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Abstract  

Scope: The gut microbiota ellagitannin-metabolizing phenotypes (i.e. urolithin metabotypes, UMs) 

have been proposed as potential cardiovascular disease (CVD) risk biomarkers because the host blood 

lipid profile was reported to be associated with specific UMs. However, the link for this association 

remains unknown so far.  

Methods & Results: We analysed the gut microbiome of 249 healthy individuals by 16S rDNA 

sequencing analysis. Individuals were also stratified by UMs (UM-A, UM-B, and UM-0) and 

enterotypes (Bacteroides, Prevotella, and Ruminococcus). Associations of UMs discriminating 

bacteria with CVD risk markers were investigated. Distribution and gut microbiota composition of 

UMs and enterotypes were not coincident. Almost half of discriminating genera between UM-A and 

UM-B belonged to the Coriobacteriaceae family. UM-B individuals presented higher blood 

cholesterol levels and higher alpha-diversity, including Coriobacteriaceae family than those of UM-

A. Coriobacteriaceae, whose abundance was the highest in UM-B, was positively correlated with 

total-cholesterol, LDL-cholesterol, and BMI.  

Conclusions: Our results suggest that the family Coriobacteriaceae could be a link between 

individuals’ UMs and their blood cholesterol levels. Further research is needed to explore the 

mechanisms of host metabolic phenotype, including cholesterol excretion products, to modulate this 

bacterial family. 
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The gut microbiota ellagitannin-metabolizing phenotypes (i.e. urolithin metabotypes, UMs) have been 

proposed as potential cardiovascular disease risk biomarkers because the host blood lipid profile was 

reported to be associated with specific UMs. However, the link for this association remains unknown 

so far. The results of this study suggest that the family Coriobacteriaceae could be a link between 

individuals’ UMs and their blood cholesterol levels. 
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1. Introduction 

Dietary polyphenols are poorly absorbed, and they reach the colon where they are exposed to the gut 

microbes. The colonic microbiota transforms the unabsorbed polyphenols into better-absorbed 

metabolites. Some of these metabolites are considered biologically active compounds whereas others 

are inactive.
[1,2]

 However, the latest investigations have shown large inter-individual differences in the 

production of bioactive microbial metabolites from dietary polyphenols because of the specific gut 

microbiome of each individual. Therefore, the potential biological activity derived from polyphenols 

intake is conditioned by the gut microbiome. Also, inter-individual differences in polyphenol 

metabolism could indirectly reflect the status of the individuals’ gut microbiome (biomarkers of gut 

microbiota).
[3]

 Three enterotypes of the human gut microbiome were identified in 272 human faecal 

samples from individuals of four countries, which were subsequently validated using the Human 

Microbiome Project (HMP) dataset.
[4,5]

 The drivers in these enterotypes were Bacteroides, Prevotella, 

and Ruminococcus. Individual features such as body mass index (BMI), gender, or age cannot explain 

the observed enterotypes, but it has been suggested that they can be functional markers and they could 

allow classification of human groups that respond differently to drugs or dietary compounds intake.
[4]

 

In contrast, several studies have not favoured the enterotype concept.
[6–8]

 Those studies focused on the 

pattern of faecal microbiome distribution in the human population and concluded that the stool 

microbiota was not a discrete distribution (three or two enterotypes) but rather a smooth gradient. In 

any case, configuration and functional stratification in the gut microbiome profile (i.e. enterotypes, 

polyphenol-metabolizing phenotypes) are gaining great attention for elucidating the interindividual 

variability observed in the health effects of plant food bioactives.
[9–11]

  

Human intervention studies with ellagitannin-rich foods (pomegranate, strawberries, raspberries, 

oak-aged wines, walnuts, etc.) clearly illustrate the inter-individual variability in polyphenol 

metabolism. Three different urolithin metabotypes (UMs) depending on the type of the urolithins 

formed have been described in the population.
[10]

 Thus, urolithin metabotype A (UM-A) is 

distinguished by the production of urolithin A (Uro-A), in metabotype B (UM-B) individuals produce 

isourolithin A (IsoUro-A) and urolithin B (Uro-B) besides Uro-A, and those with metabotype 0 (UM-
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0) do not produce these final urolithins (only the precursor so-called M5).
[10]

 This inter-individual 

variability in urolithin production has been related to some dissimilarity in the intestinal microbiota. 

Indeed, Gordonibacter species can transform ellagic acid (EA) into different urolithins in pure culture 

[12,13]
 and are positively correlated with Uro-A and UM-A in faeces and urine, whereas the occurrence 

of IsoUro-A, Uro-B and UM-B are inversely correlated with faecal concentration of Gordonibacter 

spp.
[14]

 Ellagibacter isourolithinifaciens, another human gut bacteria of the family Coriobacteriaceae-

Eggerthellaceae, shows IsoUro-A production capacity in vitro but in vivo correlations have not been 

investigated.
[15,16]

 Thus, the gut microbiome pattern associated with each urolithin metabotype (UM) 

has not been explored in depth so far. Elucidation of the microbiome associated with UMs becomes 

more and more relevant because of the increasing evidence that links UMs with health status. Indeed, 

recent studies showed that healthy overweight-obese individuals belonging to UM-B presented 

increased cardiovascular disease (CVD) risk, whereas UM-A seemed to be a protective metabotype 

against CVD risk factors.
[17,18]

 

Urolithins have shown a range of biological effects in vitro and animal studies including anti-

inflammatory, neuroprotective, cardioprotective, ‘prebiotic-like’, antidiabetic, antiobesity, 

antioxidant, and chemopreventive activity, and enhancement of the muscular performance.
[19]

 A few 

human trials have shown the biological effects of ellagitannin-rich food intake with controversial 

results among them. Indeed, a recent human study with an ellagitannin-rich pomegranate extract 

showed the inter-individual variability of effects improving CVD risk biomarkers, and it was 

associated with differences in UMs.
[18]

 In that study, individuals belonging to UM-B improved their 

blood lipid profile better than those of UM-A upon consumption of an ellagitannin-rich pomegranate 

extract. Authors suggested that this could be due to either the inability of UM-B individuals to 

produce relevant levels of Uro-A before the intervention with pomegranate and(or) to indirect effects 

through modulatory interactions with the gut microbiota that affected its composition and(or) 

functionality.
[18]

 These results highlight the importance of deepening the knowledge about the gut 

microbiome of the three UMs as a tool to understand better the different response of individuals to 
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ellagitannin intervention trials as well as to elucidate the association of UMs with health status 

through the faecal microbiome composition.  

In the present study, we analysed the gut microbiome of faecal samples from 249 healthy 

individuals by 16S rDNA in order to explain the previously suggested association between CVD risk 

(BMI, glucose, insulin, and blood lipid profile) and the presence of specific UMs.
[17,18]

 After 

stratification by UMs, we identified differences among UMs in diversity, richness, and microbial 

composition. Association of UMs with enterotypes in the faecal microbiome as well as its potential 

correlation with health status has also been discussed. 

 

2. Experimental Section 

2.1. Chemicals and study products 

Urolithins and derived phase-II conjugated metabolites were obtained as described previously.
[20]

 

Purity was higher than 95% in all tested compounds. Capsules of pomegranate extract were kindly 

provided by Laboratorios Admira S.L. (Alcantarilla, Murcia, Spain).
[18]

 The unpeeled walnuts used in 

the study were kindly supplied by Borges S.A. (Reus, Tarragona, Spain). 

 

2.2. Study design and participants 

Individuals from three trials (ntotal = 249) were included in the Spanish National Project AGL2015-

64124-R (‘PolyMicroBio’) The trials were conducted in line with the Helsinki Declaration and ethical 

principles for medical research involving human subjects (Seoul, Korea, 2008). The objective was to 

characterise the individuals’ faecal microbiota at baseline and to stratify the individuals according to 

their different capacity to metabolise ellagic acid derivatives into urolithins (UMs). For UMs 

stratification, and using a protocol previously described,
[21]

 volunteers consumed an ellagitannin-rich 

food for three days as detailed below.  
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2.3. Dosage information 

Briefly, in the first trial, normoweight-overweight healthy individuals recruited at CEBAS-CSIC 

(Murcia, Spain) and IATA-CSIC (Valencia, Spain) (n = 50, 27 women and 23 men; mean BMI = 23.7 

± 3.2 kg/m
2
) consumed daily 30 g of unpeeled walnuts for three days

[17]
 (Table 1, Fig. S1A, 

Supporting Information). In the second trial (NCT02061098), non-medicated overweight-obese 

healthy individuals (n = 49, 17 women and 32 men; mean BMI = 30.4 ± 3.4 kg/m
2
), with mild 

hyperlipidaemia, ingested 1 daily capsule of pomegranate extract (450 mg/day) for three days
[18]

 

(Table 1, Figure S1B, Supporting Information). In the third intervention study, healthy normoweight-

overweight-obese volunteers recruited at IMDEA-Alimentación (Madrid, Spain) (n = 150; 51 men 

and 99 women; mean BMI = 27.5 ± 4.7 kg/m
2
) ingested three daily capsules of pomegranate extract 

(1,350 mg/day)
[21]

 (Figure S1C, Supporting Information).  

 

2.4. Sampling procedure and determinations 

Urine and faecal samples were collected before and after the three days of the dietary intervention 

with ellagitannin sources in the three trials. Basal serobiochemical variables were previously 

described elsewhere.
[17,18]

 Urolithins were determined by UPLC-ESI-qToF-MS as previously 

described in the samples of urine and faeces obtained after the three-day intervention.
[20]

 The 

individuals were stratified according to their different capacity to metabolise EA derivatives into 

urolithins, i.e. UMs (UM-A, UM-B, and UM-0) as previously described.
[10]

 

Gut microbiota analysis was carried out in the faecal samples at baseline. Protocols for bacterial 

DNA isolation, 16S rDNA gene amplification, metagenomic sequencing library preparation Illumina 

(Illumina Inc., San Diego, USA) as well as sequence processing and taxonomic classification of gut 

microbiota were carried out in the same lab (in a centralised manner) as described previously.
[22]

 

Paired-end sequencing with a read length of 2 × 300 bp was carried out using a MiSeq Reagent kit v3 
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(MS-102-3001) on a MiSeq-Illumina platform (FISABIO sequencing service, Valencia, Spain). 

Quality assessment was performed by the use of a prinseq-lite program
[23]

 and applying the following 

parameters: min_length: 50; trim_qual_right: 30; trim_qual_type: mean; trim_qual_window: 20. R1 

and R2 from Illumina sequencing were joined using fastq-join from ea-tools suite. The data obtained 

in the fastaq format were processed using the Galaxy tool.
[24]

 Chimeric sequences and sequences that 

could not be aligned were also removed from the data set, and filtered out with UCHIME.
[25]

 The 

clustered sequences were utilised to construct Operational Taxonomic Units (OTUs) tables with 97% 

identity, and representative sequences were classified into the respective taxonomical level from 

phylum to genus using the RDP classifier.
[26]

 

Analyses with RDPipeline (http://pyro.cme.msu.edu/) involved 16S rRNA gene sequence 

alignment (Aligner), 16S rRNA gene sequence clustering (Complete Linkage Clustering) and alpha-

diversity indexes (Shannon Index and Chao1 estimator) at the genus level. Alpha-diversity indexes 

(Chao1 and Shannon), based on a randomly selected 21181 reads per sample, were used to estimate 

the samples’ richness and diversity at the genus, family, and phylum levels. Shannon and Chao 1 

indexes at phylum and family levels were calculated by PAST version 2.17c 

(http://folk.uio/ohammer/past). The LDA Effect Size (LEfSe) algorithm with the online interface 

Galaxy (http://huttenhower.sph.harvard.edu/galaxy/root) were used to identify taxa with 

differentiating abundance among UMs. UM-A and UM-B were assigned as the respective 

comparison. LEfSe identified features that were statistically different among the different groups and 

performed non-parametric factorial Kruskal-Wallis sum-rank tests and Linear Discriminant Analysis 

(LDA) to determine whether these features were consistent concerning the expected behaviour of the 

different UMs. Annotated heatmap based on relative abundance clustering of the top 70 genera was 

plotted using gplots and pheatmap functions in R software. 

 

  

http://folk.uio/ohammer/past
http://huttenhower.sph.harvard.edu/galaxy/root
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2.5. Statistical analysis 

Statistical analysis was carried out using the SPSS Software, version 23.0 (SPSS Inc., Chicago, IL, 

USA). The individuals of the three trials were included for the bacterial community analysis in faeces. 

The Shapiro-Wilk test indicated that data of relative abundance of microbial genera, families and 

phyla did not follow a normal distribution. The Wilcoxon Signed Rank Test was performed to detect 

significant differences in bacterial data by UMs. When more than two groups were compared, 

analyses of variance (ANOVA), and Bonferroni t-test or the Kruskal-Wallis followed by Dunn’s test 

were used for normally and non-normally distributed data, respectively. The individuals were 

clustered in groups by UMs and also by enterotypes using principal component analysis (PCA) and 

hierarchical clustering analysis (HCA) via R commander.
[27] 

Enterotypes were identified by variations 

in the levels of one of genera Bacteroides, Prevotella and Ruminococcus whereas UMs were 

identified by urolithin profile as previously described.
[21]

 Two principal components were plotted 

using ggbiplot function in R software. Plots of data were performed using Sigma Plot 13.0 (Systat 

Software, San Jose, CA, USA). We applied a multinomial logit model to evaluate a possible 

association between UMs and enterotypes.
[21]

 Spearman’s rank correlation was applied to explore the 

link between lipid profile and the bacterial genera. Heatmap of data was performed using the free tool 

Metaboanalyst.
[28]

 Statistical significance was set at *p < 0.05, **p < 0.01, and ***p < 0.001. 

Marginal significance was also indicated when 0.1 > 
#
p > 0.05. 

3. Results 
3.1. Identification of the faecal microbiome enterotypes and association with UMs 

Individuals from the three trials (n = 249) were clustered by enterotypes and UMs (Table 1). Each 

enterotype proportion widely changed among the three trials (p < 0.001). Enterotype distribution in 

trial 1 was significantly different from that in trials 2 and 3 (p < 0.001), whereas trials 2 and 3 showed 

a similar enterotype distribution (p = 0.148). When individuals of the three trials were considered 

together, enterotype 2 (Prevotella-type) was the most abundant one (63%) followed by enterotype 3 

(Ruminococcus-type) (27%) and enterotype 1 (Bacteroides-type) (10%) (Table 1). UM percentages 

were consistent among the three trials independently of mean BMI values of each trial (p = 0.656). 
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UM-A was the most abundant metabotype (55% mean value), followed by UM-B (35%) and finally 

by UM-0 (10%). In each enterotype, a similar distribution of UMs was observed (p = 0.642). Thus, 

the UM-0, UM-A and UM-B percentages in all the enterotypes were 11 ± 4%, 54 ± 3% and 34 ± 3%, 

respectively.  

PCA and clustering analysis using these three enterotype discriminating genera (Bacteroides, 

Prevotella and Ruminococcus) showed that samples formed three distinct clusters corresponding to 

the enterotypes (Figure 1A). However, the relative abundance of these three bacterial genera did not 

discriminate among UMs (Figure 1B). The Prevotella to Bacteroides ratio was higher in individuals 

classified as enterotype 2 with respect to the enterotype 1 group (Figure 1C). In contrast, the 

Prevotella to Bacteroides ratio did not differ among UMs, and only a tendency of higher level in UM-

B was observed (Figure 1D). PCA plot of genera from the Coriobacteriaceae family illustrated that 

PC1 and PC2 were not able to discriminate among the three enterotypes (Figure 1E). Only the 

enterotype 1 (Bacteroides-type) was different to the others (enterotypes 2 and 3) in PC1 (p < 0.05) 

and PC2 (p < 0.01) according to the statistically lower abundance of Gordonibacter, Ellagibacter, 

Senegalimassilia, and Collinsella in enterotype 1 vs the others (Figure 1E). Conversely, PCA of 

genera from the Coriobacteriaceae family discriminated among UMs in the first and second principal 

component (PC1 and PC2) (Figure 1F). PC1 clearly differentiated UM-B from the other two UMs 

(UM-A and UM-0) (p < 0.001) while PC2 distinguished UM-A with respect to UM-B (p < 0.001) and 

UM-0 (p = 0.029) (Figure 1F).  

 

3.2. Richness and diversity of microbiota 

The alpha-diversity indexes are summarized in Table 2 and rarefaction curves in Fig. S2 (Supporting 

Information). At the phylum level, diversity and richness were higher in enterotype 1 vs enterotypes 2 

and 3. At the family level, diversity and richness were higher in enterotype 1 vs enterotype 3 (Table 

2). However, diversity and richness were not different between the enterotypes at genus levels. In 

contrast to enterotypes, diversity and richness differed among UMs at genus level where UM-0 
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individuals showed a lower diversity and richness than UM-B and UM-A individuals (p < 0.01) 

(Table 2). At phylum and family levels, richness was significantly higher in UM-B than in UM-A and 

UM-0.  

 

3.3. Composition of the microbial community at the phylum, family and genus levels in UMs 

At the phylum level, the three UMs mainly consisted of Firmicutes, Actinobacteria, Bacteroidetes, 

Proteobacteria, Verrucomicrobia and Euryarchaeota (Figure 2A). Among them, only Euryarchaeota 

abundance was higher in UM-B than in UM-A and UM-0 individuals (p < 0.006). Furthermore, 

phylum Synergistetes whose abundance is lower than 0.05% was also significantly higher in UM-B 

than in UM-A and UM-0 individuals (p < 0.05) (Figure 2A). The Firmicutes to Bacteroidetes ratio 

was similar among UMs whereas enterotypes 2 and 3 showed higher levels of this ratio than 

enterotype 1 (p < 0.01) (data not shown). At the family level, more differences among UMs were 

observed. The families Methanobacteriaceae from Euryarchaeota phylum, Synergistaceae from 

Synergistetes phylum as well as Coriobacteriaceae, Clostridiaceae, Enterobacteriaceae and 

Clostridiales incertae sedis XI were more abundant in UM-B than in UM-A and UM-0 (p < 0.05). In 

contrast, Lachnospiraceae and Eubacteriacea abundance predominated in UM-A and UM-0 with 

respect to UM-B (p < 0.05). 

The 70 most abundant genera in each UM, covering 77.3±2.1% relative abundance, are shown in 

Figure 2B. Blautia and Faecalibacterium were the most abundant genera without differences among 

UMs (Figure 2B). Figure 2A shows bacterial genera that differed between UM-A and UM-B covering 

less than 15% of the total relative abundance. Lachnospiraceae incertae sedis, Clostridium XVIII, 

Prevotella and three genera from Coriobacteriaceae family (Gordonibacter, Eggerthella, and 

Adlercreutzia) predominated in UM-A vs UM-B. In contrast, Clostridium sensu stricto, 

Holdemanella, Parvimonas, Anaerobacter, Intestimonas, Paraprevotella, one genus of 

Synergistaceae family (Cloacibacillus), two genera of Methanobacteriaceae family 

(Methanobrevibacter and Methanosphaera), five classified genera of Coriobacteriaceae family 
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(Collinsella, Olsenella, Senegalimassilia, Slackia, Ellagibacter) as well as an unclassified 

Coriobacteriaceae predominated in UM-B vs UM-A. Although Enterobacteriaceae family 

predominated in UM-B vs UM-A, Escherichia coli_Shigella predominance in UM-B vs UM-A was 

marginally significant (p = 0.078).  

Taxonomic representation of statistically and biologically consistent differences between UM-A 

and UM-B are shown in Figure 3. LDA (Figure 3A) and the cladogram (Figure 3B) generated from 

LEfSe analysis confirmed the differences between UM-A and UM-B at genus and family levels as 

well as the differences at the class and order levels. At the class and subclass levels, increased 

abundance of Gammaproteobacteria, Methanobacteria and Synergistia, as well as Coriobacteridae, 

were observed in UM-B vs UM-A. At the order level, Coriobacteriales and Aeromonadales were also 

higher in UM-B than UM-A (Figures 3A and 3B). UM-0 was not significantly different from either 

UM-A or UM-B in Parvimonas, Holdemanella, and Slackia. However, UM-0 differed from UM-B 

but not from UM-A, for the rest of the bacterial genera that discriminated between UM-A and UM-B. 

Only Gordonibacter predominated in UM-A vs either UM-B or UM-0 (Figure 2A). According to the 

lower diversity and richness at genus level in UM-0 individuals vs UM-A and UM-B (Table 2), lower 

levels of other genera, whose abundance was less than 1% such as Phascolarctobacterium (p = 

0.012), Bilophila (p = 0.001), Alistiper (p = 0.009), and Butyricimonas (p = 0.002), characterised UM-

0 vs UM-A and UM-B. Consequently, the heat map of relative abundance at the genus level firstly 

differed two groups, i.e. non-producers (UM-0) and producers (UM-A and UM-B), and secondly 

subdivided producers into two more similar groups (UM-A and UM-B) (Figure 2B). 

 

3.4. Associations of UMs discriminating genera with urolithin production, BMI and CVD 

markers  

In order to elucidate associations of UMs discriminating genera with urolithin production, CVD risk 

markers, including BMI, glucose, insulin, insulin resistance index (HOMA_IR), and blood lipid 

profile, forty-nine non-medicated healthy overweight-obese volunteers with mild hyperlipidaemia 



www.mnf-journal.com Page 13 Molecular Nutrition & Food Research 

This article is protected by copyright. All rights reserved.13 

(trial 2) were analysed (Figure 4). Some bacteria genera from the Coriobacteriaceae family showed 

positive and negative associations among them (Figure 4A). Remarkably, Slackia was negatively 

correlated with the three Coriobacteriaceae genera more abundant in UM-A (Gordonibacter, 

Eggerthella, and Adlercreutzia). Furthermore, Gordonibacter was positively correlated with 

Eggerthella and negatively correlated with two more abundant genera in UM-B (Slackia and 

Senegalimassilia) (Figure 4A). Interestingly, Slackia was positively correlated with Parvimonas from 

Peptoniphilaceae family whereas Olsenella and Senegalimassilia were positively correlated with 

Methanobrevibacter which is a methanogenic archaea from the Methanobacteriaceae family (Figure 

4A).  

IsoUro-A and Uro-B production (characteristic of UM-B) was positively correlated with some 

genera from Coriobacteriaceae family (Olsenella, Senegalismassilia and Slackia) (Figure 4B). 

IsoUro-A and Uro-B production was negatively correlated to other genera from the 

Coriobacteriaceae family whose abundance was increased in UM-A (Gordonibacter and Eggerthella) 

(Figure 4B). In contrast, Uro-A (the main urolithin in UM-A) was only positively correlated with 

Gordonibacter (Figure 4B). Tchol, LDLc, ApoB and non-HDLc were positively correlated with one 

of the Coriobacteriaceae genera (Slackia), whose abundance was increased in UM-B (Figure 4B). 

BMI negatively correlated with Intestinimonas and Prevotella but not with Coriobacteriaceae genera 

in overweight-obese volunteers (trial 2, n=49, BMI range=27.1-43.0) (Figure 4B). However, when 

data from the three trials were considered (ntotal=249, BMI range=18.0-43.3), BMI correlated 

positively with the Coriobacteriaceae family (p < 0.001) and with one of the Coriobacteriaceae 

genera (Collinsella) (p < 0.001) (data not shown). At the family level, the Coriobacteriaceae family, 

whose abundance was increased in UM-B vs UM-A and UM-0, was also positively correlated with 

the blood levels of some CVD markers (Tchol, LDLc and ApoA-1) (p < 0.05) (Fig. S3, Supporting 

Information). The relative abundance of unknown genera of Coriobacteriaceae family (unclassified 

Coriobacteriaceae genera) showed a marginal significant positive correlation with Tchol (p = 0.097), 

LDLc (p = 0.06), ApoA (p = 0.08), oxLDLc (p = 0.09), and HDLc (p = 0.06) (Fig.S3). On the other 

hand, Eubacteriaceae, which was increased in UM-A vs UM-B, was positively correlated with ApoA 
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(p = 0.04) and marginally correlated with HDLc (p = 0.097), glucose (p = 0.09), and insulin (p = 

0.09). Besides, Erysipelotrichaceae, another family previously associated with host lipid 

metabolism
[29]

 was not significantly correlated with any CVD biomarkers (Fig.S3). In contrast to 

UMs, where associations with blood lipid profile were found,
[17,18]

 CVD biomarkers studied in the 

present study did not differ among enterotypes. 

4. Discussion 
The number of studies dealing with enterotypes and their biological significance is still limited. A 

long-term diet enriched in carbohydrates has been linked to the Prevotella enterotype, while protein 

and animal fat have been linked to the Bacteroides enterotype.
[30]

 The results of the present study 

conducted in 249 healthy volunteers showed that UMs and enterotypes distribution was not 

coincident. In a previous study, enterotypes have been merely inferred to the Prevotella to 

Bacteroides ratio.
[31]

 In the present study, Bacteroides and Prevotella enterotypes differed in the 

Prevotella to Bacteroides ratio. However, in the case of UMs, the difference between UM-A and UM-

B in the Prevotella to Bacteroides ratio was only marginal (p = 0.075). From the three enterotypes 

drivers (Bacteroides, Prevotella, and Ruminococcus), only Prevotella abundance was higher in UM-A 

than UM-B. Almost half of the bacterial genera (8/18) that differ between UM-A and UM-B belonged 

to the Coriobacteriaceae family from the Actinobacteria phylum. Several bacterial species from the 

Coriobacteriaceae family have been reported to be involved in polyphenolic metabolism.
[2]

 

Furthermore, it is known that the consumption of several polyphenol-rich foods modulates the gut 

microbiota composition.
[1]

 Indeed, in a recent study, urolithin non-producers (UM-0) became 

producers (UM-A or UM-B) following ellagitannin-rich food consumption.
[18]

 Therefore, the ability to 

produce urolithins (UM-A and UM-B) vs non-producers (UM-0) could be partially related to the 

consumption of polyphenol-rich diets.  

 UM-B individuals have a higher diversity of intestinal microbiota with respect to UM-A, but 

especially regarding UM-0 individuals (urolithin non-producers). Thus, alpha-diversity could explain 

the capacity of UM-B to produce a higher number of urolithin metabolites than UM-A and this in turn 

more than UM-0 individuals. The diversity of gut microbiota increases with age (birth to 
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adulthood),
[8]

 and it is also closely associated with host health.
[32]

 Accordingly, the relation between 

UMs distribution and ageing has been demonstrated.
[21]

 Thus, the increase of diversity is accompanied 

by UM-A decrease concomitant with the increase of UM-B. Some studies have suggested the 

correlation of UMs with gut dysbiosis, obesity and host health status,
[10,33]

 although the relation 

between BMI and UM-B has not yet been unequivocally proven, probably because obesity has a 

multifactorial aetiology. In the present study, we found a strong positive correlation of BMI with 

Coriobacteriaceae whose abundance was increased in UM-B. In contrast to Coriobacteriaceae, the 

Firmicutes to Bacteroidetes ratio previously associated with obesity and gut dysbiosis
[34,35]

 did not 

differ among UMs. Therefore, our results suggest that UMs and their discriminating bacteria could 

not be considered an obesity predisposition biomarker in healthy people. 

The potential health implications of the Coribacteriaceae family, whose abundance was found to 

be higher in UM-B vs UM-A and UM-0, are still poorly understood. Coriobacteriaceae are prevalent 

and dominant members of the human gut microbiota and can metabolise bile acids, steroid hormones, 

lipids and xenobiotics such as polyphenols.
[36,37]

 Several studies associated Coriobacteriaceae with an 

increased blood cholesterol and lipid metabolism, as well as obesity in animal studies
[36–39]

, whereas 

higher faecal cholesterol excretion (lower cholesterol absorption by dietary addition of plant sterol 

esters) has been associated with a decreased relative abundance of Coriobacteriaceae in the gut of 

hamsters.
[29]

 Indeed, Coriobacteriaceae abundance was linked to hypercholesterolemia regardless of 

diet. Coriobacteriaceae was positively correlated with cholesterol absorption, liver free cholesterol, 

plasma non-HDLc, total cholesterol, liver weight and white adipose tissue mass. In contrast, 

Coriobacteriaceae showed a negative association with whole-body cholesterol synthesis and faecal 

biliary cholesterol excretion in hamsters.
[29]

 Accordingly, in our present human study, we found a 

positive correlation of the Coriobacteriaceae family and also one of its genera (Slackia) with blood 

cholesterol levels whose abundance was higher in UM-B vs UM-A and UM-0. The Tchol excreted by 

the host via bile appears to inhibit specific bacterial taxa, especially Coriobacteriaceae.
[29]

 UM-A, 

where the levels of Coriobacteriaceae and blood cholesterol was lower, differed from UM-B in 

higher levels of Gordonibacter, one specific Coriobacteriaceae previously correlated with Uro-A 
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production and UM-A.
[14,17,18]

 The Eubacteriaceae family was also increased in UM-A and UM-0 vs 

UM-B. Accordingly, in hamsters consuming plant sterol esters, the Eubacteriaceae family was 

increased while blood Tchol and Coriobacteriaceae were reduced and a negative correlation of 

Eubacteriaceae with blood cholesterol was found. Authors hypothesised that Eubacteriaceae increase 

was due to the ability of this organism to use the additional faecal cholesterol that became available as 

a growth substrate in the gut.
[29]

 Thus, cholesterol excreted in the gut could modulate both the 

abundance and composition of the gut microbiota, especially the Eubacteriaceae and 

Coriobacteriaceae families. Therefore, the Coriobacteriaceae family could be the link between UMs 

and host blood levels of cholesterol. Further research is needed to explore the mechanisms of host 

metabolic phenotype (cholesterol excretion products) to modulate this bacterial family. 

In a more recent study, Coriobacteriaceae has been reported to affect bile acid metabolism in 

mice.
[37]

 Thus, Coriobacteriaceae increases the expression of ileal bile acid absorption transporter 

ASBT, ileal Fxr (a key modulator of bile acid metabolism) and the absorption of bile acids that can 

directly or indirectly modulate hepatic bile acid metabolism including de novo synthesis via FXR 

target gene Shp.
[37]

 Bile acid synthesis in the liver generates bile flow which is important for biliary 

excretion of free cholesterol, endogenous metabolites, and xenobiotics. Therefore, there is a two-way 

interaction between Coriobacteriaceae and host cholesterol because gut cholesterol can modulate 

Coriobacteriaceae abundance and composition, but at the same time Coriobacteriaceae can affect 

cholesterol metabolism and reduce its faecal excretion through increasing bile acid absorption. Unlike 

Coriobacteriaceae, some polyphenol-rich foods such as pomegranate promote the efflux of 

cholesterol through raising bile acids in the excretion, a similar effect to that of some lipid-lowering 

drugs such as simvastatin.
[40]

 Pomegranate has been reported to increase the faecal bile acid 

concentration mainly by influencing two LXR/PPARABCA1 genetic pathways.
[40]

 Further studies 

should be done to elucidate the role of the UMs discriminating microbiota, mainly Coriobacteriaceae, 

in the effect of polyphenols as potential reducers of CVD risk factors. 

In addition to bacteria from the Coriobacteriaceae and Eubacteriaceae families, other genera 

differed UM-A from UM-B. Remarkably, pro-inflammatory microorganisms including Parvimonas, 
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Methanobrevibacter, Methanosphaera, and Gammaproteobacteria were increased in UM-B vs UM-A. 

The latter could suggest a higher pro-inflammatory status in UM-B individuals vs UM-A. In a 

recently published study with these 49 overweight-obese individuals (trial 2) whose endotoxemia 

marker lipopolysaccharide-binding protein (LBP) and blood cholesterol were reduced by pomegranate 

extract consumption, Parvimonas and Methanobrevibacter were also reduced. Furthermore, plasma 

LBP reduction was associated with Parvimonas decrease.
[22]

 However, associations between the 

decrease of LBP values and individuals’ UMs was not found
[22]

 while cholesterol reduction was 

higher in UM-B volunteers.
[18]

 Therefore, although some of these pro-inflammatory bacteria are 

increased in UM-B, we cannot confirm that UMs, and particularly UM-B vs UM-A, could be a 

suitable biomarker for subclinical metabolic endotoxemia probably because other bacteria and host 

properties, not associated with UMs, are also determining the pro-inflammatory status. 

Hydrogenotrophic methanogens (Methanobrevibacter and Methanosphaera), as well as Parvimonas, 

have also been related to obesity.
[41]

 Despite their low abundance, they seem to be involved in 

specialised functions on the host although further research is needed. 

Considering the differences between UM-A and UM-B in alpha-diversity, Coriobacteriaceae 

composition, host blood levels of cholesterol, as well as the previously reported two-way interaction 

between Coriobacteriaceae and cholesterol excretion products,
[29,36,37]

 we hypothesise that cholesterol 

could play a primary role in the modulation of Coriobacteriaceae family. In this regard, the gut 

microbiota composition associated with UMs might be a consequence rather than a cause of the host 

phenotype. Besides, UMs and particularly UM-B vs UM-A and UM-0 could serve as an indirect 

biomarker of the cholesterol excretion products. Therefore, the results obtained in this study support 

the evidence that interactions between the gut microbiota and host metabolism are bidirectional. Inter-

individual differences on the effects upon lipid-lowering therapies should be taken into account, and 

UMs could be used as a suitable indirect marker of gut composition and host phenotype for individual 

stratification. 

From a clinical viewpoint, the gut microbiota can be targeted for the prevention or treatment of 

metabolic diseases. Modulation of the gut microbiome for the treatment and prevention of diseases is 
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being assayed, but scarce information is still available. However, recent advances in the gut 

microbiome analysis highlight both the potential and promise of targeting intestinal microbes and its 

functionality for therapeutic gain. 
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Figure S1. Study design that shows the flow of participants through the trials. (A) Walnut 

intervention in normoweight-overweight volunteers, (B) pomegranate intervention in overweight-

obese volunteers, and (C) pomegranate intervention in normoweight-overweight-obese volunteers. 

Figure S2. Bacterial diversity. Figure S2 shows the rarefaction curves of the three UMs, relating the 

sequencing effort with an estimate of the number of bacterial species, as inferred by the number of 

OTUs. An OTU is a cluster of 16SrRNA sequences that were >95% identical, a conservative estimate 

for the boundary between species, established at 97% for full-length 16S rRNA sequences. 

Figure S3.  pearman’s correlations heatmap. (A) Correlation analyses within UMs discriminating 

families from trial 2 (n=49). (B) Correlation analyses of UMs discriminating families with urolithins 

and clinical parameters in trial 2 (n=49). ★: Spearman’s correlation values with p < 0.05. ▲: 

Spearman’s correlation values when 0.1 > 
#
p > 0.05. 

δ
Erysipelotrichaceae, another family previously 

associated with host lipid metabolism
[29]

 has also been included, although its abundance was not 

different among UMs. 
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Table 1. Demographic characteristics and serobiochemical variables of participants in the three 

dietary intervention studies. 

 
All individuals 

(n = 249) 
Trial 1 (n = 50) 

Trial 2 (n = 

49)
a
 

Trial 3 (n = 

150) 

 

Walnuts or 

Pomegranate 

extract 

Unpeeled 

walnuts (30 

g/day) 

Pomegranate 

extract (450 

mg/day) 

Pomegranate 

extract (1,350 

mg/day) 

Mean age (y) and range 
42.4  11.5, 

(1972) 

36.9  9.0, 

(1955) 

46.2  6.3, 

(4065) 

43.3  12.8, 

(1972) 

Mean BMI (kg/m
2
) and range 27.2  4.7, 

(18.043.3) 

23.7  3.2, 

(18.434.3) 

30.4  3.4, 

(27.143.0) 

27.5  4.7, 

(18.039.9) 

Gender (female/male) 143/106 27/23 17/32 99/51 

Enterotype 1 (%) 10 44 2 2 

Enterotype 2 (%) 63 42 59 71 

Enterotype 3 (%) 27 14 39 27 

UM-0 (%) 10 8 14 10 

UM-A (%) 55 58 53 53 

UM-B (%) 35 34 33 37 

Tchol (mg/dL) NA NA 209 ± 38
a 

NA 

Triglycerides (mg/dL) NA NA 124 ± 66
a 

NA 

LDLc (mg/dL) NA NA 152 ± 31
a 

NA 

HDLc (mg/dL) NA NA 53 ± 11
a 

NA 

a
Data previously published.

[18]
 NA, not available 
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Table 2. Alpha-diversity of each urolithin metabotype at phylum, family and genus levels. 

 
Diversity 

(Shannon index) 

Richness 

(Chao Index)  
 

Diversity 

(Shannon index) 

Richness 

(Chao Index)  

Phylum   Phylum   

UM-A 0.6  0.2a 7.7  1.7b 
Enterotype 

1 
0.8  0.2a 9.4  2.8a 

UM-B 0.6  0.2a 8.5  1.9a 
Enterotype 

2 
0.6  0.2b 7.7  1.7b 

UM-0
 

0.5  0.2a 7.2  1.9b 
Enterotype 

3 
0.5  0.2b 7.8  1.6b 

      

Family   Family   

UM-A 1.6  0.2b 36.0  8.1b 
Enterotype 

1 
1.7  0.2a   39.9  11.6a 

UM-B 1.7  0.3a 39.2  8.5a 
Enterotype 

2 
  1.7  0.3ab   37.0  8.2ab 

UM-0
 

1.5  0.2b 32.6  8.0b 
Enterotype 

3 
1.6  0.3b 35.2 7.5b 

      

Genus   Genus   

UM-A 4.3  0.3a 1,870.8  

603.9a 

Enterotype 

1 

4.4  0.3a 1,765.8  

675.7a 

UM-B 4.4  0.3a 
1,946.5  

572.9a 

Enterotype 

2 
4.3  0.4a 

1,831.8  

568.2a 

UM-0 4.0  0.5b 
1,514.4  

572.1b 

Enterotype 

3 
4.3  0.3a 

1,963.6  

641.8a 

 
     

Values are expressed as mean ± SD. Different letters mean statistical significance in the diversity and 

richness indexes between different UMs (p < 0.05). 
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Figure Captions 

Figure 1. (A, E) PCA and clustering analysis showing differences among enterotypes and (B, F) 

among UMs. Box plots of (C, D) Prevotella_Bacteroides ratio. 
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Figure 2. Microbial taxonomic composition in faecal samples of individuals grouped by UMs. (A) 

The bars show the mean proportion at phylum, family and genus level. In the family and genus 

diagrams only those with significant differences between UM-A and UM-B groups are shown. 

#
Higher abundance in UM-A than UM-B; *Higher abundance in UM-B than UM-A. (B) The heatmap 

shows the relative abundance of the most abundant 70 genera.  
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Figure 3. LEfSe analysis where (A) LDA score plot and (B) cladogram plot were generated showing 

different abundances in bacterial communities between UM-A and UM-B. The microbial taxa shown 

in the Figure have a LDA score higher than 2. Red nodes represent taxa significantly (p < 0.05) 

overabundant in UM-A; green nodes represent taxa significantly (p < 0.05) overabundant in UM-B; 

nodes remaining yellow indicate taxa that were not significantly differentially represented (p > 0.05). 

 ach circle’s diameter is proportional to the taxon’s abundance. 
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Figure 4. Spearman’s correlations heatmap. (A) Correlation analyses within UMs discriminating 

genera from trial 2 (n=49) (B) Correlation analyses of UMs discriminating genera with urolithins and 

clinical parameters in trial 2 (n=49). ★: Spearman's correlation values with p < 0.05.  
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