Supplementary Information

Disentangling microbial networks across pelagic zones in the tropical and subtropical global ocean

Ina M. Deutschmann^{1*}, Erwan Delage^{2,3}, Caterina R. Giner¹, Marta Sebastián¹, Julie Poulain⁴, Javier Arístegui⁵, Carlos M. Duarte⁶, Silvia G. Acinas¹, Ramon Massana¹, Josep M. Gasol¹, Damien Eveillard^{2,3}, Samuel Chaffron^{2,3} and Ramiro Logares^{1*}

¹Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain.

²Nantes Université, CNRS UMR 6004, LS2N, F-44000, Nantes, France.

³Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022 / Tara Oceans GOSEE, Paris, France.

⁴Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France.

⁵Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC, Gran Canaria, Spain.

⁶ King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal, Saudi Arabia.

*Corresponding authors: Ina Maria Deutschmann (<u>ina.m.deutschmann@gmail.com</u>) and Ramiro Logares (<u>ramiro.logares@icm.csic.es</u>)

Supplementary Figures

Supplementary Figure 1: ASVs across depth layers. For each region, we color ASVs based on the layer they first appeared: Surface [SRF] (S, yellow), DCM (D, orange), Mesopelagic [MES] (M, red), and Bathypelagic [BAT] (B, black). Next to each layer, the number of ASVs that were first detected in that layer is indicated. Absent ASVs are grouped in box "a". An ASV, only appearing in the bathypelagic, is assigned to box "a" in the above layers. That is, an ASV detected in the surface and present in the DCM but absent in lower layers appears in box (S) in the surface and DCM layer but in box "a" in the meso- and bathypelagic layer. An ASV cannot be assigned to two layers. Note that most ASVs in the bathypelagic zone have already been detected in upper layers because most ASVs are assigned to the boxes "S", "D", and "M" instead of "B". See specific details in the GitHub/Zenodo repositories (https://doi.org/10.5281/zenodo.10230073) [section 06_Vertical Connectivity, Additional Tables]. Source data are provided in the GitHub/Zenodo repositories (section 06_Vertical Connectivity, https://doi.org/10.5281/zenodo.10230073; see Data Availability).

Supplementary Figure 2: Network metrics grouped by region and depth layer. Source data are provided in the GitHub/Zenodo repositories (section 03_GlobalNetworkMetrics, https://doi.org/10.5281/zenodo.10230073; see Data Availability).

Supplementary Figure 3: Associations occurring in each region and depth layer and their taxonomy. If an association appears in more than 20% of subnetworks in each region, it is classified as low-frequency, >50% prevalent, and >70% global. The number of samples appear in the upper left corner, the number of edges in the upper right corner, and the depth range in the lower right corner (in meters [m] below the surface). We classified the associations considering all six regions $\mathbf{a} - \mathbf{d}$ and considering the five ocean basins without the MS, $\mathbf{e} - \mathbf{h}$. Source data are provided in the GitHub/Zenodo repositories (section 05_ClassifyingAssociations, https://doi.org/10.5281/zenodo.10230073; see Data Availability).

Supplementary Figure 4: Regional associations occurring in each region and depth layer and their taxonomy. Within a particular depth layer, if an association appears in at least one subnetwork (present) in one region and in no subnetwork (absent) in other regions, it is classified as regional. The four ocean layers (rows) are surface (SRF), DCM, mesopelagic (MES), and bathypelagic (BAT). The number of samples appear in the upper left corner, the number of edges in the upper right corner, and the depth range in the lower right corner (in meters [m] below the surface). Source data are provided

in the GitHub/Zenodo repositories (section 05_ClassifyingAssociations, https://doi.org/10.5281/zenodo.10230073; see Data Availability).

Supplementary Figure 5: Robustness check. Robustness of the third condition for generating sample-specific subnetworks for each region and depth with sufficient samples (the DCM layer from the SPO was removed because it contained only one sample). Within each region and depth, the samples were randomly subsampled, containing 10% to 90% of the original set using all samples. The y-axis shows the fraction of edges kept in the subsampled set compared to the original set. We

considered a only the number of kept edges and b which edges were kept. Source data are provided intheGitHub/Zenodorepositories(section02_NetworkConstruction,https://doi.org/10.5281/zenodo.10230073; see Data Availability).

Supplementary Tables

Supplementary Table 1: Number of ASVs in the layer where they were first detected (from surface to bottom) for the different regions. The ASVs unique to specific depth layers are shown in brackets. Note that ASVs from the upper layers can be present in the lower layers, but not vice versa. For example, the 1358 ASVs first detected in the Mesopelagic of the Mediterranean Sea (MES) can be present in the Bathypelagic but not in the DCM. In turn, the ASVs that are unique to specific depth layers (in brackets) are only present in the specified layer. MS – Mediterranean Sea, IO – Indian Ocean, NAO – North Atlantic Ocean, SAO – South Atlantic Ocean, NPO – North Pacific Ocean, SPO – South Pacific Ocean.

	MS	10	NAO	SAO	NPO	SPO
Surface	1116 (103)	2838 (2005)	3093 (1821)	2718 (1807)	2767 (1809)	2405 (1870)
DCM	635 (95)	399 (212)	189 (52)	491 (239)	289 (109)	199 (112)
Mesopelagic	1358 (326)	1198 (632)	1423 (227)	1113 (464)	1183 (547)	775 (431)
Bathypelagic	88 (88)	423 (423)	507 (507)	422 (422)	473 (473)	590 (590)

Supplementary Table 2: Fraction of microbial associations across depth layers. For each region and layer (rows), we determined the associations (in percentage %), classifying them based on their first appearance (columns): surface (SRF), DCM, mesopelagic, and bathypelagic. We indicated the fractions above 40% in grey. MS – Mediterranean Sea, NAO – North Atlantic Ocean, SAO – South Atlantic Ocean, SPO – South Pacific Ocean, NPO – North Pacific Ocean, IO – Indian Ocean.

Region	Layer	Surface	DCM	Mesopelagic	Bathypelagic
MS	SRF	100.00			
	DCM	45.14	54.86		
	Mesopelagic	10.35	18.42	71.24	
	Bathypelagic	2.73	5.12	69.71	22.44
NAO	SRF	100.00			
	DCM	68.30	31.70		
	Mesopelagic	11.64	6.59	81.77	
	Bathypelagic	11.62	1.35	43.49	43.54
SAO	SRF	100.00			
	DCM	45.08	54.92		
	Mesopelagic	6.15	8.50	85.35	
	Bathypelagic	12.22	6.30	26.97	54.61
SPO	SRF	100.00			
	DCM	50.07	49.93		
	Mesopelagic	6.44	2.66	90.90	
	Bathypelagic	9.81	3.32	14.15	72.71
NPO	SRF	100.00		_	
	DCM	54.23	45.77		
	Mesopelagic	8.33	6.06	85.61	
	Bathypelagic	17.46	5.34	19.92	57.28
10	SRF	100.00			
	DCM	39.23	60.77		
	Mesopelagic	5.92	7.87	86.21	
	Bathypelagic	11.00	3.84	29.61	55.56

cluster	Dominated		Fraction of depth layers			th layers		Number of regions (if no number if indicated, it is 1x)				
ID	by	Size	Epipelagic Meso-		Bathy-		Epipelagic		Meso-	Bathy-		
			SRF	EPI	DCM	pelagic	pelagic	SRF	EPI	DCM	MES	BAŤ
1	MS	5	20.00	20.00	20.00	20.00	20.00	SAO	MS	NAO	MS	MS
2	MS	10	10.00	-	20.00	20.00	50.00	MS	-	2xMS	2xMS	5xMS
3	MS	8	12.50	-	-	25.00	62.50	SRF	-	-	2xMS	5xMS
4	MS. MES	8	-	12.50	-	75.00	12	-	MS	-	6xMS	MS
5	MS. MES	12	16.67	-	-	66.67	16.67	IO. NAO	-	-	7xMS, NAO	2xNAO
6		8	12 50	25 00	12 50	25.00	25.00	10	MS NAO	NPO	MS NAO	2xMS
7	BAT	15	13 33			26.67	60.00	IO SPO	-	-	IO MS SAO SPO	IO MS NAO 2xNPO 2xSAO
-								,			,,	2xSPO
8	DCM	10	10.00	-	90.00	-	-	NPO	-	5xMS, NPO,	-	-
°,	2011									3xSAO		
9	DCM	11	36 36	-	63 64	-	-	2xNAO NPO SAO	-	3xIO 2xMS NPO	-	-
°,	2011		00.00							SAO		
10		12	-	-	8 33	50 00	41 67	-	-	NAO	IO MS NAO 2xNPO	IO 2xNAO NPO SAO
					0.00	00.00					SAO	
11	MES	6	-	-	-	83.33	16 67	-	-	-	IO MS NPO 2xSAO	10
12	NAO MES	6	16 67	-	-	83.33	-	NAO	_	-	2xMS_3xNAO	-
13	SRF	11	54 55	9 09	-	27 27	9 0 9	IO MS NPO 3xSAO	MS	-	2xMS_NAO	MS
14	BAT	16	12 50	6 25	6 25	6.25	68 75	MS_NAO	MS	MS	MS	5xNAO 3xNPO 2xSAO SPO
15	SRE	8	100.00	0.20	0.20	0.20		3xIO 4xNAO NPO	-	-	-	
16	MS_SRF	7	71 43	14 29	-	14 29	-	4xMS_NPO	MS	_	MS	_
17	MS	, Q		11 11	33 33	22.22	33 33		MS	MS NAO SPO	2×MS	3×MS
18	MS BAT	8	12 50	25.00	-	-	62.50	10	2xMS	-	-	3xMS_2xNAO
19	SRF	7	85 72	14 29	-	-	-		MS	-	-	-
20	SRE	15	73 33	-	6 67	6.67	13 33	$2 \times 10^{2} \times 10^{10}$ NPO 5×50^{10} SPO	-	MS	10	
21	014	8	25.00	-	12 50	25.00	37 50		-	MS	MS SAO	10, 2xNAO
22		17	23 53	-	5.88	35.29	35.29	3xSA0_SP0	-	MS	NAO 2xNPO SAO	IO MS NAO 3xSAO
~~~		.,	20.00		0.00	00.20	00.20			MO	2xSPO	10, 10, 10, 0, 0, 0, 0
23	SRF	8	75.00	12 50	-	12 50	-	IO 2xMS NAO NPO SPO	MS	-	MS	-
24	MS MES	13	15.38	7 69	-	61 54	15 38	2xMS	MS	_	IO 4xMS 3xNAO	
25	MO, MEO	14	28 57	7 14	14 29	7 14	42.86	2xMS 2xNAO	MS	2xMS	NAO	MS 3xNPO 2xSAO
26	SRF	7	85 72	14 29	-	-	-12.00	2xIO-SRE MS-EPI 2xNAO-SRE	2xIO-SRE MS-EPI 2xNAO-SRE	-	-	-
20	014		00.12	11.20				2xNPO-SRF	2xNPO-SRF			
27	SRE	11	100.00	-	-	-	-	2xIO NAO 4xNP 4xSPO	-	_	-	_
28	MS	11	9.00	27 27	-	36.36	27 27	MS	3xNAO	_	4xMS	3xMS
29	MO	12	50.00	-	16 67	16.67	16.67	IO MS 3XNAO SAO	-	MS NAO	2xMS	2×MS
30		6	50.00	-	16.67	16.67	16.67		-	MS	NPO	IO-BAT
31	MS	28	25.00	10 71	7 14	35 71	21.43	4x10 2xMS SA0	3×MS	2xMS	6xMS 2xNAO 2xNPO	IO 2xMS 3xNAO
32	SRE	6	100.00	-	1.14	-	21.40	10.2 xNA NPO 2xSAO	-	-	-	-
33	SRE	6	100.00	-	-			NAO 3XNPO SAO SPO	-	-	_	_
34	SRE	14	100.00		-	_		10.4 × NAO 5 × NPO 2 × SAO 2 × SPO	_	_	_	-
35	SRE	13	69.23	7 60	-	-	23.08	$A_{\rm YIO}$ 3 VNAO SAO SPO	MS	-	-	- 3xMS
36	SRE	7	100.00	1.00	-	_	20.00	3vIO 3vNPO SAO		_	_	-
50	011	24	11 67	-	12 50	- 20.17	16.67		-		2VIO AVME NDO	
-		24	41.0/	-	12.30	29.17	10.07	ZXIU, IVIS, ZXINAU, JXINPU, ZXSAU	-	IVIS, ZXINAU	2x10, 4x1VIS, INPU	IVIS, INAU, INPU, SAU

Supplementary Table 3: Subnetwork clusters. Clusters dominated, i.e., over 50%, by one layer or one region are indicated in grey. The last row shows unassigned subnetworks.

MS – Mediterranean Sea, NAO – North Atlantic Ocean, SAO – South Atlantic Ocean, SPO – South Pacific Ocean, NPO – North Pacific Ocean, IO – Indian Ocean, EPI – epipelagic layer, SRF – surface, DCM – Deep Chlorophyll Maximum, MES – mesopelagic layer, BAT – bathypelagic layer

**Supplementary Table 4: Number of environmentally-driven edges detected by EnDED.** We removed environmentally-driven edges (indirect) from the preliminary network, which contained 31966 edges. Only edges not environmentally driven by any environmental factor (not indirect) remained in the network.

Environmental factor	Number of samples	indirect	Not indirect
Fluorescence	394	4 (0.01%)	31962
NO3	361	1563 (4.9%)	30403
PO ₄	359	1357 (4.2%)	30609
Salinity	395	67 (0.2%)	31899
SiO ₄	360	632 (2.0%)	31334
Temperature	395	622 (1.9%)	31344
All		2848 (8.9%)	29118 (91.1%)
		= 1779 removed by 1	
		+ 751 removed by 2	
		+ 308 removed by 3	
		+ 10 removed by 4	

**Supplementary Table 5: Edge filtering.** Number of edges within each region and depth layer before (J>0%) and after filtering edges with low Jaccard index measuring how often the association partners appeared together in the region and depth layer. The DCM layer in the South Pacific Ocean (SPO) contained only one subnetwork, which resulted in the edge prevalence being 100% for all edges. We selected the Jaccard index of J>20% to generate the sample-specific subnetworks.

Region	Layer	Samples	Depth (m)	J>0%	J>10%	J>20%	J>30%	J>40%	J>50%
MS	EPI - SRF	19	3	3710	3631	3263	2881	2375	1797
	EPI	18	12-50	4763	4682	4196	3731	3064	2189
	EPI - DCM	21	40-130	5545	5417	4736	4030	3062	2027
	MES	52	200-1000	8756	8403	7336	6179	4629	3088
	BAT	35	1100-3300	4497	4263	3694	3171	2506	1830
NAO	EPI - SRF	34	3	15862	15255	13478	11449	8487	5331
	EPI	4	50	3027	3027	3027	2778	2529	2091
	EPI - DCM	6	70-106	3865	3865	3738	3480	2973	2212
	MES	14	200-800	6325	6289	5689	5109	4169	2978
	BAT	20	1200-4539	7490	7419	6831	6206	5211	3857
SAO	EPI - SRF	26	3	13118	12768	11026	9269	6842	4353
	EPI - DCM	4	80-130	4199	4199	4199	3941	3443	2468
	MES	6	450-850	3937	3937	3740	3440	2687	1614
	BAT	11	1290-4000	4143	4130	3886	3605	3049	2254
NPO	EPI - SRF	29	3	14376	13778	11919	9907	7323	4736
	EPI - DCM	3	37-110	3100	3100	3100	3100	2568	1968
	MES	9	200-780	4197	4197	3781	3343	2583	1625
	BAT	12	2000-4000	5198	5185	4834	4510	4009	3372
SPO	EPI - SRF	14	3-5	12007	11927	10420	8990	6728	4480
	EPI - DCM	1	65	1530	1530	1530	1530	1530	1530
	MES	3	450-650	2066	2066	2066	2066	1756	1318
	BAT	3	1500-4000	3159	3159	3159	3159	2906	2128
10	EPI - SRF	35	3	14307	13646	11736	9602	6912	4396
	EPI - DCM	3	86-130	3411	3411	3411	3411	2855	2310
	MES	7	400-950	4654	4654	4344	3961	3083	2082
	BAT	8	1065-4000	2928	2928	2790	2563	2101	1290

MS – Mediterranean Sea, NAO – North Atlantic Ocean, SAO – South Atlantic Ocean, SPO – South Pacific Ocean, NPO – North Pacific Ocean, IO – Indian Ocean, EPI – epipelagic layer, SRF – surface, DCM – Deep Chlorophyll Maximum, MES – mesopelagic layer, BAT – bathypelagic layer