MÉTODO Y DISPOSITIVO BIOMÉCánICO DE CANCELACIÓN DE TEMBLOR PATOLÓGICO

 Abstract: The invention relates to a method enabling selective biomechanical cancellation of pathological tremor. Cancelling focuses on the characteristic frequencies of the tremor and has no negative effect upon the voluntary movement of the patient. It can be used in different types of tremors and situations by automatically adapting to the specific characteristics of the tremor signal. The whole system takes the shape of an upper limb orthosis and, therefore, it can be used in a series of day-to-day activities. The characteristics of commercial products are more restricted: they are limited to concrete activities (feeding), they apply non-selective biomechanical action and cannot therefore adapt to the concrete characteristics of the tremor or patient, they are desktop devices and are thus not portable.

Resumen: Se trata de un método que permite la cancelación biomecánica selectiva del temblor patológico. La acción de cancelación se centra en las frecuencias características del temblor sin incidir negativamente en el movimiento voluntario del paciente. Es válido para distintos tipos de temblor y para distintas situaciones al adaptarse automáticamente a la acción de cancelación de acuerdo con las características particulares de la señal temblorosa. Todo el sistema adquiere la forma de un ortésis de miembro superior por lo que es aplicable a un conjunto amplio de actividades diarias. Las características de los productos comerciales son mucho más restringidas: están limitados a actividades concretas (alimentación), aplican una acción biomecánica no selectiva por lo que no se pueden adaptar a las características concretas del tipo de temblor o del paciente, son dispositivos de sobremesa por lo que no son portátiles.
Para códigos de dos letras y otras abreviaturas, véase la sección "Guidance Notes on Codes and Abbreviations" que aparece al principio de cada número regular de la Gaceta del PCT.

Publicada:
— con informe de búsqueda internacional
TÍTULO

MÉTODO Y DISPOSITIVO BIOMECÁNICO DE CANCELACIÓN DE TEMBLOR PATOLÓGICO

SECTOR DE LA TÉCNICA

La presente invención se refiere a dispositivos biomecánicos o biomédicos para la cancelación, reducción o control del temblor patológico involuntario. Como tales, son de aplicación en la industria de rehabilitación ortoprotésica.

ESTADO DE LA TÉCNICA

El temblor patológico es un efecto de algunas enfermedades neurológicas que da lugar a la discapacidad de la persona afectada. Está caracterizado por contracciones rítmicas e involuntarias de los músculos del paciente. Como consecuencia la persona afectada está sometida a oscilaciones involuntarias de sus miembros superiores y posiblemente otras partes del cuerpo.

La frecuencia de estas oscilaciones varía en función de que el tipo de temblor sea de reposo (característico de la enfermedad de Parkinson), postural (característico de pacientes con temblor esencial) o cinético (característico de pacientes con daño cerebral traumático). El rango comúnmente aceptado oscila entre 2 Hz y 12 Hz.

La aproximación clásica para el tratamiento del temblor es la medicación y la estimulación eléctrica de algunas zonas del cerebro. Hay sin embargo otros dispositivos que actúan mediante la aplicación de una carga mecánica resistiva o disipativa sobre el órgano afectado. Tal es el caso del dispositivo comercializado con el nombre “Neater Eater”. El estado de la técnica es tal que en estos dispositivos se aplica una carga mecánica disipativa de forma independiente del tipo de temblor que afecte al paciente. Esta carga resistiva es además independiente del tipo de movimiento sobre el que se aplica, es decir, de si este es voluntario, tembloroso o una combinación de ambos. Como
consecuencia el paciente nota una carga resistiva también ante su movimiento intencional.

En el estado de la técnica existen algunas patentes cuyo objeto es la reducción del efecto del temblor en actividades concretas del paciente. Tal es el caso de la patente US6561993 que se centra en el filtrado de la señal temblorosa en dispositivos periféricos de entrada para computadores. El objeto en este caso no es alterar el patrón de temblor en sí, sino evitar que la señal temblorosa se refleje en la salida del periférico del ordenador. Otras patentes, como la US5293879 o la US 5964720, se centran en procedimientos para la detección de temblor como consecuencia de enfermedades neurológicas y procedimientos para la monitorización fisiológica genérica y en particular para la monitorización de temblor.

La presente patente se refiere a un método de cancelación selectiva del temblor. El método se estructura en torno a un lazo de control repetitivo. En el estado de la técnica existen varias realizaciones y patentes que emplean o se centran en este tipo de lazo de control. En concreto, la patente US5740090 se centra en la protección de un tipo de filtros sintonizados con una componente frecuencial principal, "notch filters", de orden igual o mayor que dos, y de estrategias de control repetitivo y de aprendizaje desarrolladas a partir de dicho filtro. Esta patente, cita además a otras patentes anteriores, como por ejemplo la patente US4821168 que se centra en aspectos de robustez de los mencionados lazos de control.

DESCRIPCIÓN DE LA INVENCIÓN

BREVE DESCRIPCIÓN DE LA INVENCIÓN

El temblor patológico se caracteriza por oscilaciones rítmicas de algún miembro del cuerpo humano. Estas oscilaciones rítmicas están superpuestas al movimiento voluntario del paciente. Las características de amplitud y frecuencia de las oscilaciones temblorosas dependen del tipo de temblor, sea este de reposo, postural o cinético. Además, para un mismo paciente estas características pueden verse alteradas en función de la actividad o condiciones que desarrolle o a que esté sometido.
Un procedimiento establecido clínicamente para reducir los efectos del temblor es la aplicación de cargas mecánicas resistivas, sean estas disipativas o inerciales. La solución ideal consiste en aplicar cargas de este tipo únicamente al movimiento tembloroso. Sin embargo, todas las realizaciones descritas en el estado de la técnica, aplican la carga biomecánica a la combinación del movimiento voluntario y tembloroso. Esto da lugar a una resistencia al movimiento intencional del paciente, y como consecuencia a falta de confort.

Adicionalmente, no existe en el estado de la técnica métodos que permitan la aplicación específica de cargas en función de las características concretas del tipo de temblor (frecuencias y amplitudes variables) ni de las características particulares en un instante determinado del temblor en un paciente, que por lo general serán distintas a las de cualquier otro instante.

La presente patente pretende proteger un método que permite la cancelación, reducción o supresión selectiva del temblor, es decir sin afectar al movimiento voluntario del paciente. Además, el método propuesto permite adaptar esta acción de cancelación de forma automática a cualquier tipo de temblor o a cualquier condición del temblor de un paciente.

El método propuesto consta básicamente de dos etapas:

1. La primera etapa es una estrategia de identificación de las características del temblor a partir de información recogida por una variedad de sensores biomecánicos (de posición, velocidad, aceleración o fuerza) o fisiológicos (de señal electromiográfica). Las características obtenidas mediante esta estrategia son al menos la frecuencia, fase y amplitud de la señal temblorosa, diferenciando ésta de la señal voluntaria, mediante cualquier algoritmo digital o circuito electrónico digital o analógico diseñado al efecto.

2. La segunda etapa está constituida por un lazo de control repetitivo, que sintonizado con la información del temblor obtenida en la fase anterior a las características concretas de la señal temblorosa, cancela selectivamente la parte temblorosa del movimiento. Para ello, una multiplicidad de actuadores permiten aplicar la acción de cancelación del lazo de control, mediante la aplicación de fuerzas internas (solución
ortésica) o mediante la aplicación de fuerzas externas (solución de sobremesa, para sillas de ruedas...).

Mediante este método se selecciona para posterior cancelación solo la parte temblorosa del movimiento del paciente. Dado que la primera etapa es de carácter general, la identificación y seguimiento de la señal temblorosa permite su aplicación a cualquier tipo de temblor o a cualquier condición o actividad del usuario.

DESCRIPCIÓN DETALLADA DE LA INVENCIÓN

El temblor patológico presenta una oscilación rítmica de los distintos segmentos del miembro superior de pacientes de algunas enfermedades de origen neurológico. Esta oscilación está caracterizada por frecuencias comprendidas en el rango de 2 a 4 Hz para el caso de temblor de reposo característico de la enfermedad de Parkinson. El temblor postural está sin embargo caracterizado por un rango frecuencial comprendido entre los 5 y 8 Hz y es característico de la enfermedad de temblor esencial. Por su parte, el temblor cinético puede presentarse en frecuencias comprendidas entre 4 y 12 Hz y es característico de pacientes con daño cerebral de origen traumático.

Dado un paciente afecto de cualquiera de los temblores descritos más arriba, sus características específicas de la oscilación pueden variar en función de la actividad o condición que soporte. Dichas oscilaciones estarán en general superpuestas al movimiento intencional del paciente.

Generalmente el movimiento voluntario está caracterizado por frecuencias significativamente más bajas que las del temblor. Además éste último es un movimiento esencialmente armónico (rítmico). Aprovechando estas dos características es posible determinar estrategias que permitan diferenciar ambos tipos de movimiento. En concreto, una estrategia posible es: a) el filtrado de la señal de movimiento con filtros pasa bajas o altas diseñados con frecuencias de corte comprendidas en el rango frecuencial entre el movimiento voluntario y el tembloroso. Los filtros así diseñados pueden ser implementados
tanto digital como analógicamente y pueden ser de cualquier orden, es decir, con pendientes de rechazo a las frecuencias prohibidas mayores o menores.

Aprovechando la característica esencialmente armónica del temblor, otro procedimiento para la identificación y seguimiento de la señal temblorosa se fundamenta en: b) el modelado de ésta mediante un desarrollo en serie de un armónico principal de frecuencia f_0 y M secundarios, tal como refleja la ecuación (1).

$$\sum_{r=1}^{M} [w_r \cdot \sin rf_0 k + w_r + M_k \cos rf_0 k]$$

(1)

Se puede establecer el error, e_k, entre el modelo de la ecuación (1) y la señal efectivamente obtenida a través de una variedad de sensores en el instante k, s_k, según la ecuación (2).

$$e_k = s_k - \sum_{r=1}^{M} [w_r \cdot \sin rf_0 k + w_r + M_k \cos rf_0 k]$$

(2)

Se puede utilizar este error para plantear un proceso de optimización por mínimos cuadrados de los parámetros del modelo de la ecuación (1).

El proceso descrito permite mediante la adecuada selección de los parámetros de convergencia del proceso de optimización, la obtención de un método recursivo para la estimación instantánea de las características de frecuencia, fase y amplitud de la señal temblorosa.

La estrategia descrita permite obtener una estimación instantánea de las características del temblor diferenciando éstas del movimiento voluntario. Aunque se han descrito dos alternativas para la implementación de esta estrategia, es la estrategia en sí la que permite la implementación del método protegido en esta patente y como consecuencia pueden utilizarse combinaciones de ambas o terceros métodos desarrollados digitalmente en los dominios del tiempo o de la frecuencia o analógicamente.

El control repetitivo es una variante del control de aprendizaje en el que se utiliza información previa sobre el tipo de perturbación a que está sometido un
sistema para mejorar el rechazo a las mismas. En concreto es de aplicación cuando las perturbaciones son de carácter periódico.

En el caso del temblor patológico, el sistema a controlar es el miembro superior del paciente y la perturbación es la oscilación a que da lugar el temblor y que según se indicó más arriba es rítmica (armónica). Por tanto, la cancelación o rechazo selectivo del temblor puede ser aproximado mediante lazos de control repetitivo.

En el control repetitivo se emplea una combinación lineal de uno o más valores anteriores del error entre la referencia y la señal medida para construir la señal de entrada al controlador del sistema, véase la figura 1. El resultado es que la función de transferencia del sistema de control presenta una atenuación muy grande a la frecuencia fundamental de la perturbación y en sus correspondientes armónicos según indica la figura 2. El número de valores previos del error y los coeficientes de la combinación lineal descrita más arriba determinan la anchura de la zona de atenuación y rechazo.

La estrategia descrita en los párrafos anteriores permite, una vez conocida la frecuencia principal del temblor, realizar una cancelación selectiva de la perturbación que representa el temblor al movimiento voluntario. Si, tal como se describió más arriba, la estrategia de identificación permite la identificación instantánea de las características del temblor a partir de la información de los sensores, el método propuesto se adapta automáticamente al tipo de temblor y a las condiciones del paciente.

La implementación del método de control puede realizarse de forma tanto digital como analógica sin que esto afecte al fundamento del método protegido.

La acción de control descrita más arriba da lugar a la aplicación de una serie de esfuerzos biomecánicos sobre el miembro tembloroso. Estos esfuerzos pueden ser de carácter interno, es decir, aplicados sobre el miembro tomando como referencia otro segmento del cuerpo humano, dando lugar a soluciones ortésicas. Los esfuerzos pueden ser además de carácter externo, es decir, tomando como referencia cualquier elemento externo (mesa, silla de ruedas...), dando lugar a aplicaciones no ambulatorias.
El método descrito está recogido esquemáticamente en el diagrama de la figura 3. Costa por tanto de una etapa de obtención de información sensorial, una estrategia de identificación y seguimiento de las características del temblor a partir de la información sensorial, un lazo de control repetitivo para el rechazo de la perturbación debida al temblor y una multiplicidad de actuadores para la aplicación física de la acción de control.

EJEMPLO DE REALIZACIÓN DE LA INVENCIÓN

Como ejemplo de realización de la invención se presenta el desarrollo de una solución ortésica para cancelación del temblor a nivel del codo. La ortésis está formada por una estructura rígida que permite soportar un conjunto de sensores y actuadores para implementar los bloques 1 y 4 del método de cancelación descrito esquemáticamente en la figura 3.

En el ejemplo se emplean como sensores dos giroscopios situados a ambos lados de la articulación que ofrecen información sobre la velocidad angular absoluta de brazo y antebrazo en el plano de movimiento de la articulación. El rango frecuencial de medida está comprendido entre 0 y 50 Hz, cubriendo así todo el rango frecuencial de los posibles temblores. Se incluye también un motor ultrasónico para generar el par de cancelación del temblor en la articulación de interés. El par del motor es de 1 mN, suficiente para contrarrestar el par medio del temblor a este nivel.

El conjunto está controlado por un ordenador personal que incorpora tarjetas de adquisición de la suficiente velocidad de captura y resolución, en este caso 200 Khz. y 12 bits respectivamente.

Se implementa una estrategia de identificación y seguimiento del temblor de acuerdo al estándar IEEE-STD-1057 para desarrollar el bloque 2 de la figura 3. Esta estrategia supone que el temblor sigue un patrón armónico y desarrolla un modelo del mismo de acuerdo con la ecuación (1). La optimización por mínimos cuadrados recursivos del error entre este modelo y la medida real del temblor permite la identificación instantánea de la frecuencia, fase y amplitud del temblor. La frecuencia de muestreo seleccionada para el lazo de identificación
es de 1 KHz.. Toda vez que la estrategia seleccionada otorga la estimación con
un retardo de una única muestra, el retardo de la estimación se reduce a 1ms,
despreciable en comparación con la frecuencia intrínseca del temblor que está
comprendida entre 2 y 12 Hz.

La frecuencia estimada del temblor se emplea para sintonizar el lazo de control
repetitivo del bloque 3 de la figura 3. Se emplea para ello un vector en el que se
almacena el error entre la referencia y la señal en el periodo anterior. Se
emplea en este caso una combinación lineal con un único valor previo, el
correspondiente a un retardo de un periodo de la señal de temblor identificada.

Esta combinación lineal es la entrada de un controlador proporcional integral
clásico.

EXPLICACIÓN DETALLADA DE LOS DIBUJOS

Figura 1

La figura representa esquemáticamente un lazo de control repetitivo. El bloque
1 representa la planta a controlar, que en este caso está compuesta por el
conjunto del miembro y el dispositivo empleado para la aplicación de fuerzas.
El bloque 2 representa el controlador que en función de la señal de error e_r,
genera la acción de control. El bloque 3 desarrolla una combinación lineal de M
valores anteriores del error e. En este esquema el error e está determinado a
partir de la diferencia entre el valor de referencia r y la señal medida s.

Figura 2

La figura representa la acción de control representada por un lazo repetitivo. La
frecuencia central del temblor, f_0, se emplea para sintonizar este lazo repetitivo
dando lugar a una gran atenuación o rechazo centrada en esta frecuencia y los
armónicos correspondientes.

La selección de la frecuencia central de rechazo, f_0, implementada por el lazo
de control repetitivo de acuerdo con las características instantáneas del temblor
permite la cancelación, supresión o reducción biomecánica del temblor de
forma independiente de sus características particulares.
Figura 3

La figura representa el conjunto de etapas necesarias para la implementación del método descrito en esta patente. El bloque 1 está formado por una variedad de sensores que recogen información cinemática o cinética del temblor en un miembro determinado (posición, velocidad, aceleración, fuerza o par mecánico) y/o información fisiológica del mismo (señal electromiográfica). El bloque 2 representa la estrategia de identificación y seguimiento de las características del temblor, emplea como entrada la información sensorial suministrada por el bloque 1 y genera una estimación de frecuencia, fase y amplitud de la parte temblorosa del movimiento del miembro afectado. El bloque 3 representa la aplicación de un lazo de control repetitivo sintonizado con la información suministrada por el bloque 2 para implementar una zona de rechazo de frecuencias ajustadas a las características del temblor. La acción de control representada por el bloque 3 es la entrada del bloque 4 que representa la aplicación biomecánica de la acción de cancelación del temblor mediante una multiplicidad de actuadores dispuestos en un sistema de esfuerzos internos (ortésis) y/o externos (dispositivos de sobremesa, sillas de ruedas...)
REIVINDICACIONES

1.- Método de cancelación, supresión o reducción de temblor patológico en cualquiera de sus variantes caracterizado por:

 a) Estrategia de identificación, caracterización y seguimiento del temblor en tiempo real en términos de su frecuencia principal, fase y amplitud asociada.

 b) Lazo de control repetitivo sintonizado de acuerdo con las características aportadas por el sistema a) para la generación de la acción de control y cancelación del temblor.

 c) Una multiplicidad de sensores y actuadores que permiten obtener la información necesaria sobre el temblor de acuerdo con la estrategia a) y que permiten actuar sobre el órgano afectado de acuerdo con la acción de control b).

2. Estrategia de identificación del temblor basada en el método descrito en la reivindicación 1 específicamente en el punto 1a) que se lleva a cabo mediante un algoritmo en el dominio de la frecuencia o del tiempo y que es implementado en un programa del controlador.

3. Método descrito en el punto 1 en el que la Estrategia de identificación del temblor del punto basada en las reivindicaciones 1 y 2 se realiza electrónicamente mediante un circuito electrónico al efecto.

4. Lazo de control basado en el punto 1b de la reivindicación 1 que incluye uno o varios armónicos de la frecuencia fundamental del temblor y que es implementado de forma digital o analógica. El control repetitivo puede ser implementado mediante el empleo de uno o varios valores previos del error del controlador.

5. Proceso de identificación de las características del temblor basado en el método descrito en el punto del punto 1 a) de la reivindicación 1 y que se realiza en tiempo real, aportando información instantánea o con un retardo que no afecte a la estabilidad del lazo descrito en el punto 1b) de la reivindicación 1 y permite su aplicación a toda variedad de temblor patológico de reposo, postural o cinético, y bajo cualquier condición de actividad del paciente.
6. Método descrito en el punto 1 y su Desarrollo tanto de dispositivos ortésicos, es decir portátiles, como de dispositivos no ambulatorios de sobremesa, para sillas de ruedas o cualquier dispositivo adicional que en la práctica empleen los pacientes con temblor patológico basado en los métodos descritos en las reivindicaciones 1,2,3,4 y 5.
FIGURA 1
FIGURA 2
FIGURA 3
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC7 A61B5/11, G05B13/02
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC7 A61B5/103, 11, G05B13, H03H21

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CIBEPAT, EPODOC, DWPI, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 6145381 A (Mathisen et al.) 14.11.2000 the whole document</td>
<td>1 - 6</td>
</tr>
<tr>
<td>A</td>
<td>US 6561993 B (Adapathy et al.) 13.05.2003 claims 1-4, 11-14</td>
<td>1 - 3</td>
</tr>
<tr>
<td>P,A</td>
<td>WO 2004/008427 A (Baram) 22.01.2004 the whole document</td>
<td>1 - 6</td>
</tr>
<tr>
<td>A</td>
<td>WO 9613898 A (PHILIPS ELECTRONICS) 09.05.1996 the whole document</td>
<td>1, 4</td>
</tr>
<tr>
<td>A</td>
<td>EP 0535508 A (VITATRON MEDICAL) 07.04.1993 the whole document</td>
<td>1 - 3</td>
</tr>
<tr>
<td>A</td>
<td>US 20030023191 A (Tripp) 30.01.2003 the whole document</td>
<td>1 - 3</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

Date of the actual completion of the international search

10 November 2004 (10.11.04)

Date of mailing of the international search report

19 November 2004 (19.11.04)

Name and mailing address of the ISA/

S.P.T.O

Authorized officer

Facsimile No.

Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 6561993 B</td>
<td>13.05.2003</td>
<td>US 2004133120</td>
<td>08.07.2004</td>
</tr>
<tr>
<td>WO 9613898 A</td>
<td>09.05.1996</td>
<td>JP 10508130 T</td>
<td>04.08.1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69524768 T</td>
<td>22.08.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5293879 A</td>
<td>15.03.1994</td>
</tr>
<tr>
<td>US 2003023191 A</td>
<td>30.01.2003</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A. CLASIFICACIÓN DEL OBJETO DE LA SOLICITUD
CIP/ A61B5/11, G05B13/02
De acuerdo con la Clasificación Internacional de Patentes (CIP) o según la clasificación nacional y la CIP.

B. SECTORES COMPRENDIDOS POR LA BÚSQUEDA
Documentación mínima buscada (sistema de clasificación seguido de los símbolos de clasificación)
CIP/ A61B5/103, 11, G05B13, H03H21

Otra documentación consultada, además de la documentación mínima, en la medida en que tales documentos formen parte de los sectores comprendidos por la búsqueda

Bases de datos electrónicas consultadas durante la búsqueda internacional (nombre de la base de datos y, si es posible, términos de búsqueda utilizados)
CIBEPAT, EPODOC, DWPI, PAJ

C. DOCUMENTOS CONSIDERADOS RELEVANTES

<table>
<thead>
<tr>
<th>Categoría*</th>
<th>Documentos citados, con indicación, si procede, de las partes relevantes</th>
<th>Relevante para las reivindicaciones nº</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 6145381 A (Mathisen et al.) 14.11.2000 Todo el documento</td>
<td>1 - 6</td>
</tr>
<tr>
<td>A</td>
<td>US 6561993 B (Adapathyva et al.) 13.05.2003 Reivindicaciones 1-4, 11-14</td>
<td>1 - 3</td>
</tr>
<tr>
<td>P,A</td>
<td>WO 2004/008427 A (Baram) 22.01.2004 Todo el documento</td>
<td>1 - 6</td>
</tr>
<tr>
<td>A</td>
<td>WO 9613898 A (PHILIPS ELECTRONICS) 09.05.1996 Todo el documento</td>
<td>1 - 4</td>
</tr>
<tr>
<td>A</td>
<td>EP 0535508 A (VITATRON MEDICAL) 07.04.1993 Todo el documento</td>
<td>1 - 3</td>
</tr>
<tr>
<td>A</td>
<td>US 20030023191 A (Tripp) 30.01.2003 Todo el documento</td>
<td>1 - 3</td>
</tr>
</tbody>
</table>

☐ En la continuación del recuadro C se relacionan otros documentos ✗ Los documentos de familias de patentes se indican en el anexo

* Categorías especiales de documentos citados:

- "A" documento que define el estado general de la técnica no considerado como particularmente relevante.
- "E" solicitud de patente o patente anterior pero publicada en la fecha de presentación internacional o en fecha posterior.
- "L" documento que puede plantear dudas sobre una reivindicación de "X" prioridad o que se cita para determinar la fecha de publicación de otra cita o por una razón especial (como la indicada).
- "O" documento que se refiere a una divulgación oral, a una utilización, a una exposición o a cualquier otro medio.
- "P" documento publicado antes de la fecha de presentación internacional pero con posterioridad a la fecha de prioridad reivindicada.

Fecha en que se ha concluido efectivamente la búsqueda internacional. 10 Noviembre 2004 (10.11.2004)
Fecha de expedición del informe de búsqueda internacional 19 NOV 2004 19.11.2004

Nombre y dirección postal de la Administración encargada de la búsqueda internacional
A. O.E.P.M.
C/ Panamá 1, 28071 Madrid, España.
Nº de fax 34 91 3495304

Funcionario autorizado
A. Cardenas Villar
Nº de teléfono + 34 91 3495393

Formulario PCT/ISA/210 (segunda hoja) (Enero 2004)
<table>
<thead>
<tr>
<th>Documento de patente citado en el informe de búsqueda</th>
<th>Fecha de publicación</th>
<th>Miembro(s) de la familia de patentes</th>
<th>Fecha de publicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 6561993 B</td>
<td>13.05.2003</td>
<td>US 2004133120</td>
<td>08.07.2004</td>
</tr>
<tr>
<td>WO 9613898 A</td>
<td>09.05.1996</td>
<td>JP 10508130 T</td>
<td>04.08.1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69524768 T</td>
<td>22.08.2002</td>
</tr>
<tr>
<td>EP 0535508 A</td>
<td>07.04.1993</td>
<td>US 5293879 A</td>
<td>15.03.1994</td>
</tr>
</tbody>
</table>