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Ising superconductivity induced from
spin-selective valley symmetry breaking in
twisted trilayer graphene

J. González 1 & T. Stauber 2

We show that the e-e interaction induces a strong breakdown of valley sym-
metry for each spin channel in twisted trilayer graphene, leading to a ground
statewhere the two spin projections have opposite signof the valley symmetry
breaking order parameter. This leads to a spin-valley locking in which the
electrons of a Cooper pair are forced to live on different Fermi lines attached
to opposite valleys. Furthermore, we find an effective intrinsic spin-orbit
coupling explaining the protection of the superconductivity against in-plane
magnetic fields. The effect of spin-selective valley symmetry breaking is vali-
dated as it reproduces the experimental observation of the reset of the Hall
density at 2-hole doping. It also implies a breakdown of the symmetry of the
bands from C6 to C3, with an enhancement of the anisotropy of the Fermi lines
which is at the origin of a Kohn-Luttinger (pairing) instability. The isotropy of
the bands is gradually recovered, however, when the Fermi level approaches
the bottom of the second valence band, explaining why the superconductivity
fades away in the doping range beyond 3 holes per moiré unit cell in twisted
trilayer graphene.

The discovery of superconductivity and its parent insulating phases at
themagic angle of twisted bilayer graphene (TBG)1, 2 has opened a new
era in the investigation of strongly correlated phenomena in two-
dimensional electron systems. There is an ongoing debate about the
origin of the superconductivity in TBG3–40, which could also clarify
whether a similar phenomenon can arise in other moiré van der Waals
materials. In this regard, superconductivity has been already observed
in twisted trilayer graphene (TTG)41,42, showing unconventional fea-
tures like reentrant behavior under large magnetic fields43–49. More-
over, in the presence of spin-orbit coupling, a valley symmetry (VS)
broken state can lead to a zero-field superconducting diode effect50,51.

TTG has also shown a striking phenomenon of reset of the Hall
density at integer fillings of the highest valence and lowest conduction
bands41,42. Specifically at 2-hole doping, it has been found that the Hall
density jumpsdown to zero.Thisobservation is particularly important,
since the effect of reset precedes the development of the

superconducting regime right below 2-hole doping as well as right
above 2-electron doping in the conduction band.

Here, we show within a self-consistent Hartree-Fock resolution in
real space that the extended Coulomb interaction has a natural ten-
dency to induce the breakdown of the VS of TTG. This lifts the
degeneracy of theDirac cones bymoving themup anddown in energy,
respectively. The effect becomes strongest at 2-hole doping such that
the Fermi level is pushed up to the vertices of the Dirac cones in the
lower valley. At that filling, the Dirac nodes turn out to be unstable
against time-reversal symmetry breaking with condensation of a Hal-
dane mass, opening a gap at the Fermi level. As we show below, this is
the mechanism responsible for the experimentally observed reset of
theHall density.We also show that the Fermi lines for spin-up and spin-
down electrons are different but related by inversion symmetry, i.e., by
the exchange of the two K points in the Brillouin zone, as seen in Fig. 1.
However, within one spin-channel, VS breaking leads to inversion
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breaking, as seen in Fig. 2. Ultimately, this can explain the violation of
the Pauli limit by a factor of 2–3, observed in experiments.

Results
Spin-selective valley symmetry breaking
We deal with the setup of TTG usually realized in the experiments, in
which the twoouter layers are rotatedby the sameangle θwith respect

to the central layer.Wemodel this configuration by taking a twist angle
θ ≈ 1.61∘ belonging to the set of commensurate superlattices realized
by TBG. Then, the low-energy states are distributed into a Dirac-like
band, with states odd under mirror symmetry with respect to the
central plane, and two additional valence and conduction bands, with
states even under themirror symmetry (see the SupplementalMaterial
(SM)). The latter are the counterpart of the flat bands of TBG, and they
become progressively flatter when approaching the magic angle of
TTG, which is ≈1.6∘.

In what follows, we apply an atomistic approach to TTG, based on
a tight-binding model for the π orbitals of the carbon atoms. The
Hamiltonian H is written as

H =H0 +Hint, ð1Þ

whereH0 stands for the non-interacting tight-bindingHamiltonian and
Hint is the interaction part. This is expressed in terms of creation
(annihilation) operators a +

iσ (aiσ) for electrons at each carbon site iwith
spin σ

Hint =
1
2

X
i,j,σ,σ0

ay
iσaiσvσσ0 ðri � rjÞay

jσ 0ajσ0 , ð2Þ

For ri ≠ rj, we take vσσ0 ðri � rjÞ= vðri � rjÞ, v being the extended Cou-
lombpotential with the long-range tail cut-off at a distance dictated by
the screening length ξ, arising from the presence of nearby metallic
gates, and with the strength further reduced by a dielectric constant ϵ.
For ri = rj, we have the Hubbard interaction vσσ 0 =Uδσ,�σ0 , where we
take U = 0.5 eV. The precise value of this rather small coupling is not
relevant, as long as it is nonvanishing, but it plays a very important role
to constrain the relative orientation of the spin projections in the two
valleys of TTG (see the SM for all the details about the interaction).

We resort to a self-consistent Hartree-Fock approximation in
order to study the effects of the e-e interaction. In this approach, the
full electron propagator G is represented in terms of a set of eigen-
values εaσ and eigenvectorsϕaσ(ri) modified by the interaction, in such

Fig. 2 | Energy contour map of the second valence band at filling fraction
ν = −2.8.Energy contourmapof the secondvalenceband (for spin-upprojection) in
the Brillouin zone of TTG at twist angle θ ≈ 1.61∘, computed in a self-consistent
Hartree-Fock approximation with dielectric constant ϵ = 48 and filling fraction of
2.8 holes per moiré unit cell. The thick contour stands for the Fermi line and
contiguous contour lines differ by a constant step of 0.1 meV.

Fig. 1 | Energy contour maps of the second valence band at filling fraction
ν = −2.4. a Fermi lines for spin-up electrons. b Fermi lines for spin-down electrons.
Energy contours are shown on the moiré Brillouin zone of TTG with twist angle

θ ≈ 1.61∘, for dielectric constant ϵ = 48 and filling fraction of 2.4 holes permoiré unit
cell. Contiguous contour lines differ by a constant step of 0.2meV.
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a way that in the static limit

Gð Þiσ,jσ = �
X
a

1
εaσ

ϕaσðriÞϕ*
aσðrjÞ: ð3Þ

We seek then the self-consistent resolution of the Dyson equation
involving G, the noninteracting propagator G0 and the self-energy Σ

G�1 =G�1
0 � Σ: ð4Þ

The self-consistent approach becomes feasible as the electron
self-energy Σ is expressed entirely in terms of the set of ϕaσ(ri). In the
static limit, we have

Σð Þiσ,jσ = Iij
X
a

0X
l,σ 0

vσσ0 ðri � rlÞ∣ϕaσ0 ðrlÞ∣2

� vσσðri � rjÞ
X
a

0
ϕaσðriÞϕ*

aσðrjÞ,
ð5Þ

where the primemeans that the sum is to be carried over the occupied
levels52.

The Fock contribution in Eq. (5) becomes essential in order to
account for the dynamical symmetry breaking. In TTG, we find that the
dominant patterns correspond to the breakdown of time-reversal
invariance. This may be characterized by two different order para-
meters

PðσÞ
± = Im

X
i2A

hðσÞ
i1i2

hðσÞ
i2i3

hðσÞ
i3i1

� �1
3
±
X
i2B

hðσÞ
i1i2

hðσÞ
i2i3

hðσÞ
i3i1

� �1
3

 !
ð6Þ

where the sums run over the loops made of three nearest neighbors
i1, i2 and i3 of each atom i in graphene sublattices A and B, with matrix
elements

hðσÞ
ij =

X
a

0
ϕaσðr iÞϕ*

aσðr jÞ, ð7Þ

which can be interpreted as an effective hopping between sites i and j.
One can check that PðσÞ

� gives a measure of the mismatch in the energy
shift of the bands in the two valleys of the electron system. On the
other hand, a nonvanishing PðσÞ

+ is the hallmark of a Chern insulating
phase, as described originally by Haldane53.

The analysis of internal screening in TTG reveals that the effective
value of the dielectric constantmust have in ourmodel amagnitude of
ϵ ~ 50 (see SM). The extended Coulomb interaction is then in a regime
where the dominant order parameter is that of VS breaking, while PðσÞ

+

becomes also nonvanishing atfilling fraction ν = − 2. This canbe seen in
Fig. 3, which shows the splitting at the K point of the Dirac cones from
the two valleys, as an effect of VS breaking. At 2-hole doping, the Fermi
level should be then at the vertex of the Dirac cone of the lower valley.
However, the interaction is strong enough to trigger the condensation
of the Haldane mass, which leads to the gap seen in Fig. 3 at the Fermi
level. In this discussion, the effect of the “third”, lowest Dirac cone can
be safely neglected as this band belongs to a different representation
of the mirror symmetry.

Hall density reset
From the resistivity tensor ρ as function of the magnetic field B, the
Hall density nH can be obtained which is usually directly related to the
electronic density n:

nH = � e
dρxy

dB

� ��1

ð8Þ

Experimentally, a reset from a large value down to zero Hall density is
observed in TTG at 2-hole doping (aswell as at 2-electron doping in the
conduction side). In our interacting model, we can explain such a
discontinuity as a result of the jump of the Fermi level across the gap
shown in Fig. 3, from the bottom of the first valence band (VB) to the
top of the second VB.

As shown in the SM, in the semiclassical approximation, closed
trajectories quite generally lead to a universal Hall density nH = n, in
terms of the electronic density n. Even extreme elliptic trajectories
still fall under this universality class and anharmonic effects due to
trigonal warping usually lead only to slight deviations. Thus, linear
(universal) behavior nH = n is obtained starting from filling fac-
tor ν = 0.

Non-universal behavior with nH ≠ n only comes from open tra-
jectories which are usually linked to van Hove singularities (vHSs)54.
Around these points, the diverging Hall density is given by

nH =
n
π
ln

αΛ2

∣μ∣+ kBT
, ð9Þ

Fig. 3 | Self-consistent band structure along high-symmetry lines at filling
fraction ν = −2.Highest valence and lowest conduction bands of TTG at twist angle
θ ≈ 1.61∘, computed in a self-consistent Hartree-Fock approximation with dielectric
constant ϵ = 48 and filling fraction of 2 holes per moiré unit cell (the dashed line
stands for the Fermi level). The inset shows the density of states in the energy
interval between 1.94 eV and 1.98 eV.
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Fig. 4 | Hall density for the twohighest valence bands.Hall density as function of
the filling factor in units of the density n0 of one electron per moiré supercell for
three different temperatures T =0, 70mK, 1K. Also shown are the maximal values
for each sub-band of the Hall density measured in Ref. 42, as well as the dashed
purple lines indicating the universal behavior. The reset at 2-hole doping emerges
due to the gap at the half-filled VB, see Fig. 3.
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where α is related to the inverse reduced mass, Λ is the phenomen-
ological band-cutoff, and μ the relative chemical potential corre-
sponding to the electronic density n. We also introduce the finite
temperature T that smears out the logarithmic divergence, which shall
also include disorder effects. Details on the derivation of Eq. (9) and
the fitting procedure are given in the SM.

For a quantitative discussion of the Hall density in TTG, we con-
sider the first and second VBs for ν = −2 and ν = −2.8, respectively, see
SM. We expect deviations due to varying filling factors to only slightly
shift the energy of the vHS corrections. Due to the pronounced gap
between the first and the second VB, there is a reset of the Hall density
at ν = −2, which leads to nH = ν + 2 for ν < −2 due to the closed semi-
classical orbits of theband structurenear theband edge. Asmentioned
above, the linear (universal) behavior is also obtained around filling
factors ν =0 and ν = −4 (neglecting the contribution of the Dirac cone
that becomes relevant for ν ≈ −4).

Figure 4 shows the Hall density nH as function of the filling factor
for different temperatures T =0, 70mK, 1 K. The energies and
respective filling factors of the vHSs are indicated by the logarithmic
divergences for T =0. Also shown are themaximal values for each sub-
band of the Hall density measured in Ref. 42, as well as the dashed
purple lines indicating the universal behavior. The curve for T = 1 K
agrees well with the experimental results performed at T = 70mK,
which suggests a considerable amount of disorder in the unbiased
sample.

Ising superconductivity
The strong spin-selective VS breaking leads to ground states where the
inversion symmetry is broken for each spin projection, but in which
this symmetry is recoveredupon exchangeof the two spin projections,
as shown in Fig. 5. This opens the possibility of having Ising super-
conductivity, inwhich each spinprojection in a Cooper pair is attached
to a different Fermi line and the singlet is polarized in out-of-plane
direction55–57. This lends protection to the superconductivity against
in-plane magnetic fields as no Zeeman term arises.

The actual pairing instability takes place as a result of the aniso-
tropy of the e-e scattering along the Fermi lines, which is strong
enough to induce an effective attraction. This is characterized by the
appearance of a negative coupling when projecting the Cooper pair
vertex V onto the different harmonics along the Fermi line. The vertex
V is indeed a function of the anglesϕ andϕ0 of the respectivemomenta
of the spin-up incoming and outgoing electrons on each contour line
of energy ε. The scattering of Cooper pairs in the particle-particle
channel leads to a reduction of the amplitude of the vertex, given by

the equation

V ðϕ,ϕ0Þ =V0ðϕ,ϕ0Þ � 1

ð2πÞ2
Z Λ0 dε

ε

Z 2π

0
dϕ00 ∂k?

∂ε

∂kk
∂ϕ00 V0ðϕ,ϕ00ÞV ðϕ00,ϕ0Þ ð10Þ

where k∥, k⊥ are the longitudinal and transverse components of the
momentum for each energy contour line while V0ðϕ,ϕ0Þ is the bare
vertex at an energy cutoff Λ0 (see SM). By differentiating Eq. (10), we
get

ε
∂bV ðϕ,ϕ0Þ

∂ε
=

1
2π

Z 2π

0
dϕ00bV ðϕ,ϕ00ÞbV ðϕ00,ϕ0Þ ð11Þ

with bV ðϕ,ϕ0Þ= FðϕÞFðϕ0ÞV ðϕ,ϕ0Þ and FðϕÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∂k?=∂εÞð∂kk=∂ϕÞ=2π

q
.

Then, when there is a negative eigenvalue in the expansion of bV in
harmonics, Eq. (11) leads to a divergent flow for that particular eigen-
value as ε→0, which is the signature of the pairing instability.

The crucial point is the determination of V0ðϕ,ϕ0Þ at the upper
cutoff, forwhichoneusually takes the interaction vdressed at the scale
Λ0. The relevant electron-hole processes can be summed up to give
(see SM)

V0ðϕ,ϕ0Þ= vk�k0

1 + vk�k0χk�k0
+

v2Qeχk+k0

1� vQeχk+k0
, ð12Þ

where k,k0 are the respective momenta for angles ϕ,ϕ0 and χq,eχq are
particle-hole susceptibilities at momentum transfer q, defined in
the SM.

It now remains to expand the vertex V0 in the different harmo-
nics cosðnϕÞ, sinðnϕÞ. We illustrate here this analysis taking in parti-
cular the dispersion of the second VB represented in Fig. 1, for filling
fraction ν = −2.4. Similar analyses corresponding to ν = −2.8 and
ν = −3.6 can be found in the SM, showing the trend of decreasing
pairing strength.

The results of the expansion can be grouped in terms of
irreducible representations of the symmetry group of the dispersion,
as shown in Table 1 for ν = −2.4. We observe that there are several
negative eigenvalues corresponding to different harmonics (with
angles measured from one of the corners of the triangle-like Fermi
lines in Fig. 1). From the resolution of Eq. (11), the dominant negative
eigenvalue λ leads to a pole at a critical energy scale (see SM)

εc =Λ0e
�1=∣λ∣ ð13Þ

This can be translated into the critical temperature Tc of the pairing
instability. At ν = −2.4, the Fermi level is near the middle of the second
VB shown in Fig. 1, so we can take Λ0 as half the bandwidth (≈ 1.5meV).

Fig. 5 | Self-consistent band structure for both spin projections along high-
symmetry lines at filling fraction ν = −2.4. Energy bands of TTG around charge
neutrality (computed for dielectric function ϵ = 48 and filling fraction ν = −2.4)
along a rectilinear path ΓKK 0Γ, discerning the dispersion for spin-up and spin-down
electrons.

Table 1 | Dominant eigenvalues of the Cooper-pair vertex

Eigenvalue λ harmonics Irr. Rep.

2.66 1

1.80 {cos(ϕ),sin(ϕ)} E

0.65 cos(3ϕ) A1

0.42 {cos(4ϕ),sin(4ϕ)} E

−0.37 {cos(4ϕ),sin(4ϕ)} E

−0.37 sin(3ϕ) A2

0.22 {cos(5ϕ),sin(5ϕ)} E

0.18 sin(6ϕ) A2

Eigenvalues of the Cooper-pair vertex with largest magnitude and dominant harmonics,
grouped according to the irreducible representations of the approximate C3v symmetry,
for the Fermi line shown in Fig. 1. The modes fcosð4ϕÞ, sinð4ϕÞg appear twice in the list,
as they only denote the dominant harmonic, but they actually represent different
eigenvectors.
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Then, we estimate Tc ~ 1 K, which is consistent with the order of mag-
nitude found in the experiments.

A detailed inspection shows that the nesting between parallel
segments of the triangular Fermi lines for opposite spin projections (as
seen in Fig. 1) is the effect behind the large magnitude of the negative
couplings in Table 1. Once the Fermi line crosses to the other side of
the vHS shown in Fig. 2 at ν ≈ −2.8, the triangular patches are replaced
by elliptical Fermi lines. This comes with a decrease in the magnitude
of the negative couplings, leading to a substantial drop of the critical
temperature (see SM) whichmay explain why the superconductivity is
suppressed in the experiments in that doping range.

Finally, we can estimate the critical magnetic field that is needed
to break up the Cooper pairs. For an in-plane field, orbital effects can
be neglected and the Zeeman term will usually shift the energy of the
spin up and spin down dispersions by± μBB, respectively. This energy
can be related to the pairing energy, giving rise to the Clogston-
Chandrasekhar or Pauli limit Bp = 1.86Tc (in Tesla for Tc in Kelvin)58,59.
However, due to the emergence of an imaginary hopping element
between next-nearest in-plane neighbours, a Haldane flux arises which
is opposite for the two spin-projections. There is thus a renormalized
intrinsic spin-orbit coupling just as in the Kane-Melemodel, leading to
Cooper pair singlets which are polarized in out-of-plane direction. As a
consequence, there is no Zeeman coupling arising from an in-plane
magnetic field unless the field energy is larger than the characteristic
effective spin-orbit gap Δ ~ 1meV, see SI. The critical field can then be
estimated as Bc =Δ/2μB ~ 8 T, assuming the electron g-factor equal to 2.
For Tc ≈ 2 K, we thus find a violation of the Pauli limit by a factor 2–3,
consistent with the experimental findings of Ref. 47.

Discussion
We have shown that the e-e interaction induces a strong breakdown of
spin-selective VS inTTG,with the two spinprojections having opposite
sign of the VS breaking order parameter. The two spin projections are
preferentially attached to opposite K points, leading to an effect of
spin-valley locking. In these conditions, the electrons with opposite
momenta of a Cooper pair are forced to live on different Fermi lines
attached to opposite valleys, giving rise to Ising superconductivity. We
stress that in a conventional Ising superconductor such as NeSb2, the
bare spin-orbit coupling leads to spin projections perpendicular to the
plane55–57, whereashere, a renormalized spin-orbit coupling emerges as
discussed by Kane andMele60, leading to the same effect. Thus, a weak
in-planemagnetic field cannot couple to the singlet of the Cooper pair
which explains the violation of the Pauli limit, as observed
experimentally.

The breakdown of VS in each spin channel leads also to a reduc-
tion of the symmetry of the bands from C6 to C3, as the latter is the
symmetry enforced in a single valley. This enhanced anisotropy
induces a strong modulation of the e-e scattering, which is able to
trigger a Kohn-Luttinger (pairing) instability, driven solely by electron
interactions61,62. The instability is here amplified by the strong nesting
between the very regular triangular Fermi lines shown in Fig. 1, leading
in particular to an attractive interaction in twochannels corresponding
to the sinð3ϕÞ harmonic and to the two-dimensional representation
with fcosð4ϕÞ, sinð4ϕÞg. This mechanism of attraction is progressively
weakened, however, for filling fraction ν < −3 as the topology of the
Fermi line changes into elliptic form (as seen around the M points in
the plot of Fig. 2), explaining why there is a limited range of super-
conductivity in the hole-doped regime of TTG.

VS breaking seems to be a ubiquitous feature in many moiré
systems, and it is plausible that its role in the development of super-
conductivitymaybe also important in other derivatives of graphene. In
this regard, it is remarkable that superconductivity has been recently
found in rhombohedral trilayer graphene63–70, which is another system
close to an isospin instability. It would be pertinent then to reexamine
the superconductivity of such systems in the light of spin-selective VS

breaking, including TBG, to confirm the connection between the
enhanced anisotropy and the Kohn-Luttinger pairing instability
established in this paper. Moreover, it should be interesting to con-
front preliminary results on twisted quadrilayer graphene, whichmake
us expect an odd-even effect where the superconducting instability
should be most protected in the central layer present for odd
multilayers.

Methods
There are several Hartree-Fock studies using the continuummodel for
twisted bilayer71–76 or trilayer77 graphene. Here, however, we apply a
self-consistent Hartree-Fock resolution in real space78–80, which allows
us to include microscopic details such as the correct Coulomb inter-
action between the layers or the out-of-plane interaction. For details,
see the Supplementary Information.

Data availability
The datasets generated and analyzed during the current study are
available from the corresponding author on reasonable request.

Code availability
The computer codeused for the analysis and simulations in the current
study are available from the corresponding author on reasonable
request.
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