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Abstract
The current flow diverter (CFD) is a known concept that has proven to effectively reduce the
probability of destructive hot spots in REBa2Cu3O7 (REBCO; RE = rare earth) coated
conductors (CCs) by boosting the normal zone propagation velocity. However, the
implementation of the CFD concept requires additional steps in a fabrication process that is
already complex and has struggled to find a simple reel-to-reel fabrication method. This work
reports on the details of a fabrication route for the buffer-layers-CFD (bCFD) architecture using
a solid-vapor silver sulfurization technique to tune the geometry of the metal stabilizer in the
high-temperature superconductor tape. The analysis of the microstructure and superconducting
properties of the Ag2S/Ag/GdBCO trilayer processed under different conditions shows how we
achieved a new customized functional CC with the bCFD architecture. In DC limitation
experiments, this bCFD-sulfide architecture allowed to generate an electric potential much
faster than the conventional architecture (60 V s−1 vs. 1.2 V s−1) thanks to the strong
enhancement of the NPZV.

Supplementary material for this article is available online
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1. Introduction

The second generation (2G) of high-temperature supercon-
ductor (HTS) tapes, i.e. coated conductors (CCs, also known
as ‘HTS-tapes’), is considered a prime candidate for improv-
ing performance in a wide range of superconducting electrical
power devices, such asmotors, generators, transmission cables
and superconductor fault current limiters (SFCLs), as well
as high-field magnets [1–7]. However, the ‘hot spot’ regime
is a well-known inherent issue of the tape’s architecture that
hinders its reliable continuous operation. If by an unexpec-
ted event, the operating current fluctuates near the average
critical current (Ic) of the conductor, zones with lower Ic [8]
can locally (lengthwise) quench [9], i.e. they can switch from
the superconducting state to the resistive normal state. Due to
the low thermal conductivity (W/m-K) and high heat capacity
(J/kg-K) ofHTS tapes [10], these zones can become ‘hot spots’
given the slow thermal propagation of the local quench, also
referred to as normal zone propagation velocity (NZPV) [11–
13]. If the NZPV is slow (in the cm s−1 range) and the current
in the conductor is not limited quickly enough, the local joule
heating of the HTS resistive state in the hot spot is likely to
irreversibly damage the tape [14], and even rupture the cross-
section of the CC completely. Recently, an experimental study
from Lacroix et al [15] comparing the NZPV at 77 K and self-
field of different REBCO CC architectures mentioned a sul-
furization technique capable of effectively creating the buffer-
layers-CFD (bCFD) architecture (figure 1) which allowed to
increase the NZPV by a factor of 18. In this paper, we describe
this approach in further details.

In a typical CC architecture, a thin (<2 µm) continuous
noble metal coating of silver is deposited on the REBCO
layer for two main reasons: to protect it from atmospheric
degradation [16], and to provide a low interfacial resistance
(Ω cm2) path for injecting current [17]. In the presence of a
hot spot, this stabilizer coating also shunts the current from the
quenched zone and reduces the joule heating. Consequently,
the most common solution adopted by CC manufacturers
against hot spots is to add an extra thick (>10µm)metal shunt,
i.e. copper, onto the noble metal stabilizer [18]. However, this
method decreases the normal state resistance (Ω m−1) of the
final tape, thus making an SFCL significantly more expensive
[19]. In the case of magnets and motors, a thicker shunt fur-
ther increases the heat capacity and reduces the NZPV to the
point of jeopardizing quench detection systems by delaying
the proper interruption of the power source [20]. In addition,
the thick shunt reduces the engineering critical current of the
CC, resulting in a reduction of the maximum field intensity
achievable by the magnet.

The current flow diverter (CFD) is a proven concept that
deals with the hot spot scenario by significantly increasing
the NZPV (at least one order of magnitude) without changing
the final normal state resistance (Ω m−1) of the CC [21, 22].
In the classic CFD concept, the architecture is implemented
by increasing the interfacial resistance (Ω cm2) Ag/REBCO
solely in the middle of the CC’s width along its length as
shown in figures 1 and S1. Meanwhile, the global interfacial
resistance Ag/REBCO across the width maintains a relatively

low value (∼10−7 Ω cm2) to allow for proper current injection
at the terminals. Although efficient, themain bottleneck for the
reel-to-reel fabrication of traditional CFD-tapes is in how to
create the high interfacial resistance Ag/REBCO without hav-
ing to change substantially the already established fabrication
process. For instance, the original proof-of-concept technique
of silver etching and re-sputtering described in [23] is not eco-
nomically attractive for the production of silver coated CCs in
long lengths.

An industrially compatible method to produce CFD tapes
was proposed for CCs from STI Inc. and was based on reactive
co-evaporation and cyclic deposition reaction [24] of cerium
oxide (CeO2) as the CFD layer (Ag/CeO2/REBCO). However,
the CeO2 showed significant reactivity with the REBCO at
the interface, leading to a drastic degradation of the super-
conducting properties [25]. More recently, another low-cost
method using the chemical solution deposition of amorph-
ous yttrium oxide (Y2O3) was proposed to form a CFD tri-
layer Ag/Y2O3/REBCO on THEVA GmbH CCs. Although
compatible with the REBCO layer, this yttria-CFD approach
requires adding some extra steps to the traditional CC fabric-
ation process [26].

Alternatively, the bCFD (or ‘bCFD’ in figure S1) intro-
duced in [27], and tested in [28] as an extension of the CFD
concept, uses the electrical insulation properties of the buffer
layers already present in CCs. The bCFD increases the NZPV
by modifying solely the thickness ratio between the top and
bottom stabilizer layers. In the presence of a hot spot, hav-
ing a thin (20–100 nm) silver stabilizer on top of the HTS
and a thick layer on the bottom substrate side forces the cur-
rent to divert around the insulating buffer layers towards the
Hastelloy substrate and the bottom stabilizer, which provokes
the desired NZPV boost. This approach is, in theory, much
simpler than the classic CFD since it avoids having to alter
the original interface Ag/REBCO in the tape. Nevertheless,
one must find a way to keep a continuous thin silver thick-
ness (<100 nm) as the top stabilizer layer on the final CC.
This thickness requirement is the main challenge for the bCFD
since thin silver layers (<100 nm) are known to aggregate
and form discontinuous silver islands (i.e. dewetting) during
heat treatments [29], like the final oxygen annealing process
required for loading oxygen into the REBa2Cu3O7−δ [30–32].
In [33], it has been shown that a 20 nm thick silver layer on
top of YBCO forms spherical islands and becomes electric-
ally discontinuous when annealed at temperatures as low as
300 ◦C. Therefore, the partial replacement of the Ag stabilizer
with Ag2S to tune the effective stabilizer thickness on silver
coated commercial CCs, come as a cheap and simple solution
for implementing the bCFD [15]. Furthermore, there already
exists extensive experience in scaling up the sulfurization pro-
cesses in the fabrication of large area copper indium gallium
sulfur (CIGS) solar cells and thus it is expected that it should
be also feasible for Ag2S [34–36].

In this paper, the authors reveal how the silver was experi-
mentally tested with two sulfurization processes on samples
taken from a reel of commercial THEVA tape to find the
optimal processing conditions. The effect of the final sulf-
ide layer on the CC was evaluated via scanning electron
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Figure 1. Schematic of the HTS-tape cross-section before and after the partial sulfurization process of the upper silver layer to create the
bCFD-sulfide architecture.

microscopy (SEM)/focus ion beam (FIB) images, x-ray dif-
fraction, scanning Hall probe microscopy (SHPM) and DC
limitation tests.

2. Experimental method

All REBCO CC samples used as template came from a reel-
to-reel manufacturing unit produced by THEVA [37]. The
CC architecture consisted of a 100 µm thick electropolished
Hastelloy substrate, on which a 3 µm thick texturized layer
of MgO was evaporated using an inclined substrate deposition
technique (ISD) [38, 39], and a second 450 nm thick coating
of MgO was deposited at a perpendicular angle. Afterward,
a 3 µm thick layer of GdBCO HTS was grown on top of the
MgO via electron beam evaporation from a granulate [37, 40].
A 1–1.2 µm thick silver layer surrounds the whole tape.

The first sulfurization experiment was performed with a
commercial solution of liver of sulfur gel traded under the
name ‘Liver of Sulfur Extended Gel (XL Gel)’, commonly
used to create patina in jewel pieces. According to the man-
ufacture’s datasheet, the XL Gel is a mixture of potassium
thiosulfate hydrated, potassium trisulfide and trade secret
additives for extended shelf life. About 12 × 12 mm pieces
of HTS-tape coated with 1–1.2 µm of surrounding silver were
stuck onto a glass slide with polyimide tape and dipped into
pre-heated solutions of XL Gel+ distilled water with temper-
atures between 30 ◦C and 50 ◦C (figure 2(a)). This temperat-
ure range was chosen to avoid rapidly decomposing the liver
of sulfur into potassium sulfate (K2SO4) and potassium car-
bonate (K2CO3), neither of which has an oxidizing effect on
silver [41].

The second sulfurization experiment was performed using
sublimed sulfur powder (−100 mesh 99.5%) from Alfa Aesar
as a source of sulfur gas (Sn). Pure sulfur was chosen instead
of H2S due to the exothermic nature of its reaction with sil-
ver, thus requiring no extra heat to promote the sulfuriza-
tion. Samples were positioned inside a hermetic glass jar of
500 ml together with a small petri dish containing 10 mg of
the powder (figure 2(b)). To create the vapor pressure condi-
tion, the jar was heated on a hot-plate (IKA C-MAG HS 7)
beyond the melting temperature of sulfur (115.21 ◦C at 1 atm)
up to 130 ◦C, thus creating a sulfur pressure dominated by S8
allotropes [42].

The x-ray diffraction patterns of the CFD CCs were
obtained using a general area detector GADDS diffractometer

(Bruker-AXS model D8) equipped with a 2D detector and
operating with Cu Kα radiation. The surface morphology of
the films was analyzed using SEM (SEM FEI Quanta 200
FEG) and the FIB cross-section images were acquired with
a dual beam (SEM-FIB) Zeiss 1560 XB apparatus.

The superconducting properties in the GdBCO layer were
evaluated with a homemade SHPM system [43]. Samples were
field cooled at 77 K with liquid nitrogen, in the presence of a
NdFeB permanent magnet large enough to cover the whole
sample. After removing the permanent magnet, the samples
remained in a self-field condition and then they were spatially
scanned with a Hall-probe for obtaining a map of the distri-
bution of the perpendicular trapped magnetic field Bz. Solving
the inverse Fourier problem for Bz, we could estimate the dis-
tribution of the critical current density Jc, as well as the critical
current Ic. The Ic was calculated by integrating Jc over a vir-
tual closed path inside the samples considering the appropriate
cross-section area, as described in [43].

The current limitation tests shown here were taken dur-
ing the European H2020-FASTGRID project which goal was
to develop the best 2G HTS CC architecture for a supercon-
ducting fault current limiter (FCL) operating in a DC elec-
trical network [5]. Large tape samples (⩾12 cm) were tested
in DC fault current conditions using a setup similar to the one
described in [44]. A voltage source was connected to both ends
of samples with copper blocks held by bolts and screws. A fast
acquisition voltmeter monitored the global electric field across
the sample using two gold-plated pogo-pins. During the limit-
ation experiments, the sample was immersed in a liquid nitro-
gen bath in ambient conditions (77 K). Before and after the
limitation tests, the critical current of the samples was meas-
ured to determine if degradation occurred during the limitation
tests.

3. Results

3.1. Liver of sulfur reaction

Table 1 shows the decomposition time for XL Gel solutions
with different concentrations depending on temperature. The
state of the decomposition was identifiable by observing the
solution’s color fade from bright yellow to milky white. The
12 × 12 mm HTS tape samples were submerged in each
solution and removed once the decomposition was complete
(figure 2(a)).
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Figure 2. Schematic drawings of the two experimental setups used to transform the upper silver stabilizer layer of HTS-tapes into silver
sulfide. In both experiments, the tape samples were masked along the edges with polyimide tape to properly select the sulfurization zone
and create the bCFD architecture. (a) Sulfur gel approach to form Ag2S; (b) Sulfur sublimation approach to form Ag2S.

Table 1. Liver of sulfur decomposition times needed for different solutions’ concentrations held at different temperatures. The times marked
with ∗ indicate the samples that did present the black silver sulfide layer after being removed from the decomposed liver of sulfur solution.

XL-gel in 200 ml of water 21 ◦C (RT) 30 ◦C 35 ◦C 40 ◦C 45 ◦C 50 ◦C

0.5 ml 3 h 28 min 3 h 19 min 3 h 1 min 2 h 27 min∗ 1 h 11 min∗ 29 min∗

1.0 ml 3 h 17 min 3 h 7 min 2 h 46 min 2 h 16 min∗ 1 h 01 min∗ 25 min∗

1.5 ml 3 h 12 min 3 h 3 min 2 h 48 min 2 h 00 min∗ 48 min∗ 18 min∗

2.0 ml 2 h 2 min 1 h 41 min 57 min 25 min 12 min 11 min

The preliminary estimation of the silver sulfide thickness
was performed considering the thin film interference phenom-
ena. As the sulfide thickness on top of silver increases from 1
to 100 nm, the color of the film changed from yellow through
red-brown towards blue and, after it surpassed 100 nm, only
the natural black opaque color of Ag2S was observable [45].
In table 1, the formation of the black sulfide layer was only
achieved for samples dipped in solutions with less than 2.0 ml
of the XL-gel and heated to 40 ◦C and above. The polycrystal-
line cubic α-Ag2S structure on top of the silver layer substrate
was confirmed via x-ray diffraction (figure 3(b)).

All samples with a black Ag2S layer presented blis-
terings (figure 3(a)) on the sulfide surface. The SEM-
FIB cross-section cut in figure 4 shows the layers
Ag2S/Ag/GdBCO/MgO in the region of one of the blisters.
Figures 4(b)–(d) reveal the formation of an unknown compos-
ite GdBCO + S at the Ag/GdBCO interface, followed by a
structural fracture across the entire GdBCO thickness (dashed
yellow line in figure 4(b)). This pattern indicates the presence
of a preferential path for the liquid–solid reaction inside the
structure of the silver layer.

A SEM analysis of the grown GdBCO layer (figures 5(a)
and (b)) performed before the silver evaporation reveals the

presence of precipitates spreading throughout the GdBCO
surface. According to EDX analysis, these precipitates have
the same composition as the GdBCO layer, thus allowing us
to classify them as outgrowth peaks. An atomic force micro-
scopy image of the GdBCO layer without silver suggests that
these peaks cover 1% of the GdBCO’s surface and can reach
heights comparable to the thickness of the silver (figure S2).

Therefore, it is likely that some peaks on the surface of
the GdBCO film are connected to two types of interfaces:
Ag2S/Ag and Ag/GdBCO. During the liquid sulfur reaction,
the tallest peaks are the first GdBCO regions exposed to the
corrosion environment of the sulfur solution, thus creating
channels for infiltration all the way down to the GdBCO layer.
This explanation is reinforced by the backscattered electrons
image in figure 4(d), where residue pieces of degradedGdBCO
are spotted in the Ag2S layer (white regions with red contour),
suggesting the presence of a GdBCO material in the silver
layer even before sulfurization.

3.2. Sulfur gas reaction

Different tape samples were processed separately inside the
glass jar, changing the exposure time to the sulfur gas. After
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Figure 3. (a) Photo of a 12 × 12 mm tape sample attached to a glass slide and masked with polyimide tape along the edges after being
submerged in the liver of sulfur solution. (b) X-ray diffraction spectra of the α-Ag2S on top of the silver layer of a GdBCO coated conductor.

Figure 4. SEM-FIB images of the layers Ag2S/Ag/GdBCO/MgO after the liquid sulfur reaction. (a) SE image of the cross-section cut on
the side of a blister. (b) SE image showing the transition from the damaged cross-section region (GdBCO + S) to the non-damage region.
(c) SE image of the center of the blister region showing damage in the Ag/GdBCO and GdBCO/MgO interfaces. (d) Backscattered electrons
(BE) image of (c).

the reaction, samples were hand polished with a soft nanofiber
clean cloth to remove loose Ag2S in excess (figure 6(a)). For
all samples, the surface of the Ag2S layer presented no blister-
ing formation after the gas reaction (figure 6(b)). The thickness
of the remaining silver layer under the sulfide was measured

by taking SEM images (figure 7) of the sample’s cross-section
after slitting trenches across the layers with a FIB.

According to the plot in figure 7, the sulfurization rate is
practically linear in the first two hours of the reaction but accel-
erates afterward. This rate change is an indication of a change
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Figure 5. SEM images of the surface of a 12 × 12 mm GdBCO-tape sample tilted inside the SEM chamber. (a) Secondary electrons (SE)
tilted view of the GdBCO surface, revealing the presence of many outgrowth peaks of GdBCO material. (b) Magnified SE image of one
outgrowth peak achieving a height of 1 µm.

Figure 6. (a) Photo of a 12 × 12 mm tape sample stuck to a glass slide and masked with polyimide tape along the edges after the gas
reaction with sulfur vapor: no sign of blistering. (b) Magnified view of the surface of the sample on the boundary between the reacted region
and masked region (the polyimide tape covering the pure silver edges was removed).

Figure 7. On the left: remaining thickness of silver after sulfurization versus exposure time to the sulfur gas. The Ag thickness was
determined from SEM-FIB images and we indicate the range of film thicknesses, as determined from the images. On the right: typical
SEM-FIB image of the layers Ag2S/Ag/GdBCO/MgO after the sulfur gas reaction for 210 min.
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Figure 8. Perpendicular trapped field BZ measured by scanning Hall probe microscopy (SHPM) for an HTS tape sample of 50 × 12 mm (a)
before and (b) after sulfurization with S gas for 210 min. It can be concluded that there’s no degradation of the superconducting properties
of the GdBCO layer.

in the concentration of sulfur with time due to gas leaks and/or
perhaps the formation of H2S. Variations in the thickness of
the silver layer also increases with the exposure time, reach-
ing a maximum of 250 nm at 210 min. After four hours, the
entire silver layer was consumed in the reaction, creating a
flaky Ag2S layer and leaving the GdBCO film exposed to the
rich sulfur atmosphere (figure S3).

Further degradation signs were analyzed with the
homemadeHall Probemicroscopy system. All samples treated
with exposure times less than four hours presented no detect-
able change, neither in amplitude nor spatially, regarding the
perpendicular trapped field Bz (figure 8). This result indicates
that the sulfur gas reaction, differently from the liquid-sulfur,
does not take the GdBCO outgrowth peaks as a preferential
path, so it avoids premature degradation of the superconduct-
ing properties of the HTS film.

3.3. DC current limitation tests

Two long samples (>12 cm) were tested in DC current limit-
ation conditions to compare the quench behavior of a pristine
unaltered sample used as reference with a sample having a
bCFD architecture fabricated using the fabrication method

described earlier. The samples were tested in the so-called ‘hot
spot’ regime. The ‘hot spot’ regime refers to the case where
the fault current level is close to the critical current of the HTS
tape. In these conditions, a local normal zone is created at the
location corresponding to the local minimum critical current.
Considering the low normal zone propagation of commercial
HTS tape, this becomes very dangerous for the integrity of the
HTS tape since the current is not limited and the temperature
in the local quenched zone increases drastically.

Prior to the limitation experiments, the critical current
of the pristine and bCFD-sulfide samples was measured.
Using a criterion of 1 µV cm−1, a critical current of 285 A
(n-factor of 21.5) and 267 A (n-factor of 22) at 77 K
was measured for the pristine and the bCFD-sulfide sample
respectively.

During the experiments, to achieve the hot spot regime,
voltage pulses were successively applied by increasing the
voltage level between each pulse until a local quench occurred.
In figure 9, two examples of limitation tests on each sample
are presented, in which a local quench was generated. In both
cases, the fault current level was approximately 350 A. The
voltage pulse length was chosen so the electric field generated
in the sample reached approximately 14 V m−1.

7
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Figure 9. Electric field (V m−1) and current (A) evolution during DC limitation tests in the hot spot regime for (a) a pristine THEVA tape
and (b) a bCFD-sulfide tape treated for 210 min in sulfur gas.

In figure 9(a), the pristine sample took almost 10 ms to
reach 14 V m−1 before the end of the current pulse. The
rise of the electric field once a normal zone is created is
1.1–1.2 V m−1s−1 indicating a ‘slow’ expansion of the nor-
mal zone. Furthermore, the current slowly decreases during
the rise of the electric field, which confirms that the normal
zone expands very slowly.

In comparison, in figure 9(b), the bCFD-sulfide sample
(treated for 210 min in sulfur gas) reached 14 V m−1 in less
than 0.2 ms, indicating a ‘rapid’ expansion of the normal zone.
This is confirmed from the rapid limitation of the current,
reaching approximately 35% of the initial current amplitude
in less than 1.7 ms. Furthermore, the rise of the electric field
is approximately 60 V m−1s−1 which is 50 times higher than
the pristine sample. This is consistent with NZPV measure-
ments performed on theses samples, where it was found that
the bCFD-sulfide sample had a NZPV 18 times higher than the
pristine sample [15].

Note that the resistance at room temperature of the bCFD-
sulfide sample was only 15% larger than the pristine sample
(≈0.44 Ω m−1). It is therefore reasonable to assume that
this difference had only a small contribution to the observed
enhanced quench performance.

After the second limitation in the hot spot regime, the
pristine sample presented a minor Ic degradation, from 285
to 279 A. Regarding the bCFD-sulfide sample, up to 24 limit-
ations tests were done without seeing Ic degradation. Among
the limitation tests performed, the electric field in the bCFD-
sulfide sample was increased to values up to 90 V m−1 for
pulses lasting more than 30 ms, while keeping the integrity of
the sample.

4. Conclusion and outlook

Two sulfurization techniques were tested as a way to create the
bCFD architecture on silver-coated GdBCO CCs. The object-
ive was to reduce the silver thickness (1–1.2 µm) on the HTS-
film side of the tape by reacting the silver with sulfur, thus cre-
ating silver sulfide, a semiconductor compound with electrical

conductivity orders of magnitude lower than silver. The first
attempt consisted of dipping samples into a commercial liver
of sulfur solution, but the presence of GdBCOoutgrowth peaks
in the silver layer coming from the HTS-film allowed the solu-
tion to bypass the silver, and then infiltrate and degrade the
GdBCO film directly. This result exemplified well why any
other liquid–solid reactions on CCs metallic stabilizer should
be carefully tested to avoid damaging the REBCO film due to
infiltration.

In the second attempt, a gas-solid reaction was tested utiliz-
ing sulfur vapor to avoid localized reactions with the GdBCO
outgrowth peaks. In vapor-pressure conditions at 130 ◦C, for
two hours of sulfur exposure, the sulfurization rate followed
a linear trend leaving variations of less than 200 nm in the
silver thickness. After two hours, the reaction consumed the
silver layer much faster and less homogenously, leaving vari-
ations in the silver thickness up to 250 nm. After four hours,
the sulfur atmosphere consumed all the silver available and
caused corrosion on the GdBCO film. This result showed that
the sulfur concentration in our experiment was not ideally con-
trolled. However, in our experimental setup, we reached the
objective of partially sulfurized the silver without degrading
the superconductor by exposing a tape for 3.5 h to the sulfur
gas. Moreover, the expected quench performance associated
with NZPV boost coming from the bCFD architecture previ-
ously demonstrated [15] was confirmed byDC limitation tests.
The tests revealed that the voltage raised much faster with
the bCFD-sulfide sample (60 V s−1) in comparison with the
pristine sample (1.2 V s−1). The increase in the room temper-
ature linear resistance (Ω m−1) after sulfurization was minor
(15%) and still, the tape’s quench response to the hot spot
regime was significantly improved. It allowed the tape to limit
the current properly and avoid Ic degradation.

In conclusion, we provided a proof-of-principle of a new
REBCOCC architecture based on the partial transformation of
the Ag metal stabilizer into Ag2S. The authors do not anticip-
ate many difficulties for extending the sulfurization method to
the industrial scale in a reel-to-reel process. Similar processes
have already been demonstrated in the large-scale production
of 2G CIGS (selenide) thin film solar cells where a continuous
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flow of S or Se gas is used in the sulfurization/selenidation
step (SAS). A tight control of the sulfur vapor atmosphere,
temperature, and annealing time, should allow tuning the
thickness of the bilayer Ag2S/Ag, thus achieving a reliable
method to commercially create the bCFD architecture which
is highly promising as a new CC architecture for super-
conducting FCLs. In addition, this technique seems to be
a simple method to be implemented in coil applications,
where current sharing among the conductors should be care-
fully tuned based on the interlayer contact resistance between
turns.
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