
Breakdown of Random-Matrix Universality in Persistent Lotka-Volterra Communities

Joseph W. Baron ,1,* Thomas Jun Jewell ,2 Christopher Ryder ,2 and Tobias Galla1,2,†
1Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), 07122 Palma de Mallorca, Spain

2Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester,
Manchester M13 9PL, United Kingdom

(Received 18 February 2022; revised 17 June 2022; accepted 6 March 2023; published 28 March 2023)

The eigenvalue spectrum of a random matrix often only depends on the first and second moments of its
elements, but not on the specific distribution from which they are drawn. The validity of this universality
principle is often assumed without proof in applications. In this Letter, we offer a pertinent counterexample
in the context of the generalized Lotka-Volterra equations. Using dynamic mean-field theory, we derive the
statistics of the interactions between species in an evolved ecological community. We then show that the
full statistics of these interactions, beyond those of a Gaussian ensemble, are required to correctly predict
the eigenvalue spectrum and therefore stability. Consequently, the universality principle fails in this system.
We thus show that the eigenvalue spectra of random matrices can be used to deduce the stability of
“feasible” ecological communities, but only if the emergent non-Gaussian statistics of the interactions
between species are taken into account.
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The theory of disordered systems enables one to deduce
the behavior of collections of many interacting constitu-
ents, whose interactions are assumed to be random, but
fixed in time [1]. A related discipline, randommatrix theory
(RMT), is concerned with the eigenvalue spectra of
matrices with entries drawn from a joint probability
distribution. Both fields have found numerous applications
in physics [2,3] (the study of spin glasses in particular [1]),
and in other disciplines such as neural networks [4–9],
economics [10,11], and theoretical ecology [12–19].
It is frequently assumed that the distribution of the

randomness in RMT or disordered systems is Gaussian,
possibly with correlations between different interaction
coefficients or matrix entries. Reasons cited for this
assumption include analytical convenience, maximum-
entropy arguments, and the observation that higher-order
moments often do not contribute to the results of calcu-
lations [1,20,21].
In random matrix theory, this latter observation is

referred to as the principle of universality [22–24]. The
principle states that results obtained for the spectra of
Gaussian random matrices frequently also apply to matrix
ensembles with non-Gaussian distributions. The conditions
for universality to apply are usually mild (higher-order
moments of the distribution must fall off sufficiently
quickly with the matrix size [22,23]), and it is often tacitly
assumed that these conditions will hold.
In this Letter, we offer a pertinent counterexample to the

universality principle in RMT. We focus on the ecological
community resulting from the dynamics of the generalized
Lotka-Volterra equations with random interaction coeffi-
cients. The stability of this community is governed by the

interactions between species that survive in the long
run [25,26]. This is a submatrix of the original interactions,
which we will refer to as the “reduced interaction matrix.”
Firstly, using dynamic mean-field theory [27], we obtain

the statistics of the elements in the reduced interaction
matrix. These turn out to be non-Gaussian (even when the
original interaction matrix is Gaussian). Secondly, we
analytically calculate the leading eigenvalue of this non-
Gaussian ensemble of random matrices. We show that this
eigenvalue is different from the one that we would obtain
from a Gaussian ensemble with the same first and second
moments as in the reduced interaction matrix. This demo-
nstrates that the principle of universality fails, and it indi-
cates that the Gaussian assumption should not be made
lightly.
Our findings have relevance to the random matrix

approach to ecosystem stability, introduced by Robert
May [12,13]. This approach assumes a random interaction
structure between species in the community. One line of
criticism of May’s model is the observation that such
interactions do not necessarily describe a feasible equilib-
rium (that is, an equilibrium for which all species’ abun-
dances are positive) [25,28–31]. Thecommunity of surviving
species in the generalized Lotka-Volterra model on the other
hand is feasible by construction, and we derive the statistics
of the emergent random matrix ensemble that describes this
community [26,32–34]. From this ensemble,we then recover
the stability criteria that have previously been derived from
the dynamic Lotka-Volterra model [16,35]. We thus show
that one can construct a random matrix ensemble (in
the sense of May) that correctly reflects the stability of a
feasible community of coexistent species. This ensemble is
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non-Gaussian and quite intricate. In May’s words, our work
contributes to “elucidating the devious strategies of nature
which make for stability in enduring natural systems” [36].
We start from the generalized Lotka-Volterra equations

(GLVEs) [16,35,37,38]

_xi ¼ xi

�
1 − xi þ

X
ij

aijxj

�
; ð1Þ

where the xi ≥ 0 describe the abundances of species
i ¼ 1;…; N. The interaction matrix elements in Eq. (1)
aij are quenched random variables. We refer to these as the
“original interaction matrix” elements. We assume that the
mean of each matrix element is aij ¼ μ=N (we use an
overbar to denote averages over the ensemble of interaction
matrices), and that they have variance VarðaijÞ ¼ σ2=N.
We also allow for correlations between diagonally opposed
matrix elements, Corrðaij; ajiÞ ¼ Γ, (−1 ≤ Γ ≤ 1) where

Corrða; bÞ ¼ ðab − ā b̄Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðaÞVarðbÞp

.
The scaling with N of the moments of aij follows the

standard conventions in disordered systems [1] and guar-
antees a well-defined thermodynamic limit N → ∞. All
our results are independent of the higher moments of aij as
long as these moments decay sufficiently quickly with N.
Further details can be found in Sec. S1 of the Supplemental
Material [39].
Previous analyses of this system [16,35] in the thermo-

dynamic limit have shown that there is a range of parameter
combinations μ; σ2, and Γ for which the dynamics reaches a
unique stable fixed point, independently of the starting
conditions. This is the case in the region to the left and
below the instability lines in the phase diagram in Fig. 1.

When a fixed-point solution is reached, not all species
survive, i.e., there are some species for which x⋆i > 0
and others with x⋆i ¼ 0 (we use an asterisk to denote the
fixed point). Using dynamic mean-field theory (DMFT)
[15,40–42], one can deduce these statistics of the species’
abundances at the fixed point.
From the DMFT analysis, one can also find the combi-

nations of system parameters at which the system is no
longer able to support a unique stable fixed point. There are
two types of transitions: (1) the average species abundance
can diverge [i.e., M → ∞], or (2) the fixed-point solution
can become linearly unstable to perturbations. Closed-form
expressions for the critical sets of parameters (σ, Γ, and μ)
at which each of these transitions occurs were derived in
Refs. [16,35]. A selection of phase lines for different values
of the correlation parameter Γ are shown in Fig. 1.
We now examine an alternative approach to analyzing

the stability of the GLVEs in Eq. (1). Namely, we consider
the reduced interaction matrix (the interaction matrix
between the species in the surviving subcommunity).
More precisely, this is defined by

a0ij ¼ aij − δij; ð2Þ

where i; j ∈ S (with S the set of surviving species), and
where the shift in the diagonal elements reflects the −xi
term inside the brackets of Eq. (1). It can be shown that a
fixed point of the GLVEs is stable if and only if all of the
eigenvalues of the reduced interaction matrix have negative
real parts [17,25,26] (see also Sec. S2 in the Supplemental
Material).
We note that the statistics of the reduced interaction

matrix elements are determined by the extinction dynamics
in the GLVE system, and are consequently vastly different
from those of the original interaction matrix [33,43]. For
instance, they are non-Gaussian (even when the aij are
Gaussian), and there are correlations between elements
sharing only one index (see the Supplemental Material [39],
Sec. S6). This makes the calculation of the eigenvalue
spectrum of the reduced interaction matrix a nontrivial task.
As is illustrated in Fig. 2, the spectrum of the reduced

interaction matrix consists of a bulk set of eigenvalues and a
single outlier. Writing zij ¼ aij − μN−1 (where once again
i; j ∈ S), both the outlier eigenvalue λoutlier and the bulk
spectral density ρbulkðλÞ can be obtained from the resolvent
matrix G ¼ ½ω1 − z�−1. The bulk density is calculated from
the trace of G via well-known relations [44]. The outlier
eigenvalue in turn fulfills [45–47]

Gð1þ λoutlierÞ ¼
1

μϕ
; ð3Þ

where GðωÞ≡ ðNϕÞ−1Pi;j∈S GijðωÞ, and where ϕ is the
fraction of surviving species at the fixed point.

FIG. 1. Stability diagram [16,35] of the GLVE system in the
plane spanned by μ and σ2 for fixed values of the correlation
parameter Γ. Solid lines indicate the M → ∞ transition, dashed
horizontal lines the linear instability. These lines were produced
using Eqs. (S22) and (S28) in the Supplemental Material [39],
respectively. Vertical lines mark the values of μ used in the two
panels of Fig. 3. The system has a unique stable fixed point below
the dashed lines and to the left of the solid lines.
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We first briefly discuss the bulk spectrum, for which the
results do not run counter to the universality principle. We
use a series expansion for a Hermitized version of the
resolvent of the reduced interaction matrix. This standard
approach accounts for the nonanalytic nature of the
resolvent in the bulk region [48–50].
We find that the resulting series for the trace of the

resolvent matrix is identical to that of a Gaussian random

matrix in the limit N → ∞. That is, we show that the
higher-order statistics of the reduced interaction matrix do
not contribute to this series and, therefore, that the
universality principle holds for the bulk region. The only
statistics of the reduced interaction matrix that contribute
are ðσ0Þ2 ≡ NSVarða0ijÞ ¼ ϕσ2 and Γ0 ≡ Corrða0ij; a0jiÞ ¼ Γ
where NS is the number of surviving species (we calculate
these statistics in Sec. S6 of the Supplemental Material).
One obtains the familiar elliptic law [51]

ρbulkðλÞ ¼
�

1
πðσ0Þ2½1−ðΓ0Þ2� if ð1þxÞ2

ð1þΓ0Þ2 þ y2

ð1−Γ0Þ2 < ðσ0Þ2;
0 otherwise;

ð4Þ

where λ ¼ xþ iy. We can show (see the Supplemental
Material [39], Sec. S5C) that the bulk of the eigenvalue
spectrum crossing the imaginary axis corresponds to the
linear instability of the GLVEs, represented by the dashed
horizontal lines in Fig. 1. This is verified in Fig. 3(a).
We now move on to the outlier eigenvalue, which is a far

less trivial matter. We first discuss two candidate expres-
sions for the outlier eigenvalue based upon calculations for
Gaussian random matrix ensembles. We show that neither
of these expressions is accurate, and that the universality
principle fails to predict the outlier eigenvalue. We sub-
sequently derive an accurate expression for the outlier,
which we show correctly predicts stability.
Noting previous work [14,24,45,52], one might perhaps

expect that μ0 ¼ NSa0ij (i ≠ j), together with ðσ0Þ2 and Γ0
would be sufficient to predict the outlier eigenvalue of the
reduced interaction matrix. Using an established formula for
the outlier eigenvalues of Gaussian randommatrices [45,52],
one then obtains λ0 ¼ −1þ μ0 þ Γ0σ02=μ0.

FIG. 2. The eigenvalues of the reduced interaction matrix.
Results from a computer simulation of the GLVE are shown as
markers. The solid red curve and the hollow circle show the
theoretical predictions for the bulk region and outlier eigenvalue
in Eq. (4) and Eqs. (S71)–(S73) of the Supplemental Material
[39], respectively. Two naive predictions for the outlier that do
not take the full statistics of the reduced interaction matrix into
account are shown as a yellow triangle (λ0 in the text) and an
orange square (λ1 in the text). System parameters are σ ¼ 1.1,
μ ¼ 0.9, Γ ¼ −0.5, and simulation data is from a single reali-
zation with N ¼ 10000.

(a) (b)

FIG. 3. (a) Right edge of the bulk of the eigenvalue spectrum of the reduced interaction matrix versus σ2 for different values of the
system parameter Γ and fixed μ ¼ −0.5. Markers are the result of averaging the results of ten simulations of the GLVE with N ¼ 4000.
The dashed colored lines are given by λedge ¼ −1þ σ

ffiffiffi
ϕ

p ð1þ ΓÞ, and the vertical dot-dashed lines are the points where the linear
instability occurs in the GLVE (see the dashed lines in Fig. 1). (b) Outlier eigenvalue of the reduced interaction matrix versus σ2 at fixed
μ ¼ 0.6 and for the same values of Γ as in (a). Markers are the result of averaging the results of ten simulations withN ¼ 4000. The solid
lines are the analytical result in Eqs. (S71)–(S73) of the Supplemental Material, and the vertical dot-dashed lines are the points where
M → ∞ in the GLVE (see the solid lines in Fig. 1).
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If we also include the effects of correlations between
elements sharing only one index γ0 ¼ N2Corrða0ij; a0kiÞ
(where k ≠ i), we arrive at (using results from our previous
work [47])

λ1¼−1þμ0 þμ0

2

�
1þΓ0

γ0

�" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4γ0σ02

ðμ0Þ2

s
−1

#
: ð5Þ

The approach leading to Eq. (5) takes into account all
possible correlations for a Gaussian random matrix with
statistical symmetry between different species. We note that
correlations between elements in the same row or column
also exist in the reduced interaction matrix (see the
Supplemental Material [39], Sec. S6A), but these do not
affect the location of the outlier [47].
If the universality principle were to apply to the reduced

interaction matrix, then the Gaussian prediction λ1 and the
true outlier eigenvalue would coincide, whether or not the
elements of the reduced interaction matrix were also
Gaussian distributed. As can be seen in Fig. 4, λ1 is a
better approximation than λ0, but neither expression cor-
rectly predicts the outlier.
We now take into account the full statistics of the matrix

elements a0ij, as we did when calculating the bulk eigen-
value spectrum, and deduce the correct expression for the
outlier eigenvalue. In the region of the complex plane
outside the bulk (where the outlier resides), the resolvent
can be expanded as a series in 1=ω [Eq. (S36) in the
Supplemental Material]. We evaluate each term in this
series in terms of the statistics of species abundances,
which are available to us via DMFT. This is accomplished
via a generating-functional approach (Supplemental
Material [39], Sec. S4).

Using diagrammatic techniques to recognize the self-
similarity of the resulting series [48–50,53], we arrive at a
compact formula for the resolvent [Supplemental Material
[39], Eq. (S69)]. Using Eq. (3), we then obtain an implicit
set of equations for the outlier eigenvalue in terms of the
statistics of the surviving species abundances [see
Eqs. (S71)–(S73) in the Supplemental Material]. We
emphasize that in finding our final expression for the
outlier, no approximations have been made other than
assuming the thermodynamic limit. The simulation data in
Figs. 3 and 4 verify that the expression in Eqs. (S71)–(S73)
accurately predicts the outlier eigenvalue.
We also demonstrate analytically (see the Supplemental

Material [39], Sec. S4D) that this prediction for the outlier
eigenvalue correctly predicts instability of the fixed point of
the GLVE system. That is, λoutlier crosses the imaginary axis
precisely at locations in parameter space where theM → ∞
transition occurs in the GLVEs. This is also verified in
Figs. 3 and 4.
We thus conclude that stability cannot be predicted from

the reduced interaction matrix using Gaussian random
matrix results, even if all correlations are accounted for.
This indicates that the extinction dynamics leads to some
more intricate structure to the interactions in the surviving
community.
Advancing ideas in Refs. [26,33,54], we show in the

Supplemental Material [39] (Sec. S10) how one can
generate the ensemble of reduced interaction matrices
“from scratch” (i.e., without running the Lotka-Volterra
dynamics and eliminating extinct species). This is achieved
by first drawing a set of mock abundances from the known
distribution of GLVE fixed-point abundances [16,33].
Subsequently, one then draws interaction matrices from
a carefully constructed distribution, which is dependent on
the mock abundances. We verify in the Supplemental
Material [39] that this bottom-up construction leads to
non-Gaussian matrices with the same statistical properties
and leading eigenvalue as the ensemble of true reduced
interaction matrices.
Having constructed the reduced interaction matrix

ensemble in this way, we can thus see more clearly why
universality fails to capture stability. The ensemble is
manifestly non-Gaussian with complex interdependencies
between matrix elements. By making a simple Gaussian
assumption and ignoring the higher-order moments, one
does not correctly take into account this intricate under-
lying structure.
Finally, we perform some additional tests of our results

to demonstrate their robustness. For example, realistic
ecological communities might be composed of only a
relatively small number of species. We have verified that
our expression for the outlier in Eqs. (S71)–(S73) of the
Supplemental Material [39] is also a better predictor of
stability than the more naive theories whenN ¼ 50, leading
to communities of about 25 surviving species (Fig. S4 in

FIG. 4. Outlier eigenvalue of the reduced interaction matrix as a
function of σ2, at fixed μ ¼ 0.6;Γ ¼ −0.2. Markers indicate the
results of computer simulations (N ¼ 1000, averaged over ten
trials). The solid line is from Eqs. (S71)–(S73) of the Supple-
mental Material, whereas the dashed line and dot-dashed lines are
the two naive predictions λ0 and λ1 (respectively) given in the
text. The vertical dot-dashed line marks the point at which
M → ∞ in the GVLE (see the solid lines in Fig. 1).
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the Supplemental Material). It has also been pointed out
that heterogeneity of carrying capacities across species can
significantly affect ecological equilibria [33,55]. We show
in Sec. S9 of the Supplemental Material [39] that our
conclusions continue to hold in such situations.
To conclude, we have deduced the stability of the

generalized Lotka-Volterra system by calculating the eigen-
value spectrum of the interaction matrix of the surviving
species. We have shown that results that are derived for
Gaussian randommatrices, which are often assumed also to
apply to non-Gaussian ensembles, fail in this case. Instead,
higher-order statistics of the reduced interaction matrix
must be taken into account. We have therefore found a
noncontrived class of random matrices for which the
universality principle of RMT is not applicable. This
demonstrates that there are limitations to results in RMT
that are derived making an assumption of Gaussian
interactions. Universality should therefore not be invoked
without careful consideration.
Our results also have immediate relevance for the field of

theoretical ecology. In the widely used approach pioneered
by Robert May [12,13], one supposes that the Jacobian
governing small deviations of species abundances about a
fixed point can be represented by a randommatrix.May does
not say what the dynamics are that lead to this Jacobian. One
particular objection to this approach is hence that the
statistics of May’s random matrices do not necessarily
correspond to “feasible” equilibria [24,25,28,30].
The fixed point of the GLVEs is feasible by construction.

Therefore, our work shows that the stability of a feasible
equilibrium in a complex ecosystem can be found by
studying the eigenvalues of a random interaction matrix.
Feasibility is reflected in the higher-order statistics of the
interactions between species. Crucially, we find that these
intricate statistics cannot be ignored if one is to correctly
predict stability.
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