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Abstract
Drought monitoring systems are real- time information systems focused on drought 
severity data. They are useful for determining the drought onset and development 
and defining the spatial extent of drought at any time. Effective drought monitor-
ing requires databases with high spatial and temporal resolution and large spatial 
and temporal coverage. Recent reanalysis datasets meet these requirements and 
offer an excellent alternative to observational data. In addition, reanalysis data 
allow better quantification of some variables that affect drought severity and are 
more seldom observed. This study presents a global drought dataset and a moni-
toring system based on the Standardized Precipitation Evapotranspiration Index 
(SPEI) and ERA5 reanalysis data. Computation of the atmospheric evaporative 
demand for the SPEI follows the FAO- 56 Penman- Monteith equation. The system 
is updated weekly, providing near real- time information at a 0.5° spatial resolu-
tion and global coverage. It also contains a historical dataset with the values of the 
SPEI at different time scales since January 1979. The drought monitoring system 
includes the assessment of drought severity for dominant crop- growing areas. A 
comparison between SPEI computed from the ERA5 and CRU datasets shows 
generally good spatial and temporal agreement, albeit with some important dif-
ferences originating mainly from the different spatial patterns of SPEI anomalies, 
as well as from employing long- term climate trends for different regions world-
wide. The results show that the ERA5 dataset offers robust results and supports 
its use for drought monitoring. The new system and dataset are publicly available 
at the link https://globa l- droug ht- crops.csic.es/.
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1  |  INTRODUCTION

Drought is one of the most damaging hydrometeorologi-
cal hazards, affecting environmental and socio- economic 
systems (Wilhite & Pulwarty, 2017). Quantifying drought 
is very difficult since it depends on multiple physical 
factors (e.g., precipitation, soil moisture, streamflow, 
groundwater). Also, drought- related impacts strongly rely 
on the vulnerability of the affected environmental sys-
tems and socio- economic sectors (Anderegg et al.,  2019; 
Flo et al., 2021; Kim et al., 2019). Impact data are rarely 
available, so drought quantification is usually based on 
physical variables obtained from direct observations or 
modelling approaches. These physical variables are trans-
formed into indices to establish spatial and temporal com-
parisons of drought severity, irrespective of the magnitude 
and seasonality of the variable of interest and to assess 
spatial drought extent.

Drought indices are nowadays the most useful, com-
prehensible and widely used way of quantifying and 
characterizing drought severity (Heim,  2002; Mukherjee 
et al.,  2018). There are a wide variety of drought indi-
ces, each with its advantages and shortcomings, but all 
allow determining the severity and duration of droughts 
(Mishra & Singh, 2010; Mukherjee et al., 2018). Some of 
these indices are designed with a particular focus (e.g. 
determining hydrological droughts, soil moisture deficits 
or precipitation anomalies), while others have more gen-
eral use. Examples of the latter are the Palmer Drought 
Severity Index (PDSI; Palmer, 1965) and the Standardized 
Precipitation Evapotranspiration Index (SPEI; Vicente- 
Serrano, Beguería, & López- Moreno, 2010). Both indices 
have shown a close relationship with hydrological deficits, 
plant stress and crop yields (Bachmair et al., 2016, 2018; 
De Keersmaecker et al., 2017; Potopová et al., 2015; Scaini 
et al., 2015; Vicente- Serrano et al., 2014; Yuan et al., 2020).

Drought forecasting is nowadays very uncertain. 
Despite the recent advances (AghaKouchak,  2014; 
Sheffield et al., 2014; Trnka et al., 2020), the skill of cur-
rent forecasting systems is disappointingly low (Wood 
et al.,  2015). Although drought monitoring does not 
allow determining the possible temporal evolution of the 
drought, it does allow defining drought onset and devel-
opment and determining drought spatial extent and sever-
ity (Bokal et al., 2014; Dracup, 1991). It seems that drought 
monitoring is, therefore, the primary tool to assess cur-
rent drought conditions and implement drought mitiga-
tion measures and management plans (Bokal et al., 2014; 
Dracup, 1991).

The recent development of climate reanalysis datasets, 
updated with high frequency and a suitable spatial reso-
lution for regional studies, allows implementing climate 
monitoring systems. Reanalysis datasets have several 

advantages over observational ones. They provide climate 
variables that are not commonly available through ob-
servations or are difficult to spatialize (e.g. wind speed). 
Moreover, they typically provide updated and detailed 
spatial information at high frequency, which is especially 
relevant during drought development and intensification. 
During these critical periods, determining the precise 
spatial extent and severity of drought conditions has the 
highest applied interest. Moreover, as reanalysis datasets 
show physical consistency between the different variables, 
they provide spatial and temporal coherence for many cli-
matic variables. Some of these variables are highly rele-
vant for drought monitoring and are seldom registered 
in observational networks. In particular, global warming 
has increased the role of atmospheric evaporative de-
mand (AED) in the onset and evolution of droughts and 
their impact on ecological and agricultural systems (Allen 
et al., 2010, 2015; Asseng et al., 2015; Lobell et al., 2011). 
Thus, some studies suggest that increased AED plays 
a pivotal role in intensifying droughts worldwide (Dai 
et al., 2018; Dai & Zhao, 2017). With the available real- time 
observational meteorological datasets, it is impossible to 
accurately quantify the AED because temperature is the 
only variable available in most observatories. Temperature 
data alone allow only rough and uncertain estimates of 
the AED (Vicente- Serrano et al., 2020). Physically based 
methods that allow for an accurate estimation of the AED, 
such as the FAO- 56 Penman- Monteith equation, consider 
both radiative and aerodynamic components (Pereira 
et al.,  2015). In addition to temperature, these methods 
require information about air humidity, solar radiation 
and wind speed. Unlike observational datasets, reanalysis 
products provide these variables routinely.

Although drought management is usually performed 
on a local to national scale, there are different drought 
monitoring systems available on a global scale, allowing 
to assess general dry or humid conditions over large areas 
(Beguería et al., 2014; Hao et al., 2014; Turco et al., 2020; 
Wood et al.,  2015). These systems can also determine 
drought severity in regions where operative drought mon-
itoring is non- existing, which is the most common situ-
ation. Even with their inherent uncertainties, mainly for 
precipitation (Alexander et al., 2020), reanalysis products 
could be a landmark in developing global drought moni-
toring systems based on meteorological drought indices. 
This is mainly because they allow better characterization 
of the AED while offering near real- time updates.

This study describes a global drought monitoring sys-
tem based on the SPEI calculated from the ERA5 dataset. 
The information is provided at a 0.5° longitude and lati-
tude spatial resolution and is updated weekly. In addition, 
this work assesses drought severity for specific crop- 
growing regions, illustrating the potential applicability 
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of the system. In order to accomplish this task, crop yield 
masks for the world's most common crops have been 
added to the system. Importantly, this system provides in-
formation in near real time while also providing a weekly 
dataset dating back to 1979.

2  |  DATA INPUTS

2.1 | ERA5 data

ERA5 is a new reanalysis product developed by the 
European Centre for Medium- range Weather Forecasts 
(Hersbach et al.,  2020). It provides hourly precipitation 
information from 1950 and is updated regularly, provid-
ing preliminary daily precipitation data with a four- day 
delay. ERA5 also generates a potential evaporation (Epot) 
product based on a surface energy balance that could be 
assimilated to the atmospheric evaporative demand since 
it uses a constant vegetation parameter corresponding 
to crops/mixed farming and assumes non- limited water 
availability (ECMWF,  2019). Nevertheless, the ERA5 
Epot data has shown problems, as it generates a general 
underestimation and regional artefacts (ECMWF, 2020). 
For this reason, we decided to calculate the AED using 
the FAO- 56 Penman- Monteith reference evapotranspira-
tion equation based on daily inputs from different ERA5 
variables. For this purpose, we used daily data of 2- m 
maximum and minimum air temperature, downward sur-
face solar radiation, 10- m wind speed and 2- m dewpoint 
temperature. Using the ERA5 dataset with a spatial reso-
lution of 0.5°, all variables required to calculate the AED 
and precipitation were extracted. This resolution provides 
sufficient spatial detail for a global drought monitoring 
system, as it permits the identification of regional patterns 
of drought severity at continental and national spatial 
scales. Although the ERA5 dataset contains information 
since 1950, some problems have been identified before 
1970 (Simmons et al., 2021). For this reason, we decided 
to focus exclusively on the period from 1979 to the pre-
sent, which corresponds to the ERA5 first release. This, of 
course, does not impede updating the dataset to include 
earlier dates once less uncertain records are released.

The available daily information from 1979 and onwards 
was grouped on a weekly temporal scale. Nevertheless, 
as the SPEI is a relative metric that requires same peri-
ods each year, it was impossible to use ‘week’ as the ref-
erence time step for calculations. This is so because the 
first day of each year can fall on different weekdays, and 
this temporal offset propagates throughout the entire year. 
The occurrence of leap years also potentially increases the 
different periods to be compared. For this reason, each 
month was divided into four artificial ‘weekly’ periods: 

the first from the 1st to the 8th day; the second from the 
9th to the 15th day; the third from the 16th to the 22nd 
day; and the fourth from the 23rd day to the end of the 
month. This approach ensures that the analysis periods 
correspond to the same Julian days year after year, except 
for leap years that contain a one- day offset since February 
28th. In addition to the meteorological variables listed 
above, we also used elevation, latitude and the Julian day 
to calculate the weekly AED. To match the spatial resolu-
tion of the ERA5 dataset, the elevation extracted from the 
Global 30 Arc- Second Elevation (GTOPO30) was resam-
pled to a common grid resolution of 0.5° using the bilinear 
interpolation method.

2.2 | Crop masks

To facilitate the assessment of drought conditions over 
major global crop areas, we implemented spatial masks 
corresponding to the following crops: wheat, barley, corn, 
soybeans and cotton. The layers of the different crops were 
obtained from the HarvestChoice project (https://www.
ifpri.org/proje ct/harve stchoice), which provides gridded 
information on the spatial coverage of individual crops at 
very fine spatial detail (0.08°). To match the spatial resolu-
tion of the ERA5 data, crop data were resampled to a grid 
resolution of 0.5° by means of a majority filter.

3  |  DATA CALCULATION AND 
UPDATING

Using the weekly precipitation and AED, we calculated 
the SPEI at different time scales (0.5, 1, 3, 6, 9, 12, 24, 36 
and 48 months) according to the methodology detailed 
in Vicente- Serrano, Beguería, and López- Moreno (2010). 
As the primary purpose is to use this information for 
real- time monitoring, it is necessary to generate an op-
erative update of the new SPEI data as soon as new data 
are available. Recalculating the entire SPEI dataset every 
week is not feasible due to the necessary computing time 
that would delay the information update. Moreover, if the 
whole dataset is recalculated every time new data arrives, 
the previous data would also change, limiting the compa-
rability of the new data with the earlier records. For this 
purpose, we initially calculated the necessary parameters 
of the log- logistic distribution used to obtain the SPEI for 
1979– 2020. The parameters corresponding to each week 
of the year and the time scale were pre- calculated and 
stored. They were used afterwards for calculating the SPEI 
without recalculating the entire dataset each time. Also, 
this enables updating the dataset fast and efficiently as 
soon as new weekly data are available.

 20496060, 2023, 4, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/gdj3.178 by C
sic O

rganización C
entral O

m
 (O

ficialia M
ayor) (U

rici), W
iley O

nline L
ibrary on [25/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.ifpri.org/project/harvestchoice
https://www.ifpri.org/project/harvestchoice


508 |   VICENTE- SERRANO et al.

4  |  COMPARISON WITH THE 
SPEIBASE

The SPEIbase was generated in 2010 (Beguería et al., 2010; 
Vicente- Serrano, Beguería, López- Moreno, Angulo, 
et al.,  2010) and updated with different versions of the 
Climatic Research Unit (CRU) global gridded dataset 
(Harris et al., 2020). The SPEIbase uses precipitation and 
potential evapotranspiration data as a surrogate of the 
AED to calculate the SPEI at different time scales. This 
dataset is available at https://spei.csic.es/spei_database, 
and it has been widely used in drought studies consid-
ering other points of view, from the analysis of physi-
cal processes (e.g. Das et al., 2016; Yao et al., 2018; Zhao 
et al., 2017) to the study of drought impacts (e.g. Bachmair 
et al.,  2018; Feldpausch et al.,  2016; Wang et al.,  2014). 
The SPEIbase is not used for real- time monitoring in any 
system because it is updated annually and lacks the data 
updates required for real- time monitoring. Nevertheless, 
it provides useful long- term information for comparison 
with the long- term ERA5 dataset. Here, we compare the 
spatial and temporal agreement between the new ERA5 
SPEI dataset and the SPEIbase. As the CRU data have a 
monthly temporal resolution, we also calculated the SPEI 
from monthly ERA5 data. To make both datasets compa-
rable, we calculated the SPEI using the same reference pe-
riod of 1979– 2020.

The SPEI sensitivity to AED is strongly dependent on 
the average precipitation and AED magnitude (Tomas- 
Burguera et al.,  2020). Nevertheless, we do not expect a 
bias related to this issue in the comparability between the 
SPEI from CRU and ERA5 data as both datasets are simi-
lar in terms of spatial patterns and magnitude of both vari-
ables (Figures 1 and 2).

In general, there is a high correlation (Pearson's r > 0.9) 
between the 3- month and 12- month SPEI time series cal-
culated from the CRU and ERA5 datasets in vast regions 
of the world (Figure 3). There are, however, some differ-
ences. The temporal correlation between the datasets is 
higher in Europe, most of Asia, Australia, North America 
(except for high latitudes), East and Southern South 
America and Southern Africa. This means that in these 
regions, the identification of drought conditions is inde-
pendent of the dataset used. In some other areas, however, 
the correlation is much lower. This is particularly the case 
in the Amazon basin and western North America, most 
central Africa and hyper- arid areas of the Sahara and the 
Arabian Peninsula.

The factors that explain these differences can be di-
verse. On the one hand, the spatial distribution of mete-
orological stations may play a role. In most regions that 
show a high correlation between the datasets, there is 
good coverage of meteorological stations. On the contrary, 

the assessment of convection processes in humid equa-
torial regions in the ERA5 dataset is also affected by 
uncertainties (Taszarek et al.,  2021) and may affect the 
comparability between the datasets in these regions. 
In hyper- arid regions such as the Sahara or the Arabian 
Peninsula, the SPEI is driven mainly by changes in the 
AED. In these areas, land- atmosphere feedbacks related to 
the extremely warm land strongly control air temperature 
and vapour pressure deficit (Brutsaert, 1986; Brutsaert & 
Stricker, 1979). It is possible, too, that the reanalysis is af-
fected by uncertainties in assessing these processes. Also, 
wind speed assessment could play a role because the CRU 
dataset employs the 1961– 1990 average monthly wind 
speed when calculating AED. On the other hand, as a re-
sult of the complexity of the interaction between the re-
lief and the dominant airflow direction, modelling ERA5 
wind speed is significantly more uncertain than modelling 
other variables (Deng et al., 2021; Minola et al., 2020).

We assessed the degree of agreement in drought con-
ditions between the two datasets. For this purpose, we 
compared the percentage of cases in which dry (SPEI < 0), 
mild (SPEI < −0.84) and extreme drought (SPEI < −1.65) 
occurred concurrently. To accomplish this, we calculated 
the proportion of cases in which drought conditions re-
corded in the CRU SPEI are well reproduced by the ERA5 
dataset (Figure  4a). Also, we looked for cases in which 
no drought conditions were recorded in the CRU dataset, 
while drought conditions were presented in the ERA5 
dataset (i.e. false positives).

Considering dry conditions (SPEI < 0) the majority of 
the world regions exhibit high agreement between the 
two datasets, indicating that the occurrence of dry condi-
tions with the CRU dataset is generally well- reproduced 
by the ERA5 dataset. When focusing on mild and extreme 
drought events, the agreement decreases, but large areas 
of the world agree on the occurrence of drought condi-
tions. Moreover, there is a small percentage of false posi-
tives corresponding mainly to extreme and mild drought 
conditions, demonstrating that when CRU SPEI is greater 
than 0, the ERA5 SPEI showed similar patterns during the 
most anomalous drought conditions. Also, the percentage 
of false positives increases for dry conditions (SPEI < 0). 
Overall, it can be concluded that the ERA5 SPEI data is 
capable of identifying the dry conditions identified by 
CRU dataset, especially in regions of dense meteorolog-
ical records. Rather, more uncertainty is introduced in 
regions characterized by scarce and sparse network of 
observations.

A careful look into the SPEI under specific periods 
shows that in areas with low meteorological station den-
sity, the CRU SPEI seems to be strongly determined by 
the stations' spatial distribution (Figure  5), which show 
important spatial and temporal differences (see Figure 1 
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in Harris et al. (2020)). The CRU SPEI maps present cir-
cular shapes (around available observations) that do not 
correspond to the expected smooth spatial variation of wet 
and dry conditions. A representative example is the areas 
of South America (Brazil) and central Africa. The ERA5 
dataset, on the other hand, offers a much more coherent 
spatial distribution of the SPEI, with smooth, gradual 
transitions and no strange shapes.

In general, there is good agreement in the spatial dis-
tribution of the SPEI from both datasets, and they record 
similar large- scale drought periods. Nevertheless, the spa-
tial correlation is not very high (Figure  6). Correlations 
vary between 0.5 and 0.6, which means a general agree-
ment between the two datasets. Still, there are noticeable 
differences on the regional and local scales.

Considering only the spatial structure of the SPEI 
values in particular months (see Figure 5), it seems that 

the ERA5 dataset is more coherent with the spatial vari-
ations in drought. Nevertheless, modelling precipitation 
and other variables involved in calculating the AED in the 
ERA5 dataset, particularly in areas with a low density of 
meteorological stations, still introduces a degree of uncer-
tainty to this dataset.

As stressed above, the assessment of drought condi-
tions seems to show agreement between both datasets, so 
for drought monitoring, particularly in areas characterized 
by high data availability, the use of the ERA5 SPEI appears 
to be highly recommendable. Nevertheless, for the long- 
term assessment of drought conditions, further research is 
required. Some studies have found divergent trends in an-
nual precipitation between ERA5 data and observational 
datasets (Shobeiri et al., 2021; Tarek et al., 2020). In par-
ticular, Nogueira  (2020) compared the annual precipita-
tion trends from the GPCC and ERA5 datasets and found 

F I G U R E  1  Spatial distribution of average annual atmospheric evaporative demand and precipitation from 1979 to 2020 based on the 
CRU and ERA5 datasets. The difference (CRU minus ERA5) between the average values is also presented.
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that ERA5 shows ample precipitation declining trends in 
several regions of Africa and South America that are not 
observed with the GPCC. We found stronger increase in 
the surface area affected by drought using the ERA5 than 
the CRU dataset (Figure 7). The difference is likely due to 
the stronger decline in precipitation in ERA5 than in CRU 

(results not shown). However, further research is needed 
to determine the reliability of ERA5 data to assess long- 
term drought severity trends.

Here, it should be noted that data temporal homoge-
neity is not a major concern for the real- time monitoring 
application, which is more concerned with establishing 

F I G U R E  2  Scatterplots of the average 
annual, January and July atmospheric 
evaporative demand (AED) (left) and 
precipitation (right), using the ERA5 and 
CRU datasets. The scale represents the 
density of points.

F I G U R E  3  Spatial distribution of 
the Pearson's r correlation between the 
3- month and 12- month SPEI between 
1979 and 2020 using CRU and ERA5 
datasets. Statistically significant trends are 
set at Pearson's r = 0.11.
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spatial differences between areas affected by dry or humid 
conditions. It is evident that the metrics used to quan-
tify the severity of drought could be affected by the lack 

of temporal homogeneity in the input data. Nonetheless, 
this level of uncertainty can be found in any precipita-
tion dataset (Hassler & Lauer, 2021). In addition, not all 

F I G U R E  4  (a) Percentage of cases in which there is an agreement between the occurrence of droughts identified with the CRU SPEI, 
(b) percentage of false positives: Cases in which the CRU SPEI does not show drought conditions and the ERA5 SPEI suggests drought of 
different severity.

F I G U R E  5  Spatial distribution of 
the 3- month SPEI from CRU and ERA5 
datasets for June 2006 (upper panels) and 
September 2019 (lower panels).

 20496060, 2023, 4, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/gdj3.178 by C
sic O

rganización C
entral O

m
 (O

ficialia M
ayor) (U

rici), W
iley O

nline L
ibrary on [25/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



512 |   VICENTE- SERRANO et al.

parts of the world are equally affected by this uncertainty. 
Though global SPEI trends in the CRU and the ERA5 data-
sets appear to be largely in agreement (Figure 8), there are 
notable differences between the two datasets in the re-
gions where there is a limited number of meteorological 

stations and where any precipitation database suffers 
from significant limitations. In contrast, SPEI trends in 
Western Europe, North America and Australia are more 
closely aligned with each other, which strengthens the 
new system's ability to monitor drought in these regions. 

F I G U R E  6  Evolution of Pearson's 
r spatial correlations at the global scale 
between the CRU and ERA5 SPEI at 
the 3- month (blue) and 12- month (red) 
timescales.

F I G U R E  7  Evolution of the percentage of surface areas affected by mild (<−0.84; yellow), moderate (<−1.28; red) and extreme (−1.65; 
dark red) drought conditions on the global scale. Results are presented for the 3-  and 12- month SPEI based on the CRU and ERA5 datasets. 
To avoid the role of the strong temporal autocorrelation in the trend analysis, trends were calculated from the December SPEI at the time 
scale of 12 months and the average of March, June, September and December SPEI at the time scale of 3 months. Trend analysis was based 
on the Mann– Kendall test, while the magnitude of change was calculated by means of linear regression. The correlations between the CRU 
and ERA5 series are shown at the bottom of the figure.

F I G U R E  8  Three- month SPEI trends from 1980 to 2020 using the SPEIbase and the new ERA5 dataset and the differences between the 
two datasets. The units are in SPEI z- unit/decade−1.
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Reanalysis of the ERA5 data is expected to improve in the 
future in terms of data homogeneity, and these data will 
be used in the drought monitoring system in the future.

5  |  DATASET LOCATION AND 
FORMAT

The drought monitoring dataset is available at https://
globa l- droug ht- crops.csic.es/. Figure 9 shows a screenshot 
of the system. In the top- right of the screen, there are two 
menus. The first one is a timeline bar that allows selecting 
any weekly timeframe between 1979 and the present. The 
second one is a menu organized by different SPEI time 
scales (0.5, 1, 3, 6, 9, 12, 24, 36 and 48 months). Under 
each time scale, a menu allows selecting the spatial mask 
of choice. The default option is to show the entire world 
(i.e. no mask applied), and then there are six options cor-
responding to the major global crop- growing areas. When 
a crop- growing area mask is selected, only the grid cells 
in which the particular crop is cultivated are shown. The 
map is fully navigable, so the user can zoom in and out 
and change the map centre. Figure 10 shows a zoom- in 
over the barley- cultivated areas in North America.

Three different options for downloading data are avail-
able and appear in the lower- left corner. The first one 
allows downloading data at a particular grid cell. If a spe-
cific point is selected on the map, the system shows the 
grid cell coordinates. The SPEI data for that grid cell and 
the time scale chosen can be then downloaded in plain 
text, comma- separated, format (Figure 11). In addition, it 

is also possible to display a time plot showing the temporal 
evolution of the SPEI at that particular point (Figure 12). 
The figure is interactive, as it allows zooming- in to a spe-
cific period, and it also shows the values of singular mo-
ments upon cursor moves.

Finally, the entire dataset can be downloaded in 
netCDF v4 format. There are two downloading options for 
that. The first one is to download the whole dataset from 
1979 to the present, while the second one only downloads 
the last layer of the dataset. This last option is intended 
to suit the needs of particular users who already have the 
entire dataset and need to update it with the latest weekly 
data. The technical specifications of the netCDF format 
used are shown in Figure 13. It maintains the coordinate 
system (geographic) and the number of latitudes (361) 
and longitudes (720) of the original ERA5 dataset. The 
dataset times will vary with time, increasing as the dataset 
is updated with new values.

In comparison with the SPEI global drought monitor 
(https://spei.csic.es/map) developed in 2011, the inclu-
sion of the ERA5- based dataset has improved the SPEI 
monitoring system. Since 2011, the system has been main-
tained live based on GPCC precipitation and CPC mean 
temperature data. The main improvements to the current 
system are the following: (a) the new dataset multiplies 
by four the spatial resolution, as it goes from 1° to 0.5°; 
(b) the temporal frequency of the new dataset increases 
from the monthly time scale available in the SPEI global 
drought monitor to the weekly frequency of the new 
SPEI monitor based on ERA5 data; (c) the new system 
has also been enriched with more updated information 

F I G U R E  9  View of the drought monitoring system based on the ERA5 data and the SPEI.
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since every week new SPEI information is generated; and 
(4) the quality and reliability of the SPEI data included 
in the system has been improved significantly when con-
sidering the AED role, since the new system uses the 
physically based Penman- Monteith equation to calcu-
late AED. With respect to the SPEI global drought mon-
itor, the AED was calculated using the empirically based 
Thornthwaite equation (Thornthwaite,  1948) that uses 
mean temperature data. This simple method was cho-
sen because the Climate Prediction Center (CPC) mean 
temperature (Fan & Dool,  2008) was the only possible 
real- time input that allowed estimating the AED in quasi 
real time. Nevertheless, it is widely known that empirical 
AED approximations based on temperature data alone 

show limitations under global warming, as is not the case 
with physically based approaches (Sheffield et al.,  2012; 
Vicente- Serrano et al.,  2020). Although the SPEI global 
drought monitor will be maintained given its high accessi-
bility (more than 3,000 visits per month), we recommend 
that current and future users of real- time SPEI data mi-
grate to the new system based on ERA5 input given its 
higher temporal frequency, spatial resolution and physical 
consistency in AED calculation.

6  |  CONCLUSIONS

This study describes the generation of a global drought 
dataset based on the Standardized Precipitation 
Evapotranspiration Index (SPEI) using the ERA5 reanaly-
sis dataset. The dataset is maintained in near real time and 
updated weekly and is integrated into a user- friendly in-
terface with several functionalities. These characteristics 
make it an effective global drought monitoring system. 
The system provides information on a global scale, but 
users interested in crop- growing areas may apply spatial 
masks to show only the areas where specific crops are 
grown.

The associated long- term dataset, covering the pe-
riod between 1979 and the present, is potentially helpful 
in assessing the possible effects of global warming on 
drought given the role of the AED. Although this in-
formation is helpful in determining the severity of par-
ticular drought events, further research is necessary to 

F I G U R E  1 0  Example of the drought indices masked for the spatial extent of barley crop.

F I G U R E  1 1  Example of the ASCII format in which the grid 
point SPEI data can be downloaded.
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establish robust attribution of drought changes to AED 
in the ERA5 SPEI.
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