the
serpentinite, since there are not great differences between the thermal curves recorded in
the presence of air (previously reported) with those recorded using an inert atmosphere of
Ar. Nevertheless, the changes observed in the shapes of the DSC and DTA curves of the
Phase III registered in the presence of air seem to be due to the polymeric coating, although
without highly significant variations with respect to the clean control serpentinite. These
results might indicate a physical (physisorption) interaction between the polymeric coating
and the mineral surface instead of a strong chemical interaction (chemisorption). This fact
is important to elucidate the possible role of the mineral in the full process of the cyanide
polymerization and to understand the interaction between the mineral and the organic
polymer. To the best our knowledge, this is the first time that the thermal analysis of a
covered mineral by a HCN-derived polymer has been described.

In regard to the Phase II, a mass loss of around 10 wt% was observed during the drying
stage (<150 ◦C), which is a consequence of the release of volatile compounds retained in the
polymer, predominantly H2O. This value is consistent with previous reports [46,68,69,72].
In the second stage, the pyrolysis stage (150–450 ◦C), the mass loss was also 10 wt%. This
value is considerably lower than those previously reported (approx. 25 wt%) [46,68,69,72].
This suggests that, as the second thermal stage has been associated with the decomposition
of the side groups on the main chain, the polymer has no highly stable side structures.
Two clear DTG peaks appear at 174 and 290 ◦C. Similar peaks also appear in the DTG
curve for HCN-DTP (Figure 4B) [46]. In addition, a shoulder around ~135 ◦C is detected.
The third step, the carbonization stage (>450 ◦C), showed the most significant differences
between the Phase II and the HCN-DTP previously synthesized [46]. The sample yield
was approximately ~63 wt% of char residues at the end of the ramp temperature. This is
unexpectedly high, which is because of the fact that HCN-DTP yields around 15 wt%, while
other HCN-derived polymers have 20 wt% [46,68,69,72]. In addition, this value represents
almost the double percentage of the original weight reported (i.e., 36.4%) for the black
polymer formed by the thermal decomposition of formamide [76]. It seems, as is the case
for the coating film (Phase III), that this Phase II is highly thermally stable. Three signals are
evident in the DTG curve: first a slight shoulder around 550 ◦C and then two predominant
peaks at 654 and 691 ◦C. These peaks match with the signals detected in HCN-derived
polymers synthesized from NH4CN and DAMN [72]; however, this does not mean that
identical structures are present. For instance, although there is no clear signal after 800 ◦C,
as in other experiments performed at high temperatures (>80 ◦C) and high concentrations
(>0.1 M) [46,72], there is a change in slope that starts at ~800 ◦C in the sample synthesized
in presence of the mineral (Phase II). Finally, the DSC curve of the Phase II shows only
three clear endothermic events at 71, 164, and 649 ◦C (Table 1). These signals correspond
to evaporation of the absorbed water and the two main decomposition processes of the
polymer [46,72]. Although the FT-IR spectra of the Phase II and the HCN-DTP previously
synthesized are essentially alike, the thermal analysis shows important specific thermal
fingerprints for each sample. The main difference is shown in the comparison of the DTG
curve from Phase II and the HCN-DTP [46], where there is a peak after 900 ◦C in the control
sample. Likewise, the Phase II shows a higher release of volatile species (e.g., H2O) in the
first thermal step (i.e., <70 ◦C). This considerable difference might be associated with an
increment of hydroxyl groups in the polymer as a consequence of interactions with the
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serpentinite structure. Also, the high amount of char for the Phase II could be related with
a higher degree of oxidation, in agreement with the FT-IR spectra. It has been proposed
that an increase in the thermal stability of the HCN-derived polymers is related to a higher
content of oxidizing groups in the macrostructures, which eventually leads to an increase
in cross-linking [69]. On the other hand, the residual amount of serpentinite in the Phase II
may be very small, because its characteristic thermal peaks are not identified in any of the
thermal curves (TGA, DTG, or DSC) of the Phase II (Figure 4B,D,F).

3.3. Mass Spectroscopy Thermal Analysis

Serpentinite control, Phase II, and Phase III were analyzed by in situ mass spectrometry
(Figure 6) to gain more information about the chemical species released in each thermal
step shown in the DTG curves. We considered the same three thermal stages to compare the
thermal behavior. The serpentinite control shows only signals associated to OH− (m/z = 17)
and H2O (m/z = 18) at 621 and 700 ◦C, which signals are consistent with the predominant
peaks related to the release of hydroxyl groups from serpentinite as is confirmed by the DTG
curve (figure not shown) and is in agreement with previous results [73]. Comparatively, the
Phase III shows four clear signals. Three of them coincide around ~620 and ~700 ◦C and
could be associated with NH2 (m/z = 16); OH−, NH3 (m/z = 17); and H2O, NH4

+ (m/z = 18).
In addition, an appreciable signal at 214 ◦C is related to HCN (m/z = 27) (Figure 6A). Since
the serpentinite control does not show peaks below 600 ◦C, the peak at 214 ◦C can be directly
related to the thermal decomposition of the organic coating (Figure 6A). Considering the
intensity of these TG–MS data, the amount of coating on the serpentinite is small, though
it seems to partially protect the mineral of dehydration. Further works are needed to
determine the thickness and the nature of these films synthesized under hydrothermal
conditions. Only one previous paper has reported the kinetics of the deposition of AMN-
derived polymers, but it did so at room temperature [59] and did not focus on the thermal
stability of this new series of coatings.

Table 2. Summary of detected volatile species in Phase II. The MS peaks are associated with each
thermal stage. Orange = Stage I. Evaporation (25–150 ◦C); Blue = Stage II. Low thermal decomposition
(150–450 ◦C); Green = Stage III. High thermal decomposition (450–1000 ◦C).

Probable Species MS Peaks
(m/z)

TG-MS Peaks for Phase II

62 174 285 550 654
C+ 12
? 13

N,CH2
+ 14

NH 15
NH2 16

OH−/NH3 17
H2O/NH4+ 18

? 22
-CN 26
HCN 27

CO,N2 28
N2H,HCO 29

NO 30
NCO 42

HNCO/HOCN 43
CO2/

HC(=NH)NH2

44

HCONH2 45
? 46

Stage I II III
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Figure 6. Ion intensity curves: (A) for Phase III; (B–F) for the Phase II. All signals are indicated in Table 2 with their
correspondent DTG peaks. The predominant peaks on the third stage are the result of the contribution of several carbon
and/or nitrogen species.

Phase II shows several changes related to the signals observed in the HCN-DTP
control sample [46]. Figure 6B displays the predominant signals linked to NH2 (m/z = 16;
T = 659 ◦C); OH−, NH3 (m/z = 17; T = 67, 171, and 662 ◦C); H2O, NH4

+ (m/z = 18; T = 67,
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241, 268, 557, and 685 ◦C); and NO (m/z = 30; T = 155 and 668 ◦C). Though these species
and peaks were also present in the HCN-DTP, the Phase II has new, well-defined signals
associated with NH2, OH−/NH3, and NO around ~660 ◦C. In addition, the m/z = 30 profile
does not have the same broad peak around ~160 ◦C as the control sample (Figure 6B). Two
clear peaks are shown for the profiles associated with N/CH2 (m/z = 14); CO, N2 (m/z = 28);
and N2H/HCO (m/z = 29) at ~650 and 750 ◦C (Figure 6C). These signals contribute to the
broad peak shown in the DTG curve at the third stage (>450 ◦C). The thermal profile is
totally different, even though these species are released in the HCN-DTP. First, the ion
current is considerably higher, and it is thus impossible to identify peaks before 600 ◦C as
is possible in the control sample (e.g., 172 and 283 ◦C). Moreover, the Phase II does not
present peaks after 900 ◦C as is evident in the HCN-DTP.

In general, the signals in the pyrolysis (150–450 ◦C) and carbonization stages (>450 ◦C)
are considerably different to the thermal profile of the polymer synthesized in the absence
of mineral. The main differences are the predominant peaks around ~660 ◦C and the
absence of peaks after ~900 ◦C (Figure 6D,E,F). The peaks around ~660 ◦C are the result
of the contribution of several carbon and/or nitrogen species, e.g., C+ (m/z = 12), NH
(m/z = 15), NCO (m/z = 42), HNCO/HOCN (m/z = 43), CO2/HC(=NH)NH2 (m/z = 44), and
HCONH2 (m/z = 45), which suggest the dominance of decarboxylation and/or deamination
mechanisms. Other peaks displayed in the same species profiles below 300 ◦C (e.g., 130,
180, 255, 282) are present in the polymer synthesized without mineral. However, the peaks
at 392, 500, and 550 ◦C are only present for the CH, NH, NCO, CO2/HC(=NH)NH2, and
HCONH2 species in the Phase II (Figure 6E,F). New signals without clear assignments are
present in the polymer synthesized in the presence of mineral (e.g., m/z = 13 and m/z =46).
Interesting, the profiles associated to cyanide species, CN- (m/z = 26) and HCN (m/z = 27),
are totally different from the control HCN-DTP sample. For instance, the profile of the
sample without mineral shows a broad peak that starts at 423 ◦C and disappears after
900 ◦C. Instead, in the presence of serpentinite, cyanide species profiles only show three
peaks between 640 and 780 ◦C (Figure 6F). These profiles resemble the general pattern of the
DTG curve from the Phase II. Hence, decyanogenation of the polymer takes place mainly at
650 ◦C. In general, the thermal profile of Phase II shows that decarboxylation, deamination,
and/or decyanogenation mechanisms occur mainly around ~660 ◦C. The absence of this
thermal step and the predominant peak after 900 ◦C in the polymer synthesized without
mineral suggest that the presence of serpentinite considerably affects the thermal and
structural properties of the HCN-derived thermal polymers. In addition, the possible
decyanogenation and degradation process of the Phase III is centered at 214 ◦C, suggesting
a higher thermal lability of the coating than the insoluble black solid, Phase II; this implies
that the coating and the insoluble black solid have different structural natures.

Table 2 shows a review of each volatile species contribution related to the thermal
stages previously described. In summary, the peak at 124 ◦C and the two signals after
900 ◦C do not appear on the DTG curve of the polymer synthesized in the presence
of serpentinite. In addition, the serpentinite contributes with an important amount of
hydroxyl groups released in the first thermal step (i.e., 62 ◦C). Finally, the peak around
550 ◦C is unique in this sample.

3.4. XPS Analysis

The general thermal analysis suggested important physicochemical differences be-
tween the HCN-DTP synthesized with and without serpentinite, so X-ray photoelectron
spectroscopy analysis was carried out to elucidate the interactions between the organic
coating and the mineral surface. Figure 7A shows the photoemission spectra of both the
clean serpentinite and the Phase III. The data were registered by using pellets from both
samples. The serpentinite control shows clear signals related to its atomic composition (Mg,
Si, and O) in strong agreement with previous reports [77]. In this case, the spectra of the
clean serpentinite and the Phase III do not show significant chemical changes (Figure 7A).
This could be a result of the low amount of organic polymer deposited onto the mineral
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surface and diluted in the bulk of the pellet, which may have been insufficient to obtain
characteristic or specific signals from the organic film. Some previous studies by our group,
where the characterization HCN-derived polymers and tholins was performed, reported
that ~25% in weight of organic material by total mass of sample (mineral + organic) is
necessary [71,78,79] to identify the chemical features of that material without doubt.

Figure 7. Photoemission spectra of samples. (A) XPS overview photoemission spectra of serpentinite control and Phase III
(pellet); (B) XPS overview photoemission spectra of Phase III (pellet and grain); and (C) XPS spectra of N 1s core level peak
of Phase III (grain sample), recognized as the fingerprint of the polymeric film.

However, when the XPS spectrum of the Phase III was performed using a coated
serpentinite grain, the differences were remarkable (Figure 7B). The main difference among
the samples containing an organic coating on the surface is that the mineral signals are
attenuated. This can be explained by one main reason: the XPS technique is mainly
sensible to the first surface layers of the sample; therefore, once the polymer covers the
mineral surface forming a film, the mineral surface stays hidden underneath the organic
material. Because of this phenomenon, a signal assigned to N 1s, the fingerprint of the
polymeric film, is observed in the Phase III (inset plot in Figure 7B,C). The first component
(at 401.8 eV) can be assigned to ammonium cations, and the second one (at 403.3 eV) to
azide groups (R-N=N=N-) or nitrites (Figure 7B). The assignation of these components is
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different to those of others coatings obtained from AMN at room temperature (although
the N 1s signal is significant, Thissen et al. performed deep analysis of C 1s spectra and
the binding energies were referenced to aliphatic hydrocarbons peak at 285.0 eV [80] or
insoluble cyanide polymers (397.6 eV to imine and/or heterocyclic groups and 398.7 eV
to amides [71]. This result is consistent with the fact that the structural nature of the
HCN polymers is directly dependent on the experimental synthetic conditions, as well
as the chosen monomers used in their syntheses [72]. In the present case, the nature of
the mineral substrate could also be considered to explain these differences. Recent works
have suggested that the presence of inorganic surfaces (i.e., silica) can affect the properties
(e.g., morphology and change of composition film) of AMN-based films [59]. Likewise,
Ball [81] reported that AMN-based films deposited on amorphous carbon can affect its
electrochemical activity as a consequence of the change in the composition, morphology,
and thickness of the film. In addition, he suggested that long deposition times (21 h)
produce thicker films. Because our experiments were performing using 50 h of reaction
time at a higher temperature, the attenuated XPS signals from the mineral (Figure 7B) may
be the consequence of a thick coating that covers the mineral surface. Nevertheless, we
cannot discard molecular interactions and/or chemical reactions catalyzed by the mineral
between the HCN-DTP and serpentinite once the polymer was formed (e.g., effects of
the hydroxyl groups and/or Fe/Mg atoms during polymerization reaction). Additional
systematic experiments are needed to understand the real interactions between the HCN
polymers and inorganic surfaces. As a result, it seems that there is a physical adsorption
of the polymeric coating on the serpentinite mineral, but chemisorption cannot be ruled
out. Under the point of view of origin of life studies, these considerations about coating
mineral superficies are of interest because they have not been previously taken into account
and may increase the chemical space of prebiotic chemistry due to the potential redox
properties of these coatings.

3.5. GC–MS Analysis of Hydrolyzed Samples

The dynamism of hydrothermal systems offers important temperature (25–400 ◦C)
and pH gradients (pH = 2–11) along the hydrothermal fields [29,46,82–84]. Hence, the
polymers formed in these environments are probably continuously exposed to thermolysis
and hydrolysis reactions. Because hydrolysis conditions (i.e., heating time and pH value)
are directly related to the amount of organic molecules released [7,66,85], we carried out
a hydrolysis procedure (both alkaline and acid hydrolysis at 100–110 ◦C) for each phase
to identify some polar organic compounds associated with each sample. In addition, we
compared the detected molecules with those found in the HCN-DTP synthesized in the
control experiment (in the absence of serpentine). Figure 8 summarizes all the organic
compounds identified in this work.

The predominant species, both in acidic and basic hydrolysis, are glycerol, glycolic
acid, succinic acid, orotic acid, stearic acid, and palmitic acid (Figure 9). However, some
trends can be distinguished among phases and hydrolysis conditions. For instance, after
acidic hydrolysis, carboxylic acids predominated, such as lactic, glycolic, and succinic acid
(Figure 9A,C) and only after acid hydrolysis was 2, 5-dihydroxy pyrazine was present.
Interestingly, some fatty acids were detected after the basic hydrolysis of the Phase I and
II (Figure 9B,D). Related to this, Takahashi and coworkers [86] described the synthesis of
fatty acids from HCN using organic solvents and high temperatures (>100 ◦C). Likewise,
Eschenmoser [87] proposed a hypothetical pathway based on the hydrolysis of diamino-
maleonitrile (DAMN) and other intermediates previously detected [46] to explain the
formation of fatty acids.
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Figure 8. Organic compounds identified in samples after hydrolysis treatments. The colors indicate the sample from which
the organic compounds were released.

In basic hydrolysis there was a broader spectrum of hydroxylated species in addition
to the species detected by the acid hydrolysis, such as α-hydroxybutiric acid, oxalic acid,
malonic acid, hydroxymalonic acid, aminomalonic acid, and other fatty acids (heptanoic
acid, decanoic acid, and dodecanoic acid). Carbamate, glycine, orotic acid, and urea were
also detected. Notably, in all cases, glycerol was present.

Regarding the Phase III, even using a higher amount of sample (50 mg), there were
no clear signals associated with important organic compounds. As mentioned before, this
could be a result of the low amount of polymer deposited onto mineral. Only carbamate and
glycerol were identified after basic hydrolysis. Thissen et al. [88], in analogous deposition
experiments performed on gold substrates, proposed that hydrolysis of imine groups
promotes the formation of carbonyl compounds. In our case, the hydrolysis reactions could
also lead to the formation of these compounds. Some uncertain signals, probably attributed
to alkanes, could be distinguished after acid hydrolysis.
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Minerals could affect the nature of the formed product, even if the exact mechanisms
for this are not fully understood. For example, González-López and coworkers [89] found
that olivine biases the products formed by thermolysis of acetic acid and formic acid. In our
experiments, the presence of serpentinite had interesting repercussions in the diversity of
organic molecules detected after hydrolysis treatment (Figures 8 and 9). On the one hand,
after acid hydrolysis in presence of mineral, some carboxylic acids, fatty acids, and pyrazine
in the Phase I and Phase II were identified. The presence of mineral seems to inhibit the
formation of N-heterocyclic compounds, as is evident in the control experiment (HCN-
DTP). On the other hand, after basic hydrolysis of samples synthesized in the presence of
inorganic surfaces, some amino acids and predominantly fatty acids were released from
Phase I and II. Orotic acid was the only cyclic compound detected after both hydrolysis
treatments for the samples synthesized in the presence of mineral.

4. Outlook on Studies about Prebiotic Molecular Complexity

The current knowledge about the formation of HCN-derived polymers shows that
their features depend on synthesis conditions, including concentration, temperature, pres-
ence of oxygen, time of reaction, and raw material [11,46,48,53–55,69,72]. Alkaline hy-
drothermal systems have been pointed out as very versatile and crucial environments
for chemical evolution and, eventually, for origin of life scenarios [38–40,45,90–95]. Con-
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sidering the new perspectives of prebiotic chemistry (that suggest to take into account
the dynamism of environments, as well as the interactions among their geochemical vari-
ables; [29,46,96]), we tested the role of serpentinite during the polymerization of HCN
as a first approximation of a simple simulation of an alkaline hydrothermal system. The
results suggest that the presence of this mineral affects the thermal properties of HCN-DTP.
For instance, the release of volatile species as a function of temperature increment having
a maximum peak around ~660 ◦C is considerably different from the control sample. In
addition, some interesting carbon and/or nitrogen volatile species are associated with
specific thermal events.

Although the synthesis of organic compounds from serpentinization fluids in ultra-
mafic systems has been reported [97,98], our results suggest that the presence of serpentinite
could affect the chemical structure of the formed polymer (in this case HCN-DTP). Hence,
it could decrease the diversity of organic molecules released after hydrolysis treatment.
Markedly, this inorganic surface inhibited the formation of polar organic compounds and
mainly N-heterocyclic compounds, unlike the control experiment (HCN-DTP) [46]. These
results raise interesting questions: Is molecular complexity, considering the polymerization
of HCN as a prebiotic pathway, reduced in mineral-rich environments? How can the
addition of more geochemical variables affect the reactivity of the system? What is the
potentiality of these coatings?

Considering the role of minerals in HCN polymerization, previous reports have
suggested that montmorillonite inhibits the formation of oligomers [47,56] and reduces
the amount of carboxylic acids formed [58]. However, this does not mean that all mineral
surfaces may have the same effect. Related to the second question, an interesting study
showed that the addition of salts during the HCN polymerization process reduced the
diversity of organic molecules, and ammonia had the opposite effect [9]. Compared with
similar experiments that simulated alkaline hydrothermal environments using NH4CN as
initial reagent and microwave conditions as energy source, the polar organic compounds
identified by the same GC–MS method were considerably lower in our case [48].

On the other hand, the considerable thermal stability of HCN-DTP suggests that
its persistence under hydrothermal conditions as well as the presence of coated mineral
surfaces could establish new steps in chemical evolution, e.g., acting as semiconductors and
catalysts, which are phenomena with important repercussions in the development of new
chemical pathways [72] such as photocatalyst reactions [99]. In this way, understanding
the properties and roles of these complex materials can shed light about specific catalytic
reactions and the formation of some constituents of primitive chemical cycles that were
necessary in the first steps of the origin of life [100].

These results indicate that the contribution of different geochemical variables in the
same experiment, which tried to simulate the dynamism in these primitive environments,
could modify the production of organic compounds. This does not mean a “knock-out” for
these systems and their role in chemical evolution. For example, after basic hydrolysis of
samples synthesized in presence of serpentinite, the release of some fatty acids is possible.
The availability of these molecules and their eventual concentration in microporous matri-
ces of alkaline vents can be enough to precipitate into vesicles [101]. Likewise, depending
of pH conditions and salt concentrations, some fatty acid membranes resist extreme en-
vironments [102]. On the other hand, even though purines were not synthesized in the
presence of mineral, orotic acid was released after hydrolysis treatment (acid and basic).
Recently, the importance of orotic acid as a starting point in chemical pathways to RNA has
been pointed out [103–105]. Orotic acid can form metal complexes with common ions in
hydrothermal conditions (e.g., Cu2+, Mn2+, Zn2+) [106], which complexes could establish
new chemical interactions with other organic molecules or surfaces.

5. Conclusions

New perspectives in prebiotic chemistry suggest the necessity of considering the
dynamism of primitive environments. Since minerals and organic molecules should have
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interacted continuously during early Earth, important phenomena could have developed.
Common environments like alkaline hydrothermal systems could have important repercus-
sions in the synthesis and evolution of complex materials such as HCN-DTP and coatings
of mineral surfaces. The results suggest that the presence of serpentinite affects the thermal
properties of the formed polymer as well the carbon and/or nitrogen volatile species
released in specific thermal events. After hydrolysis treatment, several organic molecules
with interesting importance in pre-RNA scenarios were identified. Although the effect of
mineral surfaces in chemical evolution process has been widely investigated, the focus
on coating mineral surfaces is recent. The effect of the presence of mineral surfaces in
polymerization reactions and their repercussions in the physicochemical nature of the
polymers formed is a new area that introduces a novel vision in prebiotic chemistry.
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