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Abstract: Neurodegenerative diseases are characterized by the progressive loss of neurons, synapses,
dendrites, and myelin in the central and/or peripheral nervous system. Actual therapeutic options
for patients are scarce and merely palliative. Although they affect millions of patients worldwide, the
molecular mechanisms underlying these conditions remain unclear. Mitochondrial dysfunction is
generally found in neurodegenerative diseases and is believed to be involved in the pathomechanisms
of these disorders. Therefore, therapies aiming to improve mitochondrial function are promising
approaches for neurodegeneration. Although mitochondrial-targeted treatments are limited, new
research findings have unraveled the therapeutic potential of several groups of antibiotics. These
drugs possess pleiotropic effects beyond their anti-microbial activity, such as anti-inflammatory or
mitochondrial enhancer function. In this review, we will discuss the controversial use of antibiotics
as potential therapies in neurodegenerative diseases.

Keywords: neurodegeneration; mitochondria; antibiotics; neuroinflammation; neurodegenera-
tive diseases

1. Introduction

Neurodegenerative diseases are generally classified according to their clinical pre-
sentation, with movement, cognitive, and behavioral disorders being the most common.
Diagnosis is generally difficult given the fact that patients normally present heterogeneous
clinical features. Very often, neurodegenerative diseases are diagnosed post-mortem via
neuropathological evaluation at autopsy. Nevertheless, there is currently great interest
among the scientific community in the identification of biomarkers or specific genetic
mutations that help clinicians anticipate the onset of these diseases to either treat them
when still reversible or slow down their progression [1]. This is especially relevant given
the fact that the characteristic protein abnormalities linked to these diseases are present in
patients long before the clinical symptoms become noticeable [2,3].

Neurodegenerative diseases share a series of common traits such as proteotoxic stress,
abnormalities in the autophagosomal/lysosomal and ubiquitin/proteosomal systems, lipid
peroxidation, iron accumulation, neuroinflammation, oxidative stress, mitochondrial dys-
function, and eventually neuronal death. Among them, mitochondrial dysfunction has
long been demonstrated as a prominent early pathological event of a variety of neurode-
generative diseases [4]. In fact, in no cell type is mitochondrial function more vital than
in neurons. First of all, because their limited glycolytic activity causes them to rely pri-
marily on oxidative phosphorylation (OXPHOS), second, because their long axons require
energy-dependent transport of cell components over long distances, and third, because
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synaptic transmission is dependent on calcium signaling, which needs energy-dependent
regulation [5]. One of the first signs hinting towards the involvement of mitochondria
in neurodegenerative diseases was observed in Alzheimer’s disease (AD) patients, who
presented reduced glucose metabolism in the brain with respect to healthy individuals [6].
This fact has been reported in many studies using 18-FDG positron emission tomography
(PET) to determine the rate of metabolic activity in AD patients. Interestingly, according
to this finding, the reduction of metabolic activity in AD patients correlated with their
degree of cognitive impairment [6]. In addition, it has been demonstrated that AD patients
present impaired oxygen consumption in the brain, further adding to the notion that bioen-
ergetic dysfunction and mitochondrial impairment are common features of AD [7]. Indeed,
impairment of several mitochondrial enzymes such as pyruvate dehydrogenase (PDH)
and ketoglutarate dehydrogenase (KGDH) has been detected in AD patients. Among
mitochondrial oxidative phosphorylation complexes, cytochrome c oxidase (complex IV) is
the most affected. Its activity was found to be significantly reduced in the brain tissue of
AD patients, which represented a general decrease in functionality of the electron transport
chain although other mitochondrial proteins were not altered [8]. Moreover, mitophagy has
been proposed as a key factor to consider in the pathogenesis of AD. In fact, an impairment
of the mitophagy machinery has been reported in both human and biological models
of AD [9]. In this line, stimulation of mitophagy has proven to be effective to improve
neuropathological and clinical features in these models [9,10].

In addition to AD, there is compelling evidence to support the involvement of mi-
tochondria in the pathogenesis of different neurodegenerative diseases, with their role
being particularly relevant in Parkinson’s disease (PD). According to numerous studies,
patients with this condition present a selective deficiency of respiratory chain complex
I, which is most remarkable when enzymatic activity is measured in the substantia ni-
gra (SN) [11,12]. The role of complex I in the pathogenesis of PD is supported by the
finding that the administration of complex I inhibitors, namely 1-methyl-4-phenyl-1,2,5,6-
tetrahydropyridine (MPTP) or rotenone, to both humans and animal models leads to the
onset of parkinsonism and striatonigral degeneration [13–15]. Rotenone, in particular, not
only triggers motility-related symptoms of PD such as hypokinesia, rigidity, and shaking
but also leads to dopaminergic neuron degeneration and cytoplasmic aggregations of α-syn
and ubiquitin in rats [16]. Furthermore, there seems to be a link between mitochondrial
DNA (mtDNA) and the pathogenesis of PD. A high mtDNA deletion burden in the SN has
been reported among PD patients [17], being further corroborated in a study evaluating
DNA from SN individual neurons of patients and healthy donors [18]. Moreover, the
amount of mtDNA is altered in PD patients [19] and most of the mutations that have been
identified as causative of familial PD occur in genes that are directly involved in mitochon-
drial biology, the most prominent examples being Parkin and PINK1 [20,21]. Apart from
Alzheimer’s and Parkinson’s diseases, mitochondrial perturbations have been reported in
many other neurodegenerative diseases, among which amyotrophic lateral sclerosis (ALS),
Huntington’s disease (HD), and neurodegeneration with brain iron accumulation (NBIA)
disorders deserve special mention [22–25]. Nevertheless, a critical question that remains
unanswered is whether mitochondrial dysfunction is indeed one of the main factors lead-
ing to neurodegeneration or just a collateral feature arising from alternative phenomena
such as the accumulation of misfolded proteins, lipid peroxidation, iron accumulation,
autophagy/mitophagy dysfunction, or cellular stress. All these instances could be part
of a continuous and vicious cycle as has been recently proposed [26]. Therefore, target-
ing mitochondrial dysfunction is a promising therapeutic strategy for neurodegenerative
pathologies. Recent studies have demonstrated that mitochondria-targeted antioxidants
counteract the excessive ROS production associated with mitochondrial malfunction and
present neuroprotective properties in cultured cells and a mouse model of ALS [27]. An-
other therapeutic strategy in this context is focused on targeting energy dysfunction in
patients by supplementing them with creatine, an intracellular energy buffer in the brain
and skeletal muscle. Creatine supplementation achieved outstanding results in vitro and
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in vivo and it has been evaluated in clinical trials for both PD and Huntington’s disease
(HD). The outcome for PD was promising, with one study showing a reduction in disease
progression of 50% after one year of treatment [28].

Other therapeutic approaches in neurodegenerative diseases include the treatment of
calcium dysregulation, defects in mitochondrial fission and fusion, disrupted mitochondrial
protein import, aberrant mitochondrial kinases, or dysfunctional mitochondrial protein
quality control such as mitophagy, mitochondria-derived vesicles (MDV), or mitochondrial
unfolded protein response (UPRmt). The UPRmt is a mechanism aimed to preserve or
repair damaged mitochondria. It is responsible for maintaining mitochondrial proteostasis
through the activation of a transcriptional program in the nuclear DNA [29]. Although the
molecular mechanism of UPRmt in humans is not fully understood, it is gaining relevance
in a variety of physiological processes such as aging, oxidative stress resistance, hematopoi-
etic stem cell maintenance, glycolysis, antibacterial immunity, coenzyme Q biosynthesis,
mitochondrial fission, and neurodegeneration [30,31]. Loss of mitochondrial proteostasis
is the main factor inducing the UPRmt, especially when the accumulation of damaged
proteins exceeds the protein-processing capacity of the mitochondrial chaperones and
proteases [32]. Furthermore, mitochondrial function stressors and/or damage also pro-
mote UPRmt induction. Examples of these are the inhibition of complex I by rotenone [33],
bacterial toxins [34], knockdown of quality control proteins [35], or generation of excess
ROS by paraquat [36].

Antibiotics are a group of molecules with the capacity of disrupting several bacterial
mechanisms such as DNA, RNA, protein, and cell wall synthesis, thus promoting bacterial
death [37]. Nevertheless, the alternative use of these drugs has proven to be very promising
for the treatment of a wide range of conditions, ranging from cancer to neurodegenerative
diseases or aging [38]. Due to their bacterial origin, and the fact that they conserve prokary-
otic features such as the 55S or 60S ribosomes, mitochondria are exceptionally sensitive to
antibiotics. However, it is precisely for this reason that treating patients with antibiotics for
long time spans is an extremely controversial approach [38]. Thus, clinically relevant doses
of several antibiotics cause mitochondrial dysfunction in mammalian cells [39]. Moreover,
plant chloroplasts and mitochondria are also vulnerable to antibiotics that are released into
the environment [40].

Furthermore, antibiotics can cause significant changes in gut microbiota and the de-
velopment of bacterial antibiotic resistance that have both short- and long-term health
consequences [41,42]. It is known that gut microbiota may affect the activity of the nervous
system by producing various neurotransmitters and mediators as well as toxic substances
and/or releasing pro-inflammatory cytokines, which can either cross the blood–brain bar-
rier (BBB) or send a signal to the brain via the vagus nerve [43]. Some authors warned
that gut microbial dysbiosis caused by antibiotics may lead to alterations in brain func-
tions [44]; however, other studies showed that some antibiotics could be beneficial by
reducing pro-inflammatory bacteria and optimizing drug absorption such as levodopa in
PD [45,46].

In this manuscript, we will review the experimental data supporting the potential
benefits of several antibiotics for the treatment of numerous neurodegenerative conditions
with mitochondrial involvement such as AD, PD, and HD (Table 1 and Figure 1).
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Table 1. Antibiotics and their alternative therapeutic targets.

Antibiotic Standard Application Potential Effect Clinical Trials Side Effects

Tetracyclines
family [47]

Broad spectrum
bacteriostatic

Bacterial ribosome
inhibitor

Anti-inflammatory
(Microglial M1 inhibition) [48]
α-synuclein complex [49,50],
prion [51,52], and β-amyloid

peptide [53]
aggregation inhibition

Neuritogenesis promoter [50]
UPRmt activator [54]

Increases mitochondrial
protease activity [55]

Iron chelator [56]

Huntington’s disease [57]
Aneurysms and cerebral

arteriovenous
malformations [58]

Pancreatic cancer [59]
Degradation and

permeability of collagen
membrane [60]

Alzheimer’s
disease [61,62]

Gastrointestinal and skin
adverse effects,

drug-induced lupus,
hypersensitive syndrome

reaction [63]

Fluoroquinolones
family [64]

Broad spectrum
bactericidal

Multidrug resistant
bacteria

Anti-inflammatory
(TLR4/NF-κB

pathway) [65–67]

Bladder cancer [68]
Crohn’s disease [69]
Chronic obstructive

pulmonary disease [70]

Tendinopathy [71],
aortic diseases [72],

gastrointestinal
effects [73],

psychiatric adverse
reactions [74], seizures,

confusion/
encephalopathy [75,76],

dysglycemia [77]

Rifampicin [78]

Gram positive bactericidal
Tuberculosis, leprosy, and

legionnaire’s disease
treatment

Anti-inflammatory (TLR4 and
NLRP3 pathway) [79,80]

UPRmt activator [80]
Chaperone enhancer [80]

α-synuclein sumoylation [80]
Improves autophagy flux [81]

Alzheimer’s disease [61]
Diabetes [82]
Metabolism

homeostasis [83]

Cutaneous reactions,
gastrointestinal effects,

hepatitis, and
thrombocytopenia [84]

Rapamycin [85]
Natural anti-fungal
antibiotic used as an
immunosuppressor

mTOR inhibitor (Autophagy
enhancer) [86–89]

Reduce α-synuclein
aggregation [90,91]

Mitochondrial clearance [92]

Alzheimer’s disease [93]
ALS [94]

Aging [95]
Myelodysplastic
syndrome [96]

Metabolism
homeostasis [97]

Anemia, hyperglycemia,
dyslipidemia, renal,

pulmonary, and
dermatologic adverse
effects, angioedema,
osteonecrosis, and
lymphedema [98]

Ceftriaxone [99]
Post-surgery infections

Multidrug resistant
bacteria

α-synuclein aggregation
inhibitor [90,100,101]
Improves glutamate

homeostasis [102–105]
Anti-inflammatory

(TLR4/NF-κB pathway) [104]
Reduces levodopa side

effects [102]
Promotes

neurogenesis [106,107]

ALS [108,109]
Bipolar disorder [110]

Refractory psychosis [111]

Gastrointestinal, skin and
vascular disorders [112]

Geldanamycin [113] Antibiotic and a potent
antitumor compound

Increases chaperone
activity [90,114] N.A. Gastrointestinal, hepatic,

and eye disorders [115]

Amphotericin B [116] Fungicide Reduces prion
aggregation [117] N.A. Nephrotoxicity, anemia,

and cardiomyopathy [118]
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Figure 2. This is a wide figure.
Figure 1. The proposed mechanisms of action of several antibiotics in neurodegenerative diseases.
Although antibiotics are mainly used to treat infections, new applications are being discovered.
Reducing inflammation and mitochondrial dysfunction could break the vicious cycle triggered by
these neurodegenerative diseases that ultimately lead to neuronal death. These mechanisms include
mtUPR activation, iron chelation as well as the increase in autophagic flux and protease activity.

2. Iron Accumulation and Lipid Peroxidation in Neurodegenerative Diseases

Iron accumulation and lipid peroxidation in different areas of the brain have been
proposed as key disease-causing factors in many neurodegenerative diseases [119]. Abnor-
mal iron homeostasis generally leads to iron overload, which destroys proteins and lipids
via Fenton reactions [120,121]. Excessive iron accumulation and lipid peroxidation are fre-
quently accompanied by oxidative stress, mitochondrial dysfunction, increased lipofuscin
granules, and autophagy dysregulation [22,120,122]. Eventually, neuronal cell death occurs
by ferroptosis, a cell death process dependent on iron-mediated lipid peroxidation.

Minocycline, a second-generation semi-synthetic tetracycline, is a known metal chela-
tor [123], which is the reason why recent studies propose it as a potential treatment for brain
iron overload [124]. In mice models, brain non-heme iron and brain iron handling protein
levels decreased following minocycline treatment [56]. In fact, absorption of minocycline
is significantly decreased by administration with iron supplements [125] and skin hyper-
pigmentation, a side effect of long-term minocycline therapy, may be related to insoluble
minocycline–iron chelation products [126].
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Minocycline can attenuate iron neurotoxicity in cortical neuronal cultures [127]. Chen-
Roetling et al. treated cultured cortical neurons with ferrous sulfate causing significant neu-
ronal death and increasing malondialdehyde levels, a canonical ROS and lipid peroxidation
biomarker. However, minocycline treatment prevented this injury, with close-to-complete
protection. Furthermore, the positive effect of minocycline was evaluated in iron-induced
brain injury by intracerebral injection of iron in a rat model [56]. They found that minocy-
cline attenuates iron-induced brain edema and BBB disruption. Recent studies showed that
the combined treatment of deferoxamine and minocycline promotes a potent synergistic
effect that reduces neuronal death, suppresses the activation of microglia/macrophages,
and decreases iron accumulation, thus lessening brain damage, and improving neurologi-
cal deficits [128]. These results suggest that minocycline’s metal-chelating properties are
promising candidates for the treatment of diseases associated with iron overload.

Other tetracyclines, such as doxycycline, have also presented iron-chelating activ-
ity [123], but did not provide cytoprotection at effective minocycline concentrations. The
fact that minocycline is considerably more lipid-soluble [129] than other tetracycline deriva-
tives may enable its accumulation at higher concentrations in cell membranes that are
vulnerable to iron-catalyzed lipid oxidation [25]. Moreover, in contrast to the iron chela-
tor deferoxamine and doxycycline, minocycline increased cellular ferritin levels since the
lipophilic minocycline-iron complex is sensed by the iron regulatory protein (IRP) that pro-
motes ferritin expression [124,127]. Ferritin attenuates iron-mediated neuronal injury [128]
by entrapping free iron molecules in its closed protein structure. Hence, induction of ferritin
expression may also contribute to minocycline’s neuroprotective effect.

3. Neuroinflammation

Neuroinflammation is an inflammatory response within the central nervous system
to events that interfere with tissue homeostasis and represents a common denominator
in virtually all neurological diseases [130]. Activation of microglia, the main immune
effector cells of the brain, contributes to neuronal injury by the release of neurotoxic
products [130]. Toll-like receptor 4 (TLR4), expressed on the surface of microglia, plays an
important role in mediating lipopolysaccharide (LPS)-induced microglia activation and
inflammatory responses. Furthermore, several stress conditions can damage the outer
and inner mitochondrial membranes and induce the release of mitochondrial components,
such as mitochondrial mtDNA or cardiolipin [131]. These mitochondrial components are
recognized as danger-associated molecular patterns (DAMPs), indicating cellular damage
and thus eliciting innate immune responses [132]. Detection of both bacterial components,
such as LPS, and mitochondrial DAMPs are pro-inflammatory signals. Notably, expression
of most of these molecules is not restricted to specialized innate immune cells, such as
macrophages, microglia, dendritic cells, or neutrophils, but also occurs in a large number
of non-immune cells, including neurons. Antibiotic supplementation has been shown to
regulate the neuroinflammatory response reducing its side effects [133–136].

Both clinical and laboratory studies have demonstrated the anti-inflammatory proper-
ties of minocycline [137–140]. Furthermore, their bioavailability is favorable since they are
rapidly and completely absorbed, even in elderly populations, have a longer half-life, and
present an excellent tissue penetration [141,142]. In addition, minocycline has a good safety
record when used chronically, including dosages of up to 200 mg·day−1, the highest dosage
recommended by the FDA [143]. Presymptomatic administration of minocycline inhibits
neuroinflammation and glial activation in an ALS mouse model [48]. In fact, minocycline
is a widely known strong inhibitor of microglial activation. Thus, minocycline is used in
investigations on the polarization and pathogenesis of many diseases featuring microglial
activation [144]. Generally, microglia polarization could be categorized into classical (M1)
and alternative (M2) activation. The bacterial component LPS is known as a canonical M1
polarization inducer, and M1 microglia express proinflammatory molecules that include
tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interferon-γ (IFN-γ), and nitric
oxide (NO) as well as cell surface markers, CD86 and CD68. Although M1 microglia could
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be beneficial in the early stages of neurodegenerative diseases, their chronic activation
could aggravate the pathological alterations and disease progression [145]. On the other
hand, IL-4 induces microglia M2 polarization which can ameliorate chronic inflammation.
M2 microglia express different molecules, such as IL-4, arignase1, Ym1, CD206, and IL-10,
and show neuroprotective effects [146]. Kobayashi K et al. found that minocycline inhibited
the expression of cell surface markers of M1-polarized microglia as well as the production
of inflammatory cytokines (IL-1β, TNF-α, and IFN-γ) in vivo and in vitro. However, M2
marker expression was not affected. These results demonstrate the selective action of
minocycline in microglia polarization.

Fluoroquinolones (FQs), one of the most important and commonly prescribed classes
of synthetic antibiotics [64], have been shown to exert immunomodulatory activities by
decreasing the production and release of inflammatory-associated cytokines, both in vitro
and in vivo, in addition to their classical antimicrobial activity [65]. Zusso M et al. reported
that FQs effectively reduce the release of IL-1β and TNF-α by LPS-stimulated primary
microglia in vitro. This effect was achieved at a higher than clinically relevant concentration,
but in agreement with some previous studies conducted in peripheral immune cells aimed
at exploring the anti-inflammatory properties of these drugs [66,67]. Interestingly, the
tested FQ concentrations did not produce any cytotoxic effect on microglia. This study
shows that TLR4 is the primary target of the anti-inflammatory activity of FQs, which
in turn decreased the inflammatory activity of LPS, resulting in the downregulation of
LPS-induced inflammatory response via the TLR4/NF-κB pathway.

Rifampicin, a classic and safe anti-tuberculous drug, has neuroprotective effects in
acute and chronic brain injury. Rifampicin may protect neurons via upregulating chaperone
78-kDa glucose-regulated protein (GRP78), enhancing sumoylation of α-synuclein, improv-
ing the UPRmt-related pathway PI3K/Akt/GSK-3β/CREB signaling or inhibiting neuroin-
flammation through TLR-4 pathway [80]. Furthermore, rifampicin can inhibit the release of
IL-1β by suppressing the activation of NLRP3 inflammasome in microglia [79]. Liang Y
et al. found that rifampicin could inhibit rotenone-induced microglia inflammation by pro-
moting the clearance of damaged mitochondria through the autophagosomal/lysosomal
pathway [147].

4. Alzheimer’s Disease

Alzheimer’s disease (AD) is a degenerative disease of the central nervous system
with a high incidence in elderly people [148]. The main clinical manifestations are pro-
gressive memory loss, cognitive and language communication disorders, and personality
changes [149]. Its main pathological features are the appearance of senile plaque (SP) and
neurofibrillary tangles (NFTs) in patients’ brains. β-amyloid (Aβ) deposition and abnor-
mally phosphorylated Tau protein deposition are the main components of SP and NFTs,
respectively [150]. There is no effective treatment for AD presently available; however, Aβ

is now a key established biomarker indicating the development of AD [151]. The aggre-
gation Aβ in AD provokes mitochondrial dysfunction [152] and dynamics impairment,
including mitophagy [92].

Aβ aggregates can infringe on mitochondrial damage [153]. When Aβ accesses mito-
chondria, it partly passes through the mitochondrial protein import apparatus through the
translocase of the outer mitochondrial membrane 40 (TOMM40) protein pore [154]. The
import is, however, not completed due to the presence of an Aβ acidic domain which clogs
the import infrastructure and protrudes from the mitochondria into the cytoplasm causing
severe mitochondrial dysfunction [155]. Damaged mitochondria release proinflammatory
molecules such as mtDNA, adenosine triphosphate (ATP), cardiolipin, mitochondrial tran-
scription factor A (TFAM), cytochrome c, formyl peptides, and RNA [156]. In relation
to neuroinflammation, free mtDNA induces inflammatory signaling in astrocytes [157].
Mathew A. et al. demonstrated that adding mitochondrial oxidized polynucleotides to
mouse primary astrocytes stimulates the expression of IL-6, monocyte chemotactic protein-1
(MCP-1), IL-1β, and TNFα [157]. mtDNA damage can be induced by hydrogen peroxide,
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and evidence indicates that this type of DNA oxidative damage is relatively specific to
mitochondria [158]. The relationship between Aβ and mitochondria leads to the “mito-
chondrial cascade hypothesis” where Aβ, in any of its forms, does not contribute to AD
dysfunction or degeneration per se. Rather, it induces aberrant mitochondrial function or
cell bioenergetic states that trigger neurodegeneration, which in turn further promotes Aβ

production [152]. Ruan et al. showed that mitochondria act as a sink for aggregation-prone
proteins, which mitochondrial proteases degrade following their import [55]. A loss of this
“mitochondria as guardian in cytosol” (MAGIC) function could in general promote protein
aggregation [159].

The considerable efforts in the design of Aβ targeting molecules have been fruitful,
providing several classes of compounds with different modes of action, but the drugs
tested in clinical trials have given unsatisfactory results or caused adverse effects [160].
Salmona’s group proposes that tetracyclines promote Aβ degradation by proteases as well
as inhibit aggregation and destabilize aggregates [161–163]. Interestingly, incubation of
Aβ peptides with tetracycline led to the formation of colloidal particles that specifically
sequestered oligomers, preventing the progression of the amyloid cascade. Therefore,
they hypothesize that the internal structure of aggregates formed by Aβ peptides with
tetracycline is non-homogeneous and governed by hydrophobic and charged multiparticle
interactions. The formation of these supramolecular aggregates improves the solubility of
Aβ peptides which correlates with the mechanism of action of small anti-amyloidogenic
molecules [164].

Nevertheless, using doxycycline to treat AD patients in clinical trials is a highly
controversial approach. One study proved that upon doxycycline treatment patients
experienced a cognitive decline to a lesser extent [165] whereas no benefits were observed
in another [166]. The two trials were comparable in terms of patients’ stages of disease at
enrolment. Doxycycline was given orally at the dose of 200 mg/day together with rifampin
300 mg/day in the first study. The same doses were used in the second trial, with the sole
difference that doxycycline was given at 100 mg twice a day, rather than once. The main
differentiating factor between both studies was the duration of the treatment. In the former
patients were treated for 3 months, whereas in the latter treatment continued for 12 months.
As stated by the authors, one possible explanation for the outcome of the latter study is
that doxycycline might have some detrimental properties that become apparent when the
treatment is sustained for longer periods of time. In these studies, only the behavioral and
functional aspects were examined, with no assessment of Aβ, tau levels, or inflammatory
markers in the plasma and/or cerebrospinal fluid of the patients.

Minocycline was first tested in a drug-induced AD mice model by Hunter et al. [167].
They found that minocycline ameliorated cholinergic cell loss and reduced the simultaneous
activation of microglia and astrocytes, leading to the transcriptional down-regulation of
pro-inflammatory mediators and mitigating cognitive impairment. In amyloid precursor
protein (APP) transgenic mice, minocycline suppressed microglial production of IL-1β,
IL-6, TNF, and nerve growth factor but did not affect Aβ deposition [168]. In an AD
rat model, minocycline treatment was able to correct behavioral impairments and lower
levels of inflammatory markers and Aβ trimers in an early, pre-plaque inflammatory
process [169]. Overall, minocycline treatment ameliorates the cognitive impairment and
deficits in learning and memory that characterize AD in several models [143]; however,
clinical trials with 200–400 mg/day of minocycline fail to delay the progress of cognitive or
functional impairment in people with mild AD over a 2-year period [170].

5. Parkinson’s Disease

Parkinson’s disease (PD) is the second most common degenerative pathology of the
central nervous system and its prevalence is higher among people over 65 years old,
affecting 1–3% of the population [171,172]. The disease can present a wide range of mani-
festations. The most recognizable one is a mild tremor that might develop into unilateral
resting tremors in the upper limbs over time. However, one out of four PD patients never
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develops tremors [171]. Other manifestations may involve somatomotor system dysfunc-
tion, as well as non-motor symptoms such as neuropsychiatric ones, sleep disorders, or
loss of concentration [171,172]. Histopathologically, the presence of neuronal cytoplasmic
inclusions called Lewis Bodies (LB), depleted dopamine levels, and loss of dopaminergic
neurons in the substantia nigra pars compacta (SNpc) are characteristic features of this
disease [171,172]. LB are mainly formed by the aggregation of phosphorylated α-synuclein
in a misfolded fibrillary stage [90,171,173]. The formation of LB induces neuronal death
which affects primarily the dopaminergic neurons in the SNpc [171,174]. The release of α-
synuclein to the extracellular compartment might activate microglia and lead to the release
of proinflammatory cytokines such as IL-1β through the activation of the NLRP3 inflamma-
some, thus amplifying neuronal damage [175,176]. Moreover, mitochondrial dysfunction
plays a fundamental role in PD [171,172]. Ludtmann et al. suggested that monomeric
α-synuclein has a regulatory function in mitochondrial bioenergetics by improving the
efficiency of ATP synthase [90,177]. Furthermore, it has been described that aggregated α-
synuclein disrupts the vesicular system and, consequently, mitophagy machinery, leading
to the accumulation of dysfunctional mitochondria [173,178,179]. Mitochondrial dysfunc-
tion enhances ROS production, which may facilitate α-synuclein aggregation and would
activate NLRP3 inflammasome [147,175,180]. Synaptic glutamate clearance is also com-
promised in PD: glutamate transporter-1 (GLT-1) is downregulated in patients causing an
imbalance of glutamate homeostasis and excitotoxicity [102,181]. Currently, there is no
curative treatment for PD. Most pharmacological formulations are designed to reduce the
aggregation of α-synuclein, neuroinflammation, and mitochondrial dysfunction [90,182].
This has led to exploring the efficacy of existing molecules with potential activity against
neuroinflammation, α-synuclein aggregation, or mitochondrial dysfunction for their appli-
cation in PD. In this context, doxycycline has been identified as a potential treatment for
PD, since it reduces neuroinflammation and oxidative stress, and prevents the aggregation
of α-synuclein in animal models of PD [49,50].

Tetracycline antibiotics have already been used in non-infectious diseases such as
acne vulgaris or rosacea at sub antimicrobial doses (20–40 mg/day) without serious side
effects [175]. In fact, Egeberg et al. noticed a correlation between the use of tetracyclines in
rosacea and a small reduction in the risk of developing PD [183]. Regarding microbiota,
studies indicated there were no detectable effects on the normal oral bacteria or fecal or
vaginal flora, the increase in the number of doxycycline-resistant bacteria, or the develop-
ment of multi-antibiotic resistance following the treatment with sub antimicrobial dosage
for 9 months [184,185].

Doxycycline treatment induces conformational changes of α-synuclein oligomers mak-
ing them unable to form fibrils in vitro [49] and in cell-free models [173], but only in early
elongated oligomers [49]. González-Lizarrafa et al. were able to establish a minimum
dosage of treatment at 20–40 mg/day based on the aggregation kinetics of the antibiotic
and α-synuclein in vitro, and the concentration of α-synuclein in cerebrospinal fluid (0.12
nM) [49]. More recently, Socias et al. found that the base of this anti-aggregation activity
may be a structural motif in tetracycline that interferes with the aggregation of cross-beta
structures [90]. On the other hand, Amaral et al. demonstrated that doxycycline activates
the same signaling pathway as the nerve growth factor (NGF), hence promoting neuritoge-
nesis. This effect may restore axonal and synaptic damage [50]. Minocycline has also been
studied for its potential therapeutic use in PD. It plays a role in preventing apoptosis and
reducing neuroinflammation by decreasing the mitochondrial inner membrane potential,
thus diminishing the release of cytochrome c [173,175].

Rapamycin is another relevant molecule, which has offered positive results in animal
models of neurodegeneration in terms of a decrease in neuronal loss and an improvement in
the motor system by promoting autophagy via inhibiting mTOR [86–88]. This mechanism
has been proposed for enhancing oligomer clearance and preventing α-synuclein aggre-
gation [90,91]. In animal models, pretreatment with rapamycin has improved behavioral
characteristics and inhibited the mTOR pathway [89].
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Additionally, co-treatment of rapamycin and trehalose had shown an additive effect
in promoting autophagy in vitro, which was later detected in vivo by Pupishev et al. by
measuring changes in immunofluorescence of LC3-II in the substantia nigra. Interestingly,
this effect was not observed in the striatum [87]. Unfortunately, this antibiotic presents
significant long-term side effects such as lung toxicity, and an increased risk of type 2
diabetes, skin cancers, or lymphoma due to its immunosuppressive activity [186]. For
this reason, further studies are required to establish a safer treatment either through the
development of structural analogs [90] or the establishment of safer dosages [186]. In
this respect, Gonzalez-Alcocer et al. validated a non-toxic dosage in murine PD. Said
dosage proved to be neuroprotective against dopaminergic neuron loss and, after 14 weeks
of treatment, no evidence of significant tissue damage was observed in different solid
organs [186].

Rifampicin has also been studied as a potential treatment for PD. As mentioned before,
rifampicin effectively reduces α-synuclein aggregation and exerts anti-neuroinflammatory
activity [147]. It is also thought to play a role in the suppression of the NLRP3 inflam-
masome activity, leading to a decrease in IL-1b release. This occurs due to the suppres-
sion of proinflammatory pathways such as NF-κB, phosphorylated MAPKs, and TLR-
4s [79,147,187]. Suppression of the NLRP3 inflammasome activity by rifampicin may have
a role in the inhibition of apoptosis in neurons since it seems to upregulate chaperone
GRP78 and reduce the aggregation of α-synuclein [90,91]. Rifampicin anti-inflammatory
activity was analyzed in a study with several PD cell models, where pre-treatment with
rifampicin induced autophagy. Enhanced autophagy led to an increase in the number of
lysosomes and decreased mitochondrial injury and ROS production. Thus, rifampicin pre-
served mitochondrial function and reduced the expression of pro-inflammatory cytokines,
IL-1 and IL-6, and microglial inflammation [147]. However, the addition of chloroquine,
an autophagy inhibitor, abolished the reduction of pro-inflammatory cytokines. A later
study confirms that cell viability was compromised upon chloroquine addition [81,147].
Furthermore, Yurtsever et al. further proved that pretreatment with rifampicin improved
the maturation of autolysosomes and reduced autophagosomes in a PD cell model [81].
Interestingly, this was related to a reduction in microglia-related inflammation. Moreover,
the autophagy-promoting activity of rifampicin is dose-dependent [147] and does not com-
promise cell viability at the highest concentration of 100 µM. In animal models, rifampicin
improved the motor system activity in a zebrafish PD model [180].

Ceftriaxone is a third-generation cephalosporin, with neuroprotective features and
limited side effects [90]. It has been reported that ceftriaxone binds to the C-terminal region
of monomeric α-synuclein and inhibits its aggregation and fibril formation [90,100,101].
Ceftriaxone also upregulates GLT-1 expression in substantia nigra astrocytes, leading to
increased glutamate uptake. This uptake has been linked to reduced loss of dopamin-
ergic neurons by decreasing hyperactivity and excitotoxicity [102–105]. Ceftriaxone also
decreased the activation of glial cells through the downregulation of proinflammatory
TLR4 and NF-κB pathways in PD models [104]. Subsequent studies in PD mice models
confirmed that a 5 mg/kg/day ceftriaxone reversed neuronal loss in the substantia nigra
and the hippocampus by enhancing neurogenesis [106,107], which consequently amelio-
rated neuronal deficits [107,181]. Ceftriaxone prevented the decrease in cell viability after
1-methyl-4-phenylpyridinium (MPP+) exposure in vitro [105,188]. Moreover, ceftriaxone
reduced the adverse effects of levodopa dyskinesia, the standard treatment for PD, with
no impact on levodopa effects [102]. Huang et al. also found a synergistic neuroprotective
action of ceftriaxone and erythropoietin in PD mice models [189].

The search for alternative targets to treat PD has led to the study of other antibiotics
such as geldanamycin, an Hsp90 inhibitor that boosts the activity of Hsp70 and Hsp40
which are involved in the solubilization of protein aggregates. Geldanamycin treatment
has been reported to prevent α-synuclein aggregation in the early stages of disease progres-
sion [90,114]. Nonetheless, its significant cell toxicity has led to the development of safer
molecules such as 19-Ph-GAt [190]. Another promising therapeutic target is PTEN-induced
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kinase 1 (PINK1), since its mutation is known to cause the early onset of PD [191,192].
Niclosamide, a salicylanilide drug used to treat parasitic infections, promotes PINK1 acti-
vation by driving mitochondrial depolarization [191,192]. Alternatively, other approaches
involve chloramphenicol treatment. This drug binds the 50S subunit of the ribosome and
inhibits protein translation, which in turn causes a decrease in mitochondrial metabolism
and ROS production [182]. Chloramphenicol treatment had a protective effect when SN4741
dopaminergic neuronal cells and rat primary cultured dopaminergic neurons were exposed
to paraquat [182].

Whilst it is a promising field of study, most of the molecules proposed above were
mainly effective as preconditioning treatments in PD biological models. Hence, their
application to patients with advanced PD might have a poor outcome in clinical trials.
Moreover, some of these drugs presented side effects, which is the reason why further
studies exploring safer derivatives molecules are needed [193].

6. Huntington’s Disease

Huntington’s disease (HD) is an autosomal dominant inherited neurodegenerative
disease characterized by progressive motor, behavioral, and cognitive decline [194]. The
disease results from a CAG trinucleotide repeat expansion in the huntingtin gene (HTT) on
chromosome 4. Although its driver gene was discovered in 1993, the pathophysiology of
this disease remains mostly unknown [195]. The huntingtin protein is widely expressed
and has many functions in human neurons [196] such as intracellular protein trafficking
regulation [197], protein scaffolding [198], and synaptic vesicle formation [196,199].

Overall, there is an average of 17–20 CAG repeats in the HTT gene but with 40 or more
CAG repeats, HD emerges with full penetrance. There is still no therapy to slow the neu-
rodegeneration or the progressive functional loss rate [52,53,142,162,200–204]. In HD, there
is a prominent imbalance between mitochondrial fission/fusion events. Mitochondrial fis-
sion is prevalent, as evidenced by the increase in Drp1 and Fis1 protein levels as the disease
progresses. On the contrary, mitochondrial fusion proteins such as Mfn1/2 and Opa1 dis-
played low expression levels [205]. In fact, in vivo and in vitro studies showed that binding
of the mutant HTT to Drp1 acts as the main trigger of the fission process in HD models [206].
Alternatively, mutant HTT has the ability to enhance Drp1 activity by posttranscriptional
modification [207]. Usually, cells disrupt the mitochondrial network to remove defective
mitochondria by mitophagy and thus protect themselves against apoptosis-initiating agents.
However, the disruption promoted by mutant HTT in mitochondrial dynamics can lead to
neuronal death and apoptosis [208]. Several studies have tried to either boost mitophagy
or overexpress Mfn2 with the aim to modulate the mitochondrial dynamics process and
reduce apoptosis in neurodegenerative diseases [209,210]. Nonetheless, some authors [211]
claim that ATP depletion in HD is due to low mitochondrial biogenesis rather than in-
creased mitochondrial disruption. In fact, HD patients present decreased transcripts and
protein levels of PGC1α [212] which is essential for mitochondrial biogenesis [213]. The
relationship between PGC1α and HD lies in the altered CREB/TAF4-dependent transcrip-
tional pathway critical for the regulation of PGC-1α gene expression [212]. Thus, mutant
huntingtin represses PGC-1alpha gene transcription. In turn, decreased mitochondrial
biogenesis translates into enhanced anaerobic metabolism in affected cerebral areas of HD
patients, where excessive lactate generation ultimately leads to cell death [214].

Paldino E. et al. showed that the administration of doxycycline was protective in the
R6/2 HD mouse model in terms of survival, motor performance, and neuroprotection. In-
terestingly, these effects correlated with a significant decrease in microglial activation [142].
In addition to reducing microglial activation and exerting an anti-inflammatory function,
doxycycline promoted CREBs activity and the expression of brain-derived neurotrophic
factor (BDNF). It has been postulated that HD neuronal impairment could be caused by a
transcriptional dysregulation of the cAMP and CREB signaling cascades [215,216]. There-
fore, preventing the decrease in cAMP signaling and the loss of CREB-regulated gene
transcription represents a valid therapeutic strategy for HD [217]. CREB induces transcrip-
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tion of thousands of target genes, some of which are related to the UPRmt [218,219]. The
role of the CREB protein family in the central nervous system has been shown to support
neuronal survival [220], regulate neuronal migration [221], modulate synaptogenesis [222],
and contribute to the formation of long-term potentiation and memory [223]. One of the
key downstream mediators in this context is BDNF, whose expression is highly altered in
HD [224]. Despite being a promising therapeutic agent, no clinical trials examining the
efficacy and safety of doxycycline as a treatment for HD have been carried out.

Minocycline also blocks mTOR activity which is connected to NF-κB [225] and eNOS/
iNOS activity [226]. mTOR inhibition may contribute to the anti-inflammatory and cyto-
protective effects of this second-generation tetracycline. Moreover, minocycline blocks the
expression of caspase 1 and 3 in an HD mouse model [54]. Given these promising features,
Thomas M. et al. started a clinical assay with minocycline treatment for HD patients [227].
They demonstrated that minocycline is a safe and tolerable medication for HD patients,
without significant adverse events or adverse drug interactions. However, they did not
find any neurological improvement in the patients, which they attributed to the short
duration of the clinical trial, which only lasted for 6 months. Contrary to their belief, a more
recent clinical trial also showed no effect on the progression of the disease [228], suggesting
that tetracycline treatments may require a synergistic effect with another molecule to be
effective. An example of this tetracycline synergistic effect is found with creatine in an ALS
mouse model [229].

7. Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that
primarily affects the neurons responsible for controlling voluntary muscle movement [230].
ALS affects approximately 4–8 out of 100.000 individuals, with a prognosis for survival of
2 to 5 years. Abundant abnormal protein aggregations have been found in the neurons
of CNS in both ALS patients and animal models of ALS [231]. The ubiquitin-proteasome
system [232] and the autophagosome-lysosome pathway, including mitophagy, are the
most important degradation machinery to clear the aggregated proteins [233]. As seen
previously, the balance between protein aggregation and degradation is involved in the
pathogenesis of several neurodegenerative diseases [234]. Most ALS-associated identified
genes have been functionally implicated in autophagy and/or mitophagy, specifically
in the clearance of protein aggregates and/or damaged mitochondria [235]. ALS genes
known to function directly in autophagy include OPTN, TBK1, and SQSTM1. Moreover,
proteins encoded by the genes C9ORF72, VCP, CHMP2B, VAPB, ALS2, SOD1, and DCTN1
have all been related to vesicular trafficking and may affect autophagy either directly or
indirectly [236,237].

Accumulation of damaged or dysfunctional mitochondria is a contributing factor
in ALS. Moore AS and Holzbaur ELF showed OPTN translocation to mitochondria after
mitochondrial uncoupling [238]. However, OPNT translocation to damaged mitochondria
was defective in a mutant OPTN cell model [238]. Similar findings were observed in an ALS-
linked mutant TBK1 model [238]. Therefore, loss-of-function OPTN or TBK1 mutations
result in impaired mitophagy and accumulation of damaged mitochondria. Thus, inefficient
clearance of damaged mitochondria in ALS-associated mutants could be a contributing
factor leading to mitochondrial dysfunction and accumulation, a prevalent feature in the
motor neurons of ALS patients. In fact, the ablation of genes involved in autophagy is
enough to trigger neurodegeneration in murine models, including multiple ALS-related
genes which are directly involved in mitophagy such as OPTN, TBK1, or SQSTM1 [239].

Considering these findings, one potential therapeutic approach for ALS would be
to enhance autophagy/mitophagy activity by rapamycin supplementation. However,
Zhang X et al. demonstrated that rapamycin accelerated disease progression and neu-
ropathological processes in the mutant SOD1 ALS mice model through the activation of
the apoptotic machinery [240]. Although they observed increased autophagy initiation,
neurons were unable to clear the accumulation of autophagosomes. On the other hand,
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Castillo K et al. showed that trehalose, a chemical chaperone that specifically engages
mTOR-independent autophagy, increased life span and attenuated disease progression
in an ALS mice model [241]. They concluded that stimulation of mTOR-independent
autophagy represents an interesting approach for the future development of therapeutic
strategies to treat ALS.

The vast number of mutations that cause ALS makes the pathology extremely difficult
to treat, due to the obvious incongruences between treatments depending on the muta-
tion. Finally, a study performed in Sweden conclude that the chronic use of antibiotics is
associated with an increased risk of ALS [242].

8. Prion Diseases

Prion diseases are fatal neurodegenerative disorders with a highly spreading nature.
The infectious agent causing prion disease, known as PrPSc, is a pathogenic misfolded and
aggregated form of the cellular prion protein, PrPC [243]. Following transmission to a
naive host, prions seed the misfolded form of host PrPC in an autocatalytic process, leading
to an exponential increase in PrPSc in the brain and the spinal cord that eventually leads
to neuronal death [244]. Prions are highly stable and accumulate in the central nervous
system from months to years, eventually triggering neurodegeneration and neuronal loss
as well as astrocytes and microglia activation [245]. The incubation period of the disease
is exceptionally variable and may last from years to weeks. Common symptoms include
behavior abnormalities, motor dysfunction, cognitive impairment, and ataxia, depending
on the prion type [246]. No therapy is currently available beyond palliative care.

Mitochondria of prion-infected animals show morphological and functional abnor-
malities in the CNS [247]. Alterations in calcium homeostasis related to mitochondria and
endoplasmic reticulum dysfunction are typical in prion diseases [248]. Increased calcium
concentration promotes mitochondrial membrane loss, enhanced ROS generation, and re-
duced ATP production, ultimately leading to cellular apoptosis [249]. Taken together these
findings suggest that mitochondrial dysfunction may contribute to the neurodegeneration
observed in prion diseases. Choi et al. showed that mitochondrial fusion was upregulated
in whole brains from prion-infected mice, and that expression levels of mitochondrial
fission protein 1 (Fis1) and mitofusin 2 (Mfn2) were elevated in the hippocampus and
striatum [250]. Furthermore, the expression of the mitochondrial fission-related protein,
Drp1, was significantly reduced in the hippocampus. By inhibiting mitochondrial fission,
the mitochondrial network cannot be repaired, which led to a decrease in mitochondrial
mass in neurons, most of which were degenerated. These abnormalities were detected in at
least four different prion disease mouse models [251]. Despite cellular Drp1 protein levels
being decreased in prion-infected neuronal cells both in vitro and in vivo, the levels of the
mitochondrial fission protein DLP1 were increased in some prion models. This imbalance
results in extensive mitochondrial fragmentation and dysfunction, as well as neuronal
death and decreased synaptic plasticity [252].

Nowadays, several classes of antibiotics such as tetracyclines or polyenes are known
to prevent aggregation of PrPSc and delay the onset of prion diseases. Syrian hamsters,
a prion disease model, when treated with tetracycline showed a delay in the appear-
ance of symptoms due to inactivation and decreased accumulation of prion protein [253].
Hannoui S et al. reported a reduced accumulation of PrPSc in neurons derived from in-
fected mice after tetracycline, doxycycline, and minocycline treatment [254]. In infected
mice, doxycycline treatment also decreased the levels of PrPSc to the extent that neuronal
dysfunction was no longer observed [51]. Some clinical trials noted that doxycycline ther-
apy might increase the life expectancy of patients [255,256]. Alternatively, Amphotericin B
decreases the accumulation of PrPSc in neuroblastoma cells by manipulating the lysosomal
trafficking of PrPC and preventing its intracellular conversion [117]. MS-8209 (N-methyl
glucosamine salt of 1-deoxy-1-amino-4,6-benzylidene-D-fructosyl-AmB) suppresses the
accumulation of PrPSc in mice spleen [257]. Poylene antibiotics show a strain-specific effect
on the aggregation of PrPSc and interact directly with neurons, increasing the life span of
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infected animals [258]. Rapamycin, which theoretically improves mitochondrial dynamics,
shows an increase in autophagy and clearance of PrPC in mice models of Gerstmann–
Straussler–Scheinker disease and prevents plaque formation, but is unable to prevent
neuronal damage [259].

9. Primary Mitochondrial Diseases

Mitochondrial diseases are a set of highly heterogeneous disorders caused by mu-
tations in either nuclear or mitochondrial genes that primarily affect oxidative phospho-
rylation and ATP synthesis. These conditions are the most common group of inherited
metabolic diseases and one of the most common types of neurological disorders [260–262].
In fact, most mitochondrial disease patients present prominent neurologic and myopathic
disorders [263]. It is widely known that neurons have a high energy demand and critically
depend on mitochondria to maintain synaptic transmission through the regulation of ATP
and calcium levels [264]. Early onset mitochondrial diseases are severe clinical entities
often caused by autosomal recessive mutations in nuclear genes (nDNA). Examples of these
include Leigh syndrome, caused by mutations in the mitochondrial oxidative phosphory-
lation (OXPHOS) complexes and their assembly factors [265], and Alpers–Huttenlocher
syndrome, due to nDNA mutations in the mtDNA polymerase gene [266]. Other high-
energy demanding tissues such as the skeletal and cardiac muscles can also be affected in
patients with these diseases.

Mitochondrial diseases diagnosed in adulthood affect around 1 in 4300 adults, and
are mostly caused by mtDNA mutations (approx. 87% of cases) [267]. Mitochondrial
syndromes caused by mtDNA mutations that affect the nervous system include Leber’s
hereditary optic neuropathy (LHON), myoclonic epilepsy with red-ragged fibers (MERRF),
and mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) [268].

Given that antibiotics are known to impair mitochondrial function in mammalian cells,
several studies have focused on assessing the impact of antibiotic treatments on mitochon-
drial function in neurons. According to Xiao et al. metronidazole, tigecycline, azithromycin,
and clindamycin, but not ampicillin or sulfamethoxazole, induced apoptosis in both primary
neurons and neuronal cell lines at clinically relevant concentrations. Moreover, they demon-
strated that tigecycline, azithromycin, and clindamycin trigger cell death through oxidative
damage whereas metronidazole does so in a ROS-independent manner [269]. These results
go in line with previous evidence that bactericidal but not bacteriostatic antibiotics induce ox-
idative stress and damage in mammalian cells [39]. Additionally, tigecycline, azithromycin,
and clindamycin were reported to cause mitochondrial dysfunction in neurons. Interestingly,
this effect was abrogated when they were co-administered with an antioxidant.

At first sight, the use of antibiotics to treat mitochondrial diseases seems paradoxical
and controversial because, as previously exposed, they may interfere with mitochondrial
function. Nonetheless, Perry E.A. et al. showed that the tetracycline antibiotics family
increased cell survival and fitness in MELAS cybrids and Rieske cells (Knockout Complex
III mouse fibroblasts) under glucose restriction [270]. Specifically, doxycycline improved
survival in wild-type cells treated with piericidin (complex I inhibitor) or antimycin (com-
plex III inhibitor) during glucose deprivation. In addition to tetracyclines, the anti-parasitic
agent pentamidine and the antibiotic retapamulin also scored positive on the screening in
MELAS and mutant ND1 cybrid cells. To support their findings, the authors propose that
antibiotics exert a “mitohormetic effect” via UPRmt induction. Mitohormesis is defined as
the mechanism through which mild mitochondrial stressors activate cytoprotective mecha-
nisms resulting in enhanced mitochondrial stress resistance [271,272]. Given the bacterial
origin of mammalian cells’ mitochondria and the fact that they conserve prokaryotic fea-
tures such as the 55S or 60S ribosomes, it is no wonder that mitochondria are exceptionally
sensitive to antibiotics [40]. By partially inhibiting mitochondrial translation antibiotics can
activate mitohormesis, thus triggering a retrograde signaling response including the modu-
lation of mitochondrial dynamics, the expression of nuclear and mitochondrial-encoded
genes, and an antioxidant response, stimulating mitochondrial function and boosting cel-



Metabolites 2023, 13, 416 15 of 32

lular defense mechanisms that increase stress resistance [273]. Mitohormesis has been
closely linked to UPRmt activation [274], metabolite and ion disbalance [275], and ROS
production [276].

Suarez-Rivero et al. also demonstrated that tetracycline treatment boosts the produc-
tion of UPRmt-related proteins and promotes the activation of pathways involving cAMP
and cGMP [277], which might be involved in mitochondrial compensatory mechanisms
comprising sirtuins and chaperones’ activity [278–280]. Tetracycline treatment and the
subsequent activation of UPRmt lead to an increased number of chaperones and mitochon-
drial auxiliary proteins that promoted the stability of mutant mitochondrial proteins which
would carry out their function to some extent [277].

The activation of mitochondrial compensatory mechanisms has been associated with
the regulation of mitophagy and mitochondrial biogenesis as well as with a beneficial mild
induction of ROS signaling pathways. Animals presenting impaired cardiac mitophagy
and a consequent accumulation of damaged ROS-overproducing mitochondria develop
cardiomyopathy. It has been observed that this condition can be improved through ROS-
dependent activation of mitophagy, which can act as a mitochondrial quality control
mechanism to prevent vicious cycles of ROS formation and mitochondrial dysfunction [281].
Furthermore, muscle-specific knockout mice for COX15, a complex IV assembly protein,
are able to express alternative oxidases (AOX) that bypass respiratory complexes III and
IV, thus transferring electrons directly to oxygen. In doing so, they exhibit decreased
ROS generation, PGC-1α signaling activation, and increased lifespan [282]. Livers from
adult mice depleted from superoxide dismutase 2 during embryonic development display
mitochondrial adaptive responses with increased mitochondrial biogenesis and antioxidant
defenses and decreased ROS levels [283]. Taken together, these results show the impressive
ability of mitochondria to adapt to cellular insults.

There is no proven treatment for most primary mitochondrial diseases, only palliative
therapies. Triggering mitohormesis with antibiotics such as tetracyclines or their derivatives
could open the door to new therapeutic perspectives for these severe pathologies.

10. Cerebral Ischemia

Cerebral ischemia (CI) and its implications are currently one of the leading causes
of mortality and morbidity worldwide. Given that the brain is one of the most energy-
consuming organs, disruption of the blood supply, and thus of nutrient and oxygen avail-
ability, can result in severe neuronal damage [284]. There is increasing evidence that
acute neuronal damage induced by cerebral ischemia promotes protein aggregation, sug-
gesting a connection between the pathomechanisms of neurodegenerative diseases and
stroke [285–287]. Thus, it seems that brain ischemia contributes to the development of
Alzheimer’s disease-like neurodegeneration through various mechanisms, including accu-
mulation of amyloid protein precursor, tau protein phosphorylation, neuroinflammation,
dysregulation of Alzheimer-related genes, neuronal cell death, synaptic dysfunction, white
matter alterations, and brain atrophy [288,289].

Apart from preventing the risk factors associated with ischemic events, therapeutic
resources are limited. The only available treatments for ischemia up to the present are
thrombolytic drugs such as tissue plasminogen activator (tPA). The efficacy of this ther-
apy is limited by the reduced time window at which they can be administered, in the
hours following the ischemic episode [290]. The development of new therapies for the
treatment of CI is therefore urgent. Deprivation of blood flow triggers pathophysiological
mechanisms that disrupt cellular homeostasis, including excitotoxicity, oxidative stress,
inflammation, apoptosis, and cell death. In the context of CI, mitochondrial dysfunction
has been identified as one of the key cornerstones, due to its involvement in the patho-
logical pathways associated with ischemic stroke. Thereby, mitochondria are emerging
as a therapeutic target in the search for potential novel therapies in CI [291]. However,
as the development of new drugs for CI is complex, the repositioning of existing drugs
such as antibiotics appears an attractive approach in terms of economic investment and
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timelines [292]. Thus, Lu et al. confirmed that a two-week treatment with minocycline
could prolong survival and promote functional outcomes after CI by alleviating neuronal
injury and reactive gliosis [293]. Furthermore, they were able to show that minocycline
promotes M2 polarization of microglia and inhibits M1 polarization, by the shift of STAT1 to
STAT6 pathway, leading to neuronal survival and neurological functional recovery in vitro
and in vivo [293]. Camargos et al. assayed a CI-induced mice model. They verified that
intraperitoneal injection of 30 mg/kg minocycline for 14 days resulted in antidepressant
and anxiolytic effects in comparison with the control group, which experimented with
depressive and anxiety-like conduct. In addition, they demonstrated that the minocycline
treatment ameliorated hippocampal lesions, resulting in a reduction of infarct area and
ischemic neurons in mice [294]. Yamasaki et al. used PET to assess the sole and combined
treatment outcomes of minocycline and KML29, a strong monoacylglycerol lipase inhibitor
(MAGL-i), in ischemic-injury rat models. Intravenous administration at doses of 10 mg/kg
and 1 mg/kg, respectively, over 4 days were assayed. The aim was to exploit the neuropro-
tective benefits of both drugs in CI. Interestingly, they showed different neuroprotective
properties. Minocycline targeted oxidative stress induced-neuroinflammation, observed in
hypoxic regions. Meanwhile, KML29 showcased neuroprotective effects in the striatum,
targeting glutamate neuroexcitotoxicity by inhibiting neuronal apoptosis [295].

In addition, glutamate-mediated excitotoxicity, an important mechanism leading to
postischemic stroke injury, was ameliorated by ceftriaxone, a beta-lactam antibiotic, which
is able to stimulate the expression of the major glutamate transporter GLT1. As gluta-
mate release comprises one of the pathological mechanisms of ischemia, this action is
notably valuable [292]. Thus, Smaga et al. reported that a dose of 200 mg/kg of ceftriaxone
for a minimum of 2 days restored GLT1 expression [296]. Likewise, Krzyzanowska et al.
demonstrated that pre-treatment with ceftriaxone and N-acetylcysteine, 200 mg/kg and
150 mg/kg respectively for five consecutive days, modulates GLT-1 expression and im-
proves survival in a model of focal cerebral ischemia in rats [297].

11. Neuropsychiatric Diseases: Schizophrenia and Depression

This section is included in this review since major psychiatric and neurodegenerative
diseases share genetic susceptibility and pathophysiology [298]. Thus, many causal pro-
teins and interacting proteins, and the central role of synaptic transmission, immune and
mitochondrial function are processes that participate in the shared pathogenesis.

Schizophrenia is a chronic neuropsychiatric disease that affects around 1% of the
world population [299]. It may present with a wide range of symptoms either classified as
positive (delusion, hallucination, and paranoia) or negative (amotivation, anhedonia, avoli-
tion, asociality, and flat affect). Negative and positive symptoms are caused by different
alterations in neurotransmitter functions. Positive symptoms are caused by hyperfunction
in the mesolimbic dopamine pathway [300], whereas negative symptoms may include
abnormal GABAα receptors, disruption of glutamatergic systems, and abnormal microglial
activation [299]. Pathophysiologically, neuroinflammation plays a key role in the disease,
as evidenced by the high microglial activity that has been found in these patients [301,302].
This altered function of the brain immune system has been related to the dysfunction
of glutamatergic and dopaminergic neurotransmissions [303], as well as to gray matter
volume loss [302]. On the other hand, energy metabolism is also altered in the brain of
patients with schizophrenia. This alteration may be due to mitochondrial dysfunction
increased lactate levels and acidemia found in patients’ brains [304]. This alteration may
also affect neurotransmission, since dopamine levels and NMDA receptor activity are
highly sensitive to pH changes [304]. Furthermore, an elevated synthesis and release of
dopamine in presynaptic neurons has been found, suggesting that presynaptic mitochon-
dria are exposed to higher levels of dopamine, a complex I inhibitor. Thus, it generates
a decrease in ATP synthesis without increasing oxidative stress [300,304]. Furthermore,
there are alterations in the expression of genes related to energy metabolism in the brain
of schizophrenia patients [304]. Although there is no cure for schizophrenia, it is usually
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treated with dopamine receptor antagonists [300] which control positive symptoms but
have little to no effect on negative symptoms [304–306].

Different studies link high levels of pro-inflammatory cytokines to an increased risk of
depression or psychotic disorder [307,308]. Thus, adolescents with higher serum levels of
pro-inflammatory cytokines have an increased risk of developing schizophrenia [308]. This
may be due to intense synaptic pruning by microglia during this age that contributes to the
observed reduction in synapse density in this disease [309].

The most studied antibiotic molecule for the treatment of schizophrenia is minocy-
cline, whose neuroprotective properties have been previously described in this review. Not
only does it inhibit microglia activation, but also pro-apoptotic caspases or cytochrome c
release [301]. Xiang et al. found in a meta-analysis that minocycline treatment improved
positive symptoms in schizophrenia [310]. However, no improvements were observed in
attention focus, working memory, visual and verbal learning, or problem-solving [310].
Several studies have found high-dose minocycline treatments to improve negative and cog-
nitive symptoms and reported a correlation to decreased IL-1β and IL-6 serum levels. These
observations support the role of neuroinflammation in the development of cognitive impair-
ment and negative symptoms in the disease [299,301,311,312]. The addition of minocycline
to regular antipsychotic treatment such as risperidone and clozapine also improved psy-
chotic symptoms, working memory, avolition, and anxiety/depression [301,303,310,313].
Furthermore, Wehring et al. observed decreased pro-inflammatory cytokine levels in pa-
tients treated with both risperidone and minocycline [299]. Interestingly, a recent study on
the synergistic effect of minocycline and clozapine reported abnormally high plasma cloza-
pine levels following minocycline addition, although the explanation for this phenomenon
is unclear [313]. Minocycline’s ability to lower microglial engulfment of complement
opsonized synapses was confirmed by Sellgren et al. [309]. They also confirmed the link be-
tween minocycline or doxycycline treatment in adolescents with a lower risk of developing
posterior psychotic episodes [309].

However, the benefits of minocycline treatment in schizophrenia are controversial. There
are marked discrepancies between studies reporting no effects after completion of the treat-
ment and others supporting an improvement of cognition and positive symptoms [314,315].
These divergencies may be due to different trial designs, the stage of the disease at which
patients are treated, the type or the severity of the symptoms, treatment length and dosage,
the duration of follow-up, or the sample size. Moreover, schizophrenia does not always
respond in the same way to antipsychotic treatments and so could happen with minocy-
cline. It has been proposed that minocycline may only be effective at the initial stages
of the disease [310,314]. On the other hand, it should be noted that minocycline could
have associated toxicities, since it has been related to the development and worsening of
autoimmune diseases [312].

Doxycycline was found to have a similar effect to minocycline in improving cognitive
and positive symptoms in mice models of schizophrenia. It was reported to prevent and
reverse decreased social interaction, confirming the antipsychotic-like activity. Ketamine-
induced models treated with doxycycline had higher levels of reduced glutathione, catalase,
and superoxide dismutase. Furthermore, treatment with doxycycline-enhanced risperidone
(an inhibitor of dopaminergic and serotonergic pathway activity in the brain) effects by
lowering locomotion activity, which suggests interference with dopaminergic transmission
in mice models [316].

Patients with schizophrenia often present signs of depression. Some studies suggest
a shared mechanism between the two diseases [302,317]. Neuroinflammation, oxidative
stress, and dopaminergic imbalance are known to play a role in depression [318]. Fur-
thermore, higher counts of myeloid and CD4+ T cells were found in a lipopolysaccharide
model of depression [318]. Interestingly, minocycline treatment decreased proinflammatory
cytokines and reduced swim latency in the Porsolt swim test, suggesting both inhibition of
microglia activation and amelioration of depressive symptoms [319,320].
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Minocycline was also found to ameliorate depressive symptoms in a clinical trial with
bipolar depression patients in an 8-week treatment study, albeit no significant cognitive
improvement was identified. It was also found to trigger a reduction in IL-12p70 levels,
a cytokine for Th1 cell differentiation related to reduced inflammation in bipolar disor-
der [321]. Doxycycline has been proven to improve depressive behavior in mice models by
increasing reduced glutathione [318]. The combined use of doxycycline and escitalopram
improved its anxiolytic effect [318]. However, anhedonic behavior did not improve with
the treatment.

Tetracyclines’ application to treat neuropsychiatric disorders may be of interest given
their ability to attenuate immune responses and block damage due to mitochondrial
dysfunction and ROS [318]. Nevertheless, neuropsychiatric diseases are not sufficiently
studied. The lack of a wide variety of drugs may well be due to insufficient knowledge
about the pathophysiological mechanisms of schizophrenia. Further research should be
conducted in the field to test new drug alternatives.

12. Conclusions

As presented in this review, the etiology of neurodegenerative diseases is extremely
complex and can be etiologically diverse. However, most of these diseases share the
common feature of mitochondrial dysfunction. The application of antibiotics to treat mi-
tochondrial insults has always been controversial for plenty and reasonable reasons [38].
However, not all antibiotics function in the same way or at the same dosage. Thanks to their
pleiotropic effects, these drugs may open new possibilities for the treatment of neurodegen-
erative disease beyond their antimicrobial activity (Figure 2). However, more research is
needed to address the potential side effects of their chronic administration such as the risk
of dissemination of antibiotic-resistant pathogenic strains. For this reason, the development
of antibiotics derivatives without antimicrobial activity but retaining their neuroprotective
properties will be another interesting research field in the future.
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Figure 3. This is a wide figure.

Figure 2. Alternative effects of antibiotics apart from their anti-microbial activity.
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