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ABSTRACT  42 

Background: Coronavirus disease 2019 (COVID-19) is a respiratory illness caused by 43 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that displays great 44 

variability in clinical phenotype. Many factors have been described to be correlated with 45 

its severity but no specific determinants of infection outcome have been identified yet, 46 

maybe due the complex pathogenic mechanisms. The microbiota could play a key role 47 

in the infection and in the progression and outcome of the disease. Hence, SARS-CoV-2 48 

infection has been associated with nasopharyngeal and gut dysbiosis and higher 49 

abundance of opportunistic pathogens. Methods: To identify new prognostic markers 50 

for the disease, a multicenter prospective observational cohort study was carried out in 51 

COVID-19 patients that were divided in three cohorts according to their 52 

symptomatology: mild (n=24), moderate (n=51) and severe/critical (n=31). Faecal and 53 

nasopharyngeal samples were taken and the microbiota was analysed. Results: 54 

Microbiota composition could be associated with the severity of the symptoms and the 55 

linear discriminant analysis identified the genera Mycoplasma and Prevotella as severity 56 

biomarkers in nasopharyngeal samples, and Allistipes, Enterococcus and Escherichia in 57 

faecal samples. Moreover, M. salivarium was defined as a unique microorganism in 58 

COVID-19 patients’ nasopharyngeal microbiota while P. bivia and P. timonensis were 59 

defined in faecal microbiota. A connection between faecal and nasopharyngeal 60 

microbiota in COVID-19 patients was also identified as a strong positive correlation 61 

between P. timonensis (faeces) towards P. dentalis and M. salivarium (nasopharyngeal) 62 

was found in critically ill patients. Conclusions: This ratio could be used as a novel 63 

prognostic biomarker for severe COVID-19 patients.   64 

Keywords: COVID-19; Gut microbiota; Nasopharyngeal microbiota; SARS-CoV-2; 65 

Severity.  66 
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INTRODUCTION 72 

Coronavirus disease 2019 (COVID-19) is a respiratory illness caused by severe acute 73 

respiratory syndrome coronavirus 2 (SARS-CoV-2).  The data reported in November 74 

2023 revealed that almost 700 million people have been infected with the virus [1]. 75 

Even though the majority of COVID-19 cases are mild, disease has been also shown to 76 

cause long-term effects on human health. Therefore, a remarkable feature of SARS-77 

CoV-2 infection is the great variability in clinical phenotype among infected people. 78 

Many factors can correlate with COVID-19 disease severity, including age, gender, 79 

body mass index, previous comorbidities, immune responses, and genetics [4-6], but, 80 

unfortunately, the determinants of infection outcome and the pathogenic mechanisms 81 

are not completely understood yet [3].  82 

 83 

SARS-CoV-2 primarily infects the respiratory tract by binding to angiotensin-84 

converting enzyme 2 (ACE2) receptor [7], and a growing body of evidence suggests 85 

that it can also infect other organs since viral particles and nucleic acids have been 86 

found in various biological samples, like sputum, bronchoalveolar lavage fluid, faeces, 87 

blood, and urine [8-10]. Thus, ACE2 has been detected by single-cell RNA sequencing 88 

in various organs and tissues, like the gastrointestinal tract, where they are highly 89 

expressed [11], suggesting a substantial involvement of the gastrointestinal tract in the 90 

pathogenesis of the disease, including the ability of SARS-CoV-2 to infect and replicate 91 

in intestinal enterocytes [12], increased expression of the viral entry receptor (ACE2 92 

receptor) and several membrane-bound serine proteases (such as transmembrane 93 

protease serine 2 (TMPRSS2) and TMPRSS4) in intestinal epithelial cells [13].  94 

 95 

Moreover, SARS-CoV-2 infection has been extensively reported to induce dysbiosis the 96 

in the respiratory tract and the colon [17-20], characterized by increased presence of 97 

opportunistic pathogens, including Staphylococcus, Corynebacterium and Acinetobacter 98 

bacteria [14, 15], which can raise the risk of secondary infections, morbidity and 99 

mortality [16]. Thus, it is evident that there is a relevant connection between the 100 

microbiome from the respiratory and gastrointestinal tracts and the development and 101 

progression of this disease, and also the recovery processes [14, 20]. However, there is 102 

limited understanding of its precise association with the establishment of different 103 
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symptomatic profiles in this condition, and to date, few studies have focused on the 104 

relationships between the severity of COVID-19 and the microbiome composition of the 105 

nasopharyngeal and intestinal tracts contemplated simultaneously.  106 

Considering that the emergence of mutations and variants has caused several additional 107 

waves of infection and threatens to compromise the efficacy of existing vaccines and 108 

anti-viral drugs [2], new therapeutic approaches and prognostic tools are necessary. 109 

Therefore, the characterization of the nasopharyngeal and intestinal microbiome will 110 

allow identifying predictive biomarkers for the diagnosis and prognosis of the disease, 111 

as well as possible therapeutic targets in the management of SARS-CoV-2. 112 

 113 

 114 

MATERIALS AND METHODS 115 

Ethics approval. 116 

The study was conducted in accordance with the declaration of Helsinki and the 117 

protocol approved by the Clinical Research Ethics Committee of Granada (CEIC) (ID 118 

of the approval omicovid-19 1133-N-20). All patients provided written informed 119 

consent before being included in the study. The samples were managed by the 120 

ibs.GRANADA Biobank following the protocols approved by the Andalusian 121 

Biomedical Research Ethics Coordinating Committee. 122 

Subject recruitment and sample collection 123 

A multicentre prospective observational cohort study was carried out between 124 

September 2020 and July 2021. Patients with SARS-CoV-2 infection were recruited 125 

from the University Hospital San Cecilio, the University Hospital Virgen de las Nieves, 126 

and the Primary Care centres, Salvador Caballero and Las Gabias in Granada (Spain). 127 

These patients were laboratory-confirmed SARS-CoV-2 positive by quantitative reverse 128 

transcription polymerase chain reaction (RT-qPCR) performed on nasopharyngeal 129 

swabs collected by healthcare practitioners. Patients were classified in three groups 130 

based on severity profile following the described guidelines [21] mild cohort (n=24), 131 

subjects with moderate symptomatology (n=51) and severe/critically ill patients (n=31).  132 

Mild illness included individuals who have any of the various signs and symptoms of 133 

COVID-19 (e.g., fever, cough, sore throat, malaise, headache, muscle pain, nausea, 134 
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vomiting, diarrhoea, loss of taste and smell) but do not have shortness of breath, 135 

dyspnoea, or abnormal chest imaging. Moderate cases were those showing fever and 136 

respiratory symptoms with radiological findings of pneumonia. Severe group was 137 

composed of patients with any of the following criteria: respiratory distress (≥30 138 

breaths/min), oxygen saturation ≤93% at rest, arterial partial pressure of oxygen 139 

(PaO2)/fraction of inspired oxygen (FiO2) ≤300 mmHg, respiratory failure and requiring 140 

mechanical ventilation, shock, and with other organ failures that required intensive care.  141 

Healthcare staff collected Nasopharyngeal swabs and stools samples from patients while 142 

asymptomatic patients provided stools self-sampled at home. Stools and nasopharyngeal 143 

swabs were collected in collection tubes containing preservative media 144 

(OMNIgene®•GUT, DNAGENOTEK®, Ottawa, Ontario, Canada) and stored at −80°C 145 

until processing.  146 

 147 

Microbial DNA extraction, library preparation and next generation sequencing 148 

 149 

For all faecal and nasopharyngeal samples, DNA was isolated according to the protocol 150 

reported by Rodríguez-Nogales et al. [22] and using Qiagen Allprep PowerFecal DNA 151 

kit (Qiagen, Hilden, Germany). DNA was quantified using Qubit dsDNA HS assay kit 152 

(Yeason Biotechnology, Shanghai, China) and total DNA was amplified by targeting 153 

variable regions V4-V5 of the bacterial 16 S rRNA gene. Quality control of amplified 154 

products was achieved by running a high-throughput Invitrogen 96-well-E-gel (Thermo 155 

Fisher Scientific, Waltham, MA, USA). PCR products from the same samples were 156 

pooled in one plate and normalised with the high-throughput Invitrogen SequalPrep 96-157 

well Plate kit. Then, the samples were pooled into a library prior to sequencing. Lastly, 158 

Next-Generation Sequencing (NGS) techniques were performed using an Illumina 159 

MiSeq machine. 160 

 161 

Bioinformatic tools and statistical analysis 162 

 163 

Bioinformatic analysis of demultiplexed raw data from nasopharyngeal and stool 164 

microbiota samples was performed with QIIME2 software (open access, Northern 165 

Arizona University, Flagstaff, AZ, USA). Trimming and filtering taking into account 166 

their quality scores before specific taxa identification achieved quality control of the 167 

samples. DADA2 software was employed to carry out denoising steps and to obtain 168 
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amplicon sequence variants (ASVs). SILVA reference database was used for taxonomic 169 

assignment [23]. The remaining analyses were performed R software [24]. 170 

For numerical clinical variables analysis, data was displayed as mean ± SD when it 171 

followed a normal distribution and median and interquartile range were represented for 172 

non-normal distributions. Categorical variables were set out as percentages. In these 173 

cases, statistical differences were calculated by ANOVA and Kruskal Wallis test for 174 

numerical variables and Fisher’s exact test for categorical. 175 

Alpha and beta diversity and relative abundance were appraised with the Phyloseq 176 

package. Normality and homogeneity of variance were examined by the Nortest and 177 

LeveneTest packages, respectively. When these assumptions were reached, an ANOVA 178 

test was carried out. Otherwise, the Kruskal Wallis test was employed.  179 

Beta diversity differences were analysed with a Permutational Multivariate Analysis of 180 

Variance (PERMANOVA) included in the Vegan package. Euler and microbial 181 

packages were utilised for constructing Venn diagrams and to perform linear 182 

discriminant analysis (LDA) effect size (LEfSe) with an LDA score of 3. The Corrplot 183 

package was applied for correlation analysis using the Spearman's correlation 184 

coefficient. 185 

RESULTS 186 

Study patients characteristics 187 

 188 

A total of 106 patients (52 women and 54 men) who had laboratory confirmation of 189 

SARS-CoV-2 infection were included in the present study. The patients had a median 190 

age of 54 years (range, 40 to 68). Based on the clinical spectrum criteria reported in the 191 

COVID-19 treatment guidelines, patients were categorised into 3 cohorts: mild 192 

symptomatology (24 patients), moderate illness and hospitalised in Respiratory Unit (51 193 

patients) and severe symptomatology and admitted in the intensive care units (ICU) (31 194 

patients) (Table 1). As expected, the age of the patients significantly increased with the 195 

severity of the symptoms, and therefore, the patients included in the severe symptoms 196 

group were significantly older than those with mild or moderate symptoms (Table 1). 197 

Patient inclusion was carried out evenly in terms of gender; nevertheless, a gender-198 

related impact on the clinical course of these patients can be observed since the group of 199 

patients with severe symptoms was predominantly composed of males when compared 200 
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with the mild illness group (Table 1). Correspondingly, the clinical course of patients 201 

classified according to severity was different. Most mild patients showed symptoms of a 202 

mild respiratory infection, but a third of them also displayed dyspnoea and low oxygen 203 

saturation, and a quarter reported the existence of gastrointestinal complaints (like 204 

stomach ache, digestive discomfort or diarrhoea); and a low percentage of patients (4%) 205 

reported high respiratory and heart rates. Moderate and severe patients showed higher 206 

frequencies of the evaluated symptoms: dyspnoea, low oxygen saturation and increased 207 

respiratory or heart rates (p < 0.05). However, no significant differences were observed 208 

in the percentage of the gastrointestinal complaints among the three groups of patients 209 

(Table 1). When the different comorbidities were considered, only those patients with 210 

severe symptoms showed a higher percentage of cardiomyopathy compared to those 211 

from mild or moderate symptomatology (p < 0.05). Additionally, no significant 212 

differences were found in the prevalence of the other pathologies among groups. 213 

Regarding the counts of lymphocytes and neutrophils did not show meaningful 214 

differences between the three groups of patients. However, the plasmatic determinations 215 

of platelets, D-dimer, ferritin and C reactive protein correlated with the severity of the 216 

symptoms, being the severe group significantly different (p<0.05) (Table 1).  217 

 218 
 219 

 220 
 221 
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Table 1. Clinical data description of enrolled patients. Normal distributions are represented as mean 222 
土 SD while non normal distributions are represented by median and interquartile range. Categorical 223 
variables are represented with percentage. Groups with different letters statistically differ (p < 0.05).  224 
 225 
 226 

Bacterial composition differs between sample type and severity index in SARS-CoV-2 227 

infected patients 228 

 229 

Nasopharyngeal swabs and faeces were obtained from all the patients included in the 230 

study in the first seven days after symptom onset, and used for characterization of the 231 

microbiota composition. Microbiome diversity showed alterations that could be 232 

associated with the disease severity (Figure 1). Specifically, the α-diversity in the 233 

nasopharyngeal microbiota was reduced in the moderate and severe groups, in 234 

comparison with the mild group although it was only significant in patients with 235 

moderate symptoms (Figure 1A). Conversely, when α-diversity was examined in stool 236 

samples, no significant modifications were observed between groups (Figure 1B).  On 237 

the other hand, ß-diversity analysis revealed statistical differences between groups for 238 

both samples, nasopharyngeal swabs and stools (p < 0.001) (Figure 1C and 1D). 239 

Nasopharyngeal microbial populations could be grouped based on the severity of the 240 

symptoms and appear like three distinct and separate clusters corresponding to the 241 

patients with mild, moderate and severe symptoms (Figure 1C). Remarkably, faecal 242 

microbial communities of patients with severe symptoms differed significantly from 243 

those of mild and moderate ill patients using the unweighted Bray-Curtis metric, which 244 

compares samples based on bacterial presence-absence information (Figure 1D).  245 

 246 

 247 
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 248 
Figure 1. Nasopharyngeal and gut microbiota composition is modified depending on the severity of 249 
COVID-19 symptoms. (A) Alpha diversity analysis of nasopharyngeal swab samples microbiota. (B) 250 
Alpha diversity analysis of stool samples microbiota.  (C) PCoA for Bray-Curtis index of nasopharyngeal 251 
swab microbiota. (D) PCoA for Bray-Curtis index of stool samples microbiota. Values are represented as 252 
mean ± SD. Significant differences are represented as * = p < 0.05. 253 
 254 
Similarly, the characterization of microbiota composition revealed heterogeneity in the 255 

microbiota profile associated with severity and disease progression in these patients 256 

(Figure Sx). At phylum level, in nasopharyngeal microbiota, the abundance of 257 

Bacillota was increased while the abundance of Bacteroidota and Actinobacteroidota 258 

was reduced in patients with severe symptomatology (Figure 2A). Conversely, the three 259 

groups presented a more homogeneous distribution of faecal microbiota than the 260 

nasopharyngeal one, being the most abundant phyla Bacillota and Bacteroidota (Figure 261 

2B). Only the patients that had a worse prognosis showed a decrease of abundance in 262 

Bacteroidota (Figure 2B).  263 

 264 

At genus level, symptom severity was associated with a higher number of detected 265 

genera (Figure 2C-D). Of note, the nasopharyngeal microbiome composition revealed 266 

significant differences between groups in genus abundance. The mild  group presented 267 

significantly higher  abundance of Alistipes,  Muribaculaceae and Lachnospiraceae (p < 268 

0.001),  the moderate group showed a significant increase in Alcaligenes and 269 

Pseudorobacter (p < 0.001) while the severe group had significantly higher relative 270 
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abundance of Acinetobacter, Actinomyces, Anaerococcus, Atopobium, Campylobacter, 271 

Dolosigranulum, Enterobacter, Enterococcus, Finegoldia, Fusobacterium,  Gemella, 272 

Haemophilus, Lawsonella, Leptotrichia, Megasphaera, Neisseria, Serratia, Rotia and 273 

Veillonella (p < 0.001) (Figure 2C). However, a reduction in the number of detected 274 

genera was observed in stool samples as symptom severity increased (Figure 2D). 275 

Concretely, mild patients showed more presence of Barnesiella, Muribaculaceae and 276 

different members of the Clostridia class (Clostridia, Coprococcus, Dorea, 277 

Lachnospiraceae, Roseburia and Ruminococcus) (p < 0.001). Although moderate ill 278 

patients presented different genera, only Streptococcus was significantly increased in 279 

this group (p < 0.001). Remarkably, Anaerococcus, Dialister, Lachnocostridium or 280 

Peptoniphilus were more abundant in patients with severe symptoms (p < 0.001)  281 

(Figure 2D).  282 

 283 
 284 

 285 
Figure 2. Microbiota composition of nasopharyngeal and stool samples at phylum level is slightly 286 
modified by COVID-19 symptoms severity. In contrast, at genus level, severity increases the total 287 
amount of detected bacteria in nasopharyngeal swabs while in stool samples it is reduced. (A) 288 
Representation of the most abundant phyla in nasopharyngeal swab samples. (B) Representation of the 289 
most abundant phyla in stool samples. (C) Taxa identification of the most abundant genera in 290 
nasopharyngeal swab samples. (D) Taxa identification of the most abundant genera in stool samples. 291 
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 292 
 293 
Differences in bacteria abundance could be used as biomarkers to predict disease 294 

severity and outcome in SARS-CoV-2 infection 295 

 296 

We investigated if some specific taxa could contribute to the severity of the symptoms. 297 

ASVs were evaluated to determine core taxa along with the specific bacteria of each 298 

group of patients and samples (Figure 3A,B). In nasopharyngeal swabs, Venn diagram 299 

analysis revealed that the three groups of study shared 51 core taxa. 60 specific bacteria 300 

were identified in patients with mild symptoms while 32 were seen in patients with 301 

moderate symptoms and 8 in patients with severe symptoms. In stool, 159 core taxa 302 

were shared by the three groups of patients, being 27 specific for mild patients 303 

symptoms, 33 for moderate patients and 27 for severe patients (For more details see 304 

Table S1).  305 

 306 
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 307 
Figure 3. Differential analysis expression of microbiota composition from nasopharyngeal and stool 308 
samples revealed the presence of specific bacteria related to COVID-19 severity index. (A) Venn 309 
diagram showing ASVs distribution in nasopharyngeal swab samples. (B) Venn diagram showing ASVs 310 
distribution in stool samples. (C) LEfSe plot of taxonomic biomarkers present in nasopharyngeal swab 311 
samples (p value = 0.01 and LDA value = 4).  (D) LEfSe plot of taxonomic biomarkers present in stool 312 
samples (p value = 0.01 and LDA value =4).  313 
 314 
Besides, the linear discriminant analysis (LEfSe) was performed to identify differential 315 

microorganisms for each group of patients (Figure 3C,D). In nasopharyngeal samples, 316 

Burkholderia sp., Paraburkholderia sp. and Massilia sp. were identified in mild 317 

patients; Pseudomonas veronii, Stenotrophomonas rhizophila and Azotobacter 318 

chroococcum in moderate patients; and Mycoplasma salivarium, Prevotella dentalis, 319 

Leptotrichia and Haemophilus parainfluenzae in severe patients. In stool samples, 320 

Bacteroides coprocola, Veillonella sp., Ruminococcus bicirculans and Sutterella 321 

stercoricanis were identified as predictors of mild condition; Prevotella stercorea, 322 

Bacteroides cellulosilyficus, Streptococcus salivarus, Bacteroides stercoris and 323 
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Prevotella copri as predictors of moderate symptoms; and Escherichia, Enterococcus 324 

durans, Alistipes onderdonkii, Prevotella timonensis and Prevotella bivia as markers of  325 

severe condition.  326 

 327 

To further assess the role of these potential biomarkers in the prediction of COVID-19 328 

severity, a correlation analysis was performed (Figure 4). In summary, biomarkers for 329 

mild symptomatology (B. coprocola, R. bicirculans, S. stercoricanis and Veillonella 330 

sp.) presented a negative correlation profile with the different clinical features or 331 

biochemical parameters evaluated. In contrast, biomarkers associated with severe 332 

symptoms in nasopharyngeal swabs (M. salivarium and Leptotrichia) showed a positive 333 

correlation with D dimer and cardiomyopathy, respectively. In addition, the other two 334 

biomarkers linked to the highest severity (H. parainfluenzae and P. dentalis) also 335 

showed a tendency related to CRP, D dimer and cardiomyopathy (Figure 4A). 336 

Interestingly, similar results were found in stool samples. Severe biomarkers revealed a 337 

positive correlation towards D dimer and CRP levels, especially P. bivia and P. 338 

timonensis. These two bacteria also presented a positive association with ferritin levels, 339 

age and respiratory rate, and a negative correlation with lymphocyte count (Figure 4B). 340 

 341 
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Figure 4. Whereas mild biomarkers showed negative correlations towards clinical variables, severe 342 
biomarkers presented positive correlations. (A) Correlation plot of nasopharyngeal swab biomarkers 343 
and clinical variables. (B) Correlation plot of stool samples biomarkers and clinical variables. RR: 344 
respiratory rate; HR: heart rate; GI: gastrointestinal alterations. 345 
 346 
 347 
Identification of a novel microbiome-based COVID-19 prognosis approach. 348 

 349 

Considering the LEfSe results, we propose a new approach to predict disease severity in 350 

patients suffering SARS-CoV-2 infection based on establishing a pattern of 351 

nasopharyngeal-gut microbiota. The Spearman's correlation analysis revealed no 352 

important associations between nasopharyngeal and faecal microbiota in mild and 353 

moderate groups (Figure 5A,B). However, in patients with severe symptoms the 354 

Spearman’s rho coefficient showed a significant positive correlation between P. 355 

timonensis towards P. dentalis and M. salivarium (Figure 5C). Consequently, the ratio 356 

between the abundance of these bacteria could serve as reliable predictors of severity of 357 

COVID-19. The results revealed a significant increase in the ratios P. timonensis / M. 358 

salivarium and P. timonensis/P. dentalis in patients with severe symptoms compared to 359 

those with mild or moderate symptoms (Figure 5D,E).  360 

 361 

362 
Figure 5. The existence of a relationship between the abundance of nasopharyngeal severe 363 
biomarkers and stool severe biomarkers allow the employment of an abundance ratio between 364 
them as a new tool for predicting COVID-19 severity. (A) Correlation plot among biomarkers found in 365 
nasopharyngeal swab and stool samples in each condition (mild, moderate and severe from left to right) 366 
(B) Ratio of the abundance between P. timonensis (stool) and M. salivarium and P.dentalis 367 
(nasopharyngeal swab) biomarkers. Groups with different letters statistically differ (p < 0.05).  368 
 369 
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 370 
DISCUSSION 371 

 372 

Recent findings have evidenced the prominent role of the microbiome in viral 373 

infections, and it can either promote or supress viral them [25, 26]. In fact, different 374 

studies have explored the interplay between the host microbiota and SARS-CoV-2 375 

infection [27, 28]. However, few studies have investigated the nasopharyngeal-faecal 376 

axis as a potential biomarker of severity in patients infected with SARS-CoV-2. Hence, 377 

the present study provides several nasopharyngeal and gut microbiota-based biomarkers 378 

that could help to predict COVID-19 severity.  379 

 380 

According to the National Institutes of Health (NIH), COVID-19 severity is classified 381 

depending on the associated symptoms [21] that include age, gender, D-dimer levels, 382 

dyspnoea and higher SpO2 score, which are predictors of worse disease progression 383 

[29]. The current study confirmed that older age as well as a higher percentage of 384 

dyspnoea; increased heart and respiratory rates together with lower oxygen saturation 385 

were associated with severe symptoms. In fact, ageing is related to immune response 386 

decline as well as higher incidence of systemic, chronic and low-grade inflammation 387 

called inflammaging. Gender is also considered a risk factor, as a recent meta-analysis 388 

has shown that men tended to have higher risk of developing severe symptoms, being 389 

hospitalised, admitted to the intensive care units and die [34] for more severe disease. 390 

The results in the present study support these previous studies as it is found that men 391 

and women are disproportionately affected since  males suffered from more severe 392 

disease than females, including higher ICU admission rates, dyspnoea, increased heart 393 

rate. Sex disparities in symptoms severity has been attributed to higher rates of 394 

hazardous behaviours and existence of comorbidities, such as cardiomyopathy, in males 395 

than in females.  In fact, the incidence of cardiovascular complications in COVID-19 396 

pathology appears to be associated with sex and gender differences, thus contributing to 397 

the greater severity and poorer outcomes of the SARS-CoV2-mediated disease in male 398 

patients compared to women [35]. This relationship has also been demonstrated in this 399 

study since a higher rate of cardiovascular condition is evidenced in male patients as the 400 

severity of symptoms increases. In this context, there is few and controversial sex-401 

stratified data investigating the role of cardiovascular complications in the prognosis 402 

and outcome of COVID-19 disease in men and women. However, it has been reported 403 
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that women exhibit higher expression and activation of angiotensin type 2 (AT2) 404 

receptors, which have been associated with a more robust anti-inflammatory immune 405 

response against SARS-CoV-2 infection and are also involved in the control of blood 406 

pressure and renal function, thereby providing protection for cardiovascular 407 

complications in female patients [36]. Remarkably, the extent of cardiac cell mortality is 408 

more noticeable in males than in females under various conditions [35], and this could 409 

be linked to an augmented protection against cardiovascular complications in female 410 

patients. Additionally, women produce high levels of regenerative white blood cells and 411 

epoxy-eicosatrienoic acids, which display antihypertensive and anti-inflammatory 412 

properties on blood vessels [37]. Consequently, this leads to restricted cardiac 413 

remodelling and a more effective restoration of functionality [38]. Regarding some 414 

biochemical parameters typically described as biomarkers for COVID-19 severity (D-415 

dimer, ferritin and CRP) [39, 40], the findings obtained in this study found that those 416 

groups of patients with moderate or severe symptoms showed significantly increased 417 

levels of these plasma parameters, which are consistent with previous reports [41-43].  418 

 419 

The association of then microbiota composition with these clinical variables has been 420 

widely studied [15] and it is well described that the microbiota can modulate host 421 

immunity and physiological functions [47], Consequently, the microbiota could be key 422 

in the clinical phenotype of these patients although the specific contribution of the 423 

microbiota to the progression of the infection and a poor prognosis is not yet fully 424 

understood. This study addresses for the first time the implication of nasopharyngeal 425 

and faecal microbiota in the prognosis of COVID-19. Firstly, when the alpha and beta 426 

diversity were evaluated, the results revealed only substantial changes in richness and 427 

Shannon diversity index in nasopharyngeal microbiome associated with severe 428 

symptoms. In this sense, controversial results have been previously reported, and 429 

although most of the studies have proposed that SARS-CoV-2 infection is associated 430 

with lower microbial diversity in nasopharyngeal samples [14, 48, 49], others did not 431 

find differences in alpha diversity composition among groups with different 432 

symptomatology [50, 51].  433 

Furthermore, in terms of beta diversity, previous studies have reported modifications in 434 

the microbiome composition from the respiratory or gastrointestinal tract in COVID-19 435 

patients when compared to healthy subjects [19, 52]. In the present study, in both 436 
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nasopharyngeal swabs and stools, every group of patients presented distinctly 437 

differentiated clusters. As previously reported, COVID-19 disease severity is more 438 

dependent on the presence or absence of certain bacteria rather than alterations in 439 

bacterial diversity and richness [14, 53]. Supporting this, characterization of bacterial 440 

microbiota composition at phyla and genera levels for nasopharyngeal and stool 441 

samples indicated a more evident association between changes on them and the severity 442 

of the disease.  Specifically, in nasopharyngeal swabs, the presence of Bacteroidota and 443 

Actinobacteriota has been previously linked to a better prognosis of SARS-CoV-2 444 

infection, since these bacteria have been proposed to exert beneficial effects by 445 

preventing respiratory diseases, including COVID-19 [54-58]. Moreover, in 446 

nasopharyngeal samples, the abundance of Bacillota and Pesudomonadota was 447 

increased in patients with severe symptomatology, thus supporting previous studies in 448 

which higher counts of Bacillota (Staphylococcus sp. and Streptococcus sp.) and 449 

Pesudomonadota (Pseudomonas sp.) were associated with moderate and severe 450 

symptoms of COVID-19 [59].  451 

The evaluation of genera abundance composition showed that Alistipes and 452 

Muribaculaceae were highly abundant in mild patients. While these bacteria have been 453 

well characterised in gut microbiota, little information regarding their presence in 454 

nasopharyngeal microbiota has been provided up to date. Different experimental studies 455 

in mice have suggested their role in viral infections. Thus, Muribaculaceae was found 456 

in the lung microbiota in SARS-CoV-2 infected mice that were treated with a selective 457 

inhibitor of the main protease (Mpro) [60]. In the case of Alistipes, in a study conducted 458 

in children infected with respiratory syncytial virus (RVS), these bacteria were more 459 

abundant in the nasopharyngeal microbiota of non RVS-infected subjects [61]. Overall, 460 

these genera could be associated with a protective role against viral infection, and their 461 

higher presence in nasopharyngeal samples from mild COVID-19 patients could 462 

prevent the progression to severe disease.  463 

Interestingly, mild patients have also shown a higher content of Lactobacillus, similarly 464 

to that reported previously in asymptomatic COVID-19 patients [62]. Of note, it is well 465 

described that the microorganisms forming the protective microbiota are fundamentally 466 

represented by Lactobacillus species. Correspondingly, the use of Lactobacillus strains 467 

as probiotics for preventing viral infections has been previously explored [63], and 468 

hence, its administration in SARS-CoV-2 infection could be considered to avoid 469 

complications. The increased presence of other genera, such as Corynebacterium, 470 
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Acinetobacter, Staphylococcus and Veillonella, positively correlated with the severity of 471 

SARS-CoV-2 infection. This correlation is supported by previous studies in which these 472 

genera were associated with both disease severity and systemic inflammation [14, 64]. 473 

In addition, higher abundance of Enterococcus was observed in severe patients, thus 474 

confirming other studies in critically ill patients [65]. 475 

In contrast to the findings in the nasopharyngeal microbiota, the analysis at phylum 476 

level in stool samples did not reveal notable modifications among patient groups. 477 

However, in mild ill patients, different genera from Clostridia class (Clostridia, 478 

Coprococcus, Dorea, Lachnospiraceae, Roseburia and Ruminococcus), Barnesiella and 479 

Muribaculaceae were identified as highly abundant. While the class Clostridia was 480 

associated with a reduced production of proinflammatory cytokines in COVID-19 481 

patients and in those who recovered from the infection [66, 67], Barnesiella prevents 482 

colonisation by antibiotic-resistant bacteria such as Enterococcus, which is involved in 483 

bloodstream infection in critically ill COVID-19 patients [68, 69]. Furthermore, studies 484 

performed in mice have shown that Muribaculaceae abundance is reduced in mice 485 

coinfected with different respiratory viruses, suggesting that it may play a protective 486 

role under viral infection [70]. Therefore, it seems that under SARS-CoV-2 infection, 487 

the reduction of Barnesiella, Clostridia and Muribaculaceae members were associated 488 

with more severe symptoms. Nonetheless, the detected genera for the severe illness 489 

group, Lachnocostridum, Anaerococcus and Peptoniphilus, have been recognised as 490 

opportunistic pathogens and could contribute to a poor prognosis through inducing gut 491 

inflammation [71].  492 

 493 

Regarding these differences, both nasopharyngeal and gut microbiota composition 494 

could be used to identify specific bacteria to predict COVID-19 severity. In the present 495 

study, unique ASVs for each condition were identified. For nasopharyngeal samples, 496 

species belonging to the genus Lactobacillus (L. fermentum or L. reuteri) or Prevotella 497 

(P. pallens, P. ori and P. shahii) have been identified. The role of Prevotella sp. in 498 

COVID-19 infection has not been clearly elucidated. Published microbiome analysis 499 

have revealed that its abundance was higher in mild patients [72], although others have 500 

suggested that it could be a biomarker of critical phenotype in COVID-19 patients [73, 501 

74]. In spite of the controversial results, the results obtained in this study would confirm 502 

the potential use of this species as a biomarker for mild symptomatology. Interestingly, 503 

Anaerococcus prevotii was one of the exclusive species found in stools in mild patients. 504 
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This species has been linked to lower inflammation in COVID-19 patients [75]. 505 

Conversely, Coprobacillus cateniformis was solely found in severe patients, which 506 

could be involved in the development of a worse condition in these patients through 507 

ACE2 upregulation [18].  508 

Even though these bacteria are unique for each group, LEfSe was performed to obtain 509 

specific biomarkers [76]. For mild patients, Burkholderia and Paraburkholderia were 510 

identified in nasopharyngeal swabs and B. coprocola and R. bicirculans in stool 511 

samples. Although the information regarding the first two species in humans is limited, 512 

a few studies have reported their presence in the commensal human microbiota [77, 78]. 513 

Contrarily, B. coprocola and R. bicirculans have been found in both healthy and 514 

COVID-19 patients [79] although the abundance of R. bicirculans was reduced in 515 

infected subjects [80].  516 

In patients with moderate symptoms, P. veronii was detected in nasopharyngeal samples 517 

whereas P. stercorea, B. cellulosilyficus, B. stercoris and P. copri were identified in 518 

stool samples. In general, these findings agree with previous studies in COVID-19 519 

patients [81]. Thus, Xu et al. found that infected patients showed higher abundance of B. 520 

cellulosilyficus [82], whereas B. stercoris and P. copri were associated with ACE2 521 

upregulation and increased proinflammatory cytokine production, respectively, in 522 

COVID-19 patients [79, 83]. 523 

In critically ill patients, the biomarkers found for nasopharyngeal microbiota were M. 524 

salivarium, P. dentalis, Leptotrichia and H. parainfluenzae.  In stool samples, 525 

Escherichia sp., E. durans, P. timonensis and P. bivia were the species recognised as 526 

biomarkers. In general, all of them have been observed in the microbiota of SARS-527 

CoV-2 infected patients. Moreover, both P. bivia and P. timonensis have been defined 528 

as unique microorganisms in COVID-19 patients’ microbiota [79, 84], whilst  M. 529 

salivarium, H. parainfluenzae and E. durans were related to a higher abundance and 530 

poor outcome in  these patients [85-87]. Of note, the use of these bacteria as biomarkers 531 

of severity in SARS-CoV-2 infection is further supported by the fact that these species 532 

exhibited positive correlations with various clinical variables. Specifically, M. 533 

salivarium, H. parainfluenzae, P. dentalis, P. bivia and P. timonensis showed positive 534 

correlation with ferritin, CRP and D-dimer levels, as well as cardiomyopathy and 535 

respiratory rates. Several studies have revealed both the relationship between CRP 536 

levels, gut microbiota and COVID-19 severity [88], as well as the positive correlation of 537 

specific bacteria with D-dimer, CRP and the levels of pro-inflammatory mediators in 538 
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plasma [89]. When considering A. onderdonkii, it has been reported that this bacteria do 539 

not aggravate the symptomatology of the COVID-19 patients due to its anti-540 

inflammatory properties [18]; however, there are conflicting evidences regarding its 541 

pathogenicity that indicate that A. onderdonkii may have protective effects against some 542 

diseases, including liver fibrosis, colitis and cardiovascular disease, as well as in cancer 543 

immunotherapy, while it may be involved in colorectal cancer development and 544 

affective disorders like depression [90]. Moreover, Alistipes is a relatively recent 545 

subdivision genus of the Bacteriodota, which is commonly associated with chronic 546 

intestinal inflammation [90]. Therefore, taking into account that Zuo T et al. employed a 547 

different methodology to analyse microbiota composition from stool samples [18], A. 548 

onderdonkii could be considered as a biomarker of severe condition in SARS-CoV-2 549 

infected subjects.   550 

Finally, the implication of a connection between faecal and nasopharyngeal microbiota 551 

in COVID-19 patients has been previously proposed [91]. In the present study, and to 552 

maximise the potential use of these biomarkers, the relationship of specific bacteria 553 

from nasopharyngeal and stool samples was analysed. Concretely, a strong positive 554 

correlation between P. timonensis (stool) towards P. dentalis and M. salivarium 555 

(nasopharyngeal) was found in severe condition. Accordingly, the ratio of the 556 

abundance of these species was also significantly increased within the highest severity 557 

of this condition. As a result, the ratio proposed in this study could be used as a novel 558 

predictor to identify critically ill COVID-19 patients as the ratio Bacillota and 559 

Bacteroidetes has been used as a marker of dysbiosis [92].  In this case, this ratio P. 560 

timonensis/P. dentalis and M. Salivarium could be a prognostic tool for severe SARS-561 

CoV-2, and an increase in it could be associated with a higher risk to develop a severe 562 

condition.  563 

 564 

CONCLUSION 565 

This inter-individual variability between the COVID-19 patients could contribute to the 566 

different symptomatology observed. This study has identified a correlation between 567 

changes in the nasopharyngeal and stool microbiota with COVID-19 severity. A novel 568 

biomarker linked to severity of COVID-19 infection has been described based on 569 

changes in the abundance of bacterial species in nasopharyngeal and faecal samples. 570 

This knowledge can support the design of novel therapeutic strategies to mitigate 571 

adverse outcomes. Further investigations are imperative to explore how the association 572 
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between nasopharyngeal and faecal microbiota can be modulated to uncover its role in 573 

enhancing immune health, preventing or treating SARS-CoV-2 infections, and fostering 574 

immunity. 575 
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