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Cáceres-Euse · Juan C. Restrepo ·
Alejandro Orfila

Received: date / Accepted: date

Abstract Mean Wave Energy Flux (hereinafter WEF) is assessed in the
Caribbean Sea from a 60-year (1958–2017) wave hindcast. We use a novel
approach, based on neural networks, to identify coherent regions of WEF and
their association with different climate patterns. This method allows for a bet-
ter evaluation of the underlying dynamics behind seasonal and inter-annual
WEF variability, including the effect induced by the latitudinal migration
of the Intertropical Convergence Zone (ITCZ) and the influence of El Niño-
Southern Oscillation (ENSO) events. Results show regional differences in WEF
variability likely due to both intensification and migration of the ITCZ. WEF
exhibits a strong semi-seasonal signal in areas of the continental shelf, with
maxima reached in January and June, in agreement with the known sea sur-
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face temperature and sea level pressure variability patterns. At larger scales,
WEF shows a significant correlation with the Oceanic Niño Index (ONI, which
is the primary index for tracking the ocean part of ENSO climate pattern),
depicting positive values in the central and western sides of the basin and
negative ones at the eastern side.

Keywords Wave energy flux · Spatio-temporal variability · Caribbean Sea ·
Self-Organizing Maps · El Niño-Southern Oscillation · wind variability

1 Introduction

The mean wave energy flux (WEF) provides information on the magnitude
and temporal variations of the energy transferred from the atmosphere to the
ocean over selected periods of time (e.g. months, seasons or even years) (Do-
det et al. 2010; Ardhuin and Orfila 2018). It also extracts key details on sea
surface waves that may not be detected from single parameters, such as sig-
nificant wave height (Hs) or wave period (Tm−01), becoming a more suitable
indicator to capture wave climate variations (Reguero et al. 2019). Long time
series of WEF can be used to determine potential impacts on coastal zones,
such as variations in the planform of beaches allowing the assessment of even-
tual impacts of future wave variations on coastal areas (Fiedler et al. 2015;
Elshinnawy et al. 2017). Additionally, ocean waves are one of the renewable
energy resources that has attracted more attention in the last years due to
its potential capability of providing green and sustainable electricity offering
several advantages with respect to other energy resources (Lin et al. 2019; Ari-
naga and Cheung 2012; Liang et al. 2017). Therefore a precise characterization
of the spatial and temporal variability of WEF is crucial to evaluate the local
and regional impact of the evolving wave climate in the context of the ongoing
global warming (Wiggins et al. 2019; Elshinnawy et al. 2017; Hanson et al.
2003). However, due to the scarcity of wave measurements around the world,
to get the spatio temporal distribution of WEF we need to use validated wave
hindcasts provided by numerical models (Mentaschi et al. 2017; Mirzaei et al.
2015; Waters et al. 2009; Iglesias et al. 2009).

Previous studies have analyzed inter-annual and long-term WEF variations
associated with climate indices (e.g., El Niño-Southern Oscillation (ENSO),
Pacific Decadal Oscillation (PDO), Tropical North Atlantic index (TNA)) and
climate change projections, respectively. On a global scale, Reguero et al.
(2019) found from a 60-year wave reanalysis that wave power has increased at
a rate of 0.4% per year at global scale. These results indicate that the anthro-
pogenic global warming is strengthening synoptic winds in some regions, thus
favoring the generation of larger surface waves and affecting the global wave
climate. Reguero et al. (2015) characterized the mean wave power globally as
well as its seasonal variability with a global wave reanalysis performed with
WAVEWATCH III model. Their results showed that the effect of the inter-
annual variability is more prominent over the Northern Hemisphere, where the
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contribution of the seasonal variability is larger. Wu et al. (2017), used ERA-
Interim wave reanalysis data for the period 1997–2010 to evaluate WEF trends
at global scale, as well as trends of time series of simple parameters such as the
significant wave height (Hs), mean wave period (Tm−01), and wave direction
(θm). Among the studied parameters, they found a significant increase in the
magnitude of WEF, Hs and Tm−01 in southern mid-latitudes and in the west-
ern part of the North Atlantic and of the North Pacific. In contrast, they found
a significant decrease of the same parameters in the eastern part of the tropical
North Pacific (Wu et al. 2017). Mentaschi et al. (2017) analyzed global trends
of extreme WEF along global coastlines during the 21st century under a high
emission scenario, RCP 8.5 (Representative Concentration Pathways deliver-
ing global warming at an average of 8.5 W/m2 across the planet). Results for
this pessimistic projection would imply a WEF increase of up to 30% for most
of the southern mid-latitudes, while in the Northern Hemisphere many coastal
areas displayed negative trends. They also showed that significant long-term
trends in the extreme WEF are related with the intensification of inter-annual
signals such as El Niño-Southern Oscillation (ENSO) and the North Atlantic
Oscillation (NAO). On regional and local scales, several dedicated model-based
studies have been developed to evaluate the wave energy resource, either the
spatial distribution or the temporal variability (Liberti et al. 2013; Ponce de
León et al. 2016; Liang et al. 2017; Canals Silander and Garćıa Moreno 2019;
Cuttler et al. 2020; Guillou et al. 2020), which have helped to improve the
design and deployment of wave energy converters in the study areas. Previ-
ous studies have already characterized the wave power in the Caribbean sea.
Ortega et al. (2013) identified the best sites for a wave farm near the small
island of Isla Fuerte by means of numerical simulations. Osorio et al. (2015)
assessed the wave power potential in the Colombian Caribbean showing that
the highest values of mean wave power are of 5–7 kW/m from December to
April. This potential is relatively small compared to other places around the
world, where powers of about 40 kW/m and above are considered profitable
to implement wave farms. Appendini et al. (2015) studied the wave energy
potential in the whole Caribbean Sea from a 30-year wave reanalysis detect-
ing that below the influence area of the Caribbean Low Level Jet (CLLJ), in
the central Caribbean, the amount of wave power presents values between 8
– 14 kW/m. They also mentioned the existence of large spatial wave power
gradients, which need to be considered for the installation of energy extrac-
tion devices. Guillou (2020); Guillou et al. (2020) recently analyzed the wave
energy and wave power resources for the whole North Atlantic, including the
Caribbean Sea, using wave buoys at the open sea and a 30-year reanalysis,
respectively. Several metrics were compared to quantify the useful wave en-
ergy, as well as its seasonal variability. The maximum WEF was found during
late fall (December and January) and late spring (June and July) with wave
power ranges in the Caribbean Sea within the range of previous studies (5 –
14 kW/m).

Recently, with the same simulation we use in this work Orejarena-Rondón
et al. (2022) analyzed WEF trends in the Caribbean Sea, showing a decrease
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between 1958–2017 with an annual rate that oscillates between 0.01% and
0.2%, depending on the region. They also pointed out the necessity of further
studies on the WEF variability to analyze the changes in the coastal zones as
the result of the incident angle to the coast, as well as to identify potential
coastal areas suitable for deploying efficient and cost-effective wave energy
converters. From this perspective, here we go one step further to analyze the
spatial and temporal variability of WEF in the Caribbean Sea from 1958 to
2017 using a novel approach with which coherent regions that show similar
WEF are distinguished according to their associated wind pattern. By applying
this method one gets new insights on the physical processes that drive seasonal
and inter-annual WEF changes, including the impact of ITCZ migration and
ENSO events.

The article is structured as follows: the main Caribbean Sea features are
described in section 2. Data set and methods are outlined in section 3. Section
4 shows the main results including model validation, regional characterization
of WEF and surface wind, as well as their temporal variability at seasonal
and inter-annual scales. Finally, in section 5 we discuss the main results in the
context of the current literature, and the main conclusions are outlined.

2 Study area

The Caribbean Sea is located between latitudes 8.1◦N – 13.6◦N and longi-
tudes 84.52

◦
W–59.7◦W, being bordered by the Lesser Antilles at the east, the

Greater Antilles at the north, the eastern portion of Central America at the
west and the northern coasts of South America at the south (Figure 1). Wave
dynamics is mainly controlled by the westward surface trade winds, which
show a large seasonality, and a low-level wind core with higher speeds that
gives origin to the Caribbean Low Level Jet (CLLJ). The CLLJ has its ker-
nel at a height of around 925 hPa, although can reach heights over 800 hPa
and is located in the center of the basin (Amador 1998; Poveda and Mesa
1999; Poveda et al. 2006; Chunzai 2007; Orfila et al. 2021). Wind seasonality
is associated to the meridional migration of the ITCZ, which is also respon-
sible for the path and penetration of transient features as cold fronts and
tropical storms (Poveda et al. 2006; Poveda 2004; Andrade and Barton 2013).
The meridional oscillation of the ITCZ responds to the seasonal insolation
cycle. During the austral summer the ITCZ is located between Colombia and
Ecuador, whereas it shifts northward in the boreal summer. When the ITCZ
is located between 0–5◦S, the northern trade winds dominate in these regions
with an average speed that varies between 8 and 15 m/s (Andrade 1993; Or-
fila et al. 2021; Sayol et al. 2022). This seasonality is modulated by regional
sea surface temperature and sea level gradients which add a semi-seasonal
component (Chunzai 2007).

Regarding atmospheric instability conditions, there is little rainfall from
December to April over the Colombian basin and in the west of the Antilles.
Conversely, in the Caribbean coasts surrounding the Gulf of Darien (which
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Fig. 1 SWAN domain used for the 60-year wave simulation in the Caribbean basin. Red
triangles indicate the location of buoys used for the validation: Buoy SAI DIMAR, NOAA
buoy 42058, and NOAA buoy 42059, ordered from west to east.

includes coasts of Colombia, Panamá and Costa Rica), it rains throughout
almost the whole year (Andrade et al. 2013). By contrast, when the ITCZ is
located at a latitude between 10–12◦N, from August to November, the weaker
southern trade winds (with a mean speed of ∼4 m/s) reach the Colombian
basin, contributing to the formation and even strengthening of tropical con-
vective storms that may reach hurricane category over the western Caribbean
Sea (Andrade et al. 2013). As a result, the precipitation caused by the dis-
placement of the ITCZ only affects the Colombian basin below 10◦N. Con-
sequently, trade winds (and hence the CLLJ) permanently remain above La
Guajira peninsula. The rest of the year there is a transition period between
the aforementioned seasons, in which trade winds weaken and some rainfall
comes over the Colombia basin from April to June, while from June to August
trade winds strengthen and rainfall decreases. The latter transition time is
locally known as “Veranillo de San Juan” from its name in Spanish (Poveda
et al. 2006; Andrade et al. 2013). Winds and rainfall are sensitive to the ar-
rival of oscillations such as easterly waves, with periods of 7 days, and cold
fronts, coming from North America and crossing the Caribbean towards the
east in about 10 to 14 days generating precipitation and rising wind stress on
its way (Andrade et al. 2013; Alvarez-León et al. 1995). Large-scale signals
such as the Madden-Julian Oscillation have longer periods (40 to 50 days) and
have been detected in sea surface temperature and in rainfall records in Santa
Marta, Colombia, at a latitude above 11◦N (Rivera-Páez and Molares 2003;
Andrade et al. 2013). Moreover, there is also a strong inter-annual variability
associated with ENSO that affects both Atlantic and Caribbean coastal areas.
Huang et al. (2002); Enfield and Mayer (1997); Sayol et al. (2022) determined
that at the end of the year, when El Niño tends to become stronger, trade
winds weaken over the eastern Caribbean Sea at a latitude between 10◦N and
20◦N, extending until Africa. In contrast, in the western part of the Caribbean
Sea trade winds strengthen during El Niño events.
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3 Data and Methods

3.1 Wind data

Surface wind fields used to force the Simulating WAves Nearshore (SWAN)
model in the study area correspond to the Japanese 55-year Reanalysis (JRA-
55) simulation performed by the Japan Meteorological Agency. This data was
the first complete reanalysis in covering the last half century, and was later
extended until the near-present (1958–2020), being also the first one that ap-
plied a four dimensional variational analysis (Kobayashi et al. 2015). This set
of global atmospheric data is suitable to study multidecadal variability and the
relation of wave climate with climate change (Japan Meteorological Agency
2013). Output fields provide the 10 m height wind speed (uw, vw) on a mesh
of 23 × 43 grid points with a spatial resolution of 0.5625◦ × 0.5616◦. The data
cover the whole study area from 84.3746◦W, 7.5819◦N (lower left corner) to
60.1871◦W, 19.9371◦N (upper right corner) from 1958–2017 (both included)
with a 3-hourly temporal resolution.

3.2 Simulated WAve Nearshore-SWAN Model

The SWAN model solves the wave action balance equation for the propagation
of the wave spectrum, which allows for realistic estimations of wave parameters
in the open ocean and coastal areas (Booij et al. 1999). The SWAN domain
covers an area of 2600 km × 1175 km distributed into 229 × 101 grid cells
(Figure 1). The bathymetry of the Caribbean Sea was obtained from Colom-
bian Hydrographic Service nautical charts as well as from the general ocean
bathymetric chart (GEBCO). Waves were simulated in non-stationary mode
using the JRA-55 wind fields. Wind-induced wave growth was configured as
exponential following the formulation of Komen et al. (1984), while nonlinear
deep water interactions were parameterized following the Webb-Resio-Tracy
method (van Vledder 2006). Other relevant processes, such as wave breaking,
white capping energy dissipation, and bottom friction were included in the
simulations. The integration time step was set as 30 minutes and Hs, Tm−01,
and θm output data were recorded every 3 hours in each domain grid cell. Hs

and Tm−01 were validated through a comparison with in situ wave data mea-
sured by the NOAA-42058 buoy, which is located in the central Caribbean Sea
(Figure 2). The wave reanalysis we use in this work is published in Orejarena-
Rondón et al. (2021). To calculate error parameters between the data of the
buoys and SWAN results, we used Willmott’s index D, the average bias (P)
index and the Pearson correlation (Ortiz-Royero and Mercado-Irizarry 2008).
Willmott’s index was calculated as:
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D =

N∑
n=1

(Pn −On)2

N∑
n=1

(|Pn −O|+ |On −O|)2
(1)

While the bias index was calculated as:

D =

N∑
n=1

(Pn −On)

N∑
n=1

(On)

(2)

In both equations N is the number of evaluated values, Pn are the predicted
values, On are the observed data and O is the mean value of the data. When
Willmott’s index equals to 0 indicates complete disagreement, while when it
equals to 1 indicates a perfect agreement. Regarding the bias index, when it
equals to 0 indicates a perfect agreement, while a bias of −0.05 indicates that
the predicted data underestimates the observed data by 5%.

The Pearson correlation was calculated as:

r(x,y) =
cov(X,Y )

σXσY
(3)

Where cov is the covariance, σX and σY are the standard deviations of
X and Y , respectively. A value of the Pearson index of 1 indicates a perfect
agreement. Besides, the p value indicates if the relationship is statistically sig-
nificant at a given confidence interval. For instance, a p value < 0.05 indicates
that the relationship has a 95% confidence level for a two-tailed t-Student
distribution (0.025 in each tail).

3.3 Wave Energy Flux (WEF) calculation

Departing from the 3-hourly SWAN model output fields (Hs, Tm−01, θm), the
monthly mean WEF was determined for the period 1958 – 2017. The WEF
(FEx,FEy) was computed as:

−→
FE =

1

64π
ρg2Tm−01Hs

2
−→
k

|−→k |
(4)

where ρ is the seawater density in kg/m3, g is the gravity acceleration, Tm−01

is the mean period, Hs is the significant wave height and
−→
k is the wavenum-

ber vector. Departing from these components, we carried out a spatial and
temporal characterization of the mean WEF in the Caribbean basin through
a Self-Organizing Map analysis. Similarly, we have analyzed the inter-annual
variability of the monthly mean WEF over time through a correlation analysis
with ENSO indices.
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3.4 Self-Organizing Map (SOM)

Self-Organizing Map is a statistical tool used to compress the information
contained in a large amount of data into one single set of maps (Kohonen
1982), reducing the high dimensional feature space of input data to a lower di-
mensional network of units called neurons. This unsupervised learning neural
network is able to extract patterns from large data sets mimicking the topolog-
ical distribution of the brain neurons response in the brain. The SOM analysis
has been used in the oceanography context in several studies (Richardson et al.
2003; Hernández-Carrasco and Orfila 2018; Hernández-Carrasco et al. 2018;
Morales et al. 2022). However, to our knowledge applications of SOM analysis
have not been addressed in order to obtain regional patterns in the Caribbean
Sea of coherent wave energy flux variability.

Learning processes are carried out by an interactive presentation of the
input data to a preselected neuronal network, which is modified during the
iterative process. Each unit is represented by a weight vector with a number
of components equal to the dimension of the input data. During each iteration,
the neuron whose weight vector is the closest to the presented sample input
data vector, called Best-Matching Unit (BMU), is updated together with its
topological neighbors towards the input sample (see Hernández-Carrasco and
Orfila (2018) for a more detailed description of the SOM process). When the
probability density function of the input data is approximated by SOM, and
each unit is associated with that reference pattern that has a number of com-
ponents equal to the number of variables in the data set, the training process
finishes. Thus, this process can be interpreted as a generalization of similar
observations. In this study, a joint SOM analysis is applied over the monthly
mean fields of both WEF and surface wind in the area covered by the 60-
year wave reanalysis. In the case of the spatial analysis, since each iteration
is associated to a given time and a location of the sample, one can obtain
the evolution of a particular pattern computing the BMU for each sample. In
the temporal domain the analysis of the neurons provides temporal patterns
and the BMU is used to localize in space the temporal variability, identifying
regions of similar co-variability patterns.

The size of the neural network is an important parameter to take into
account in order to maximize the quality of the SOM analysis. The determi-
nation of the size of the neural network is empirical and somehow subjective
(Morales-Márquez et al. 2021). We chose the number of neurons of the network
after testing several sizes of the map to check that the cluster structures are
shown with sufficient resolution and statistical accuracy. In our case we have
selected for both temporal and spatial patterns 3×3 neurons since this number
facilitates the interpretation of the patterns without loosing variability of the
data set. In all of them, we have chosen the same number of rows and columns
(square network) in order to make easier the identification of the transition be-
tween groups of patterns. Due to the preservation of topology, similar patterns
are ordered according to the similarity and the resulting groups of patterns
are located around the four corners of the network (Hernández-Carrasco et al.
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2020). To analyze the effect of using different sizes of the neural networks in
the SOM computations, we have compared the results for three sizes: 2×2,
4×4, and 6×6. Sizes larger than 6×6 result in an unfeasible neural network
since the large number of neurons does not allow to identify any pattern. For
2×2 neurons, obtained patterns are too coarse and there is a loss of variability
since transition patterns do not appear, which may potentially result in the
lack of the insights of the wave energy flux patterns evolution. In contrast, for
6×6 neurons, obtained patterns are hard to read because of the large number
of patterns with zero probability of occurrence. For the 3×3 SOM analysis we
found the optimal representation of the variability of patterns with nonzero
probability of occurrence, showing negligible differences with the 4×4 neu-
rons. Note that patterns with zero probability of occurrence are included by
the algorithm to preserve the topology.

3.5 Correlation and Cross Wavelet Transform Analysis

To explore the link between monthly mean WEF and ENSO at inter-annual
scales we have proceeded as follows. First, we have performed a direct corre-
lation analysis between the Oceanic Niño Index (ONI) and the monthly mean
WEF time series at every grid cell within the study area (Figure 12); second,
the cross wavelet transform (XWT) and wavelet coherence (WTC) analysis
are applied on the ONI index and the time series associated with each of the
9 regions determined by SOM. The XWT between the temporal signals of
the mean WEF and ONI reveals those regions where energy variance is more
correlated, also giving information about their phase relationship. The XWT
of any two time series xn and yn is defined as WXY (s) = WX(s)WY ∗(s),
where ∗ denotes the complex conjugate and s is the time scale. Furthermore,
the cross wavelet power is defined as |WXY (s)| and its complex argument as
arg(WXY (s)). The latter represents the relative local phase between xn and
yn, which we will depict by arrows. The WTC spectrum highlights how large is
the covariance of these signals, regardless of the high power display (Grinsted
et al. 2004; Nalley et al. 2016; Restrepo et al. 2019). The degree of coherence
of XWT is given by the following coefficient:

R2
n(s) =

|S(s−1WXY
n (s)|2

S(s−1|WX
n (s)|2) · S(s−1|WY

n (s)|2)
, (5)

where S is a smoothing operator with values ranging between 0 (no corre-
lation) and 1 (perfect correlation). The relationship between WEF and ONI is
identified by the phase angle observed in the spectrum. An in phase relation-
ship is indicated by the arrows pointing to the right. On the other hand, an out
of phase relationship is indicated by arrows pointing to the left. Arrows that
do not point straight to the right or to the left indicate a lagged correlation
relationship.
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4 Results

4.1 Wave model validation

Validation of SWAN simulation is performed with the NOAA buoy 42058,
which is located in the central Caribbean Sea, using both Hs and Tm−01 (see
Figure 1). Conversely, due to the unavailability of other parameters, only mod-
eled Hs can be validated with those buoys located near of San Andres Island:
Buoy SAI Dimar and NOAA buoy 42059, which are located at the west and
east sides of the basin, respectively (see Figure 1). In the case of the buoy
NOAA-42058, a good fit between in-situ and model data was obtained. For
Hs, bias, correlation, and Willmot coefficient, we get values of 0.064, 0.83, and
0.9, respectively; while for Tm−01, bias, correlation, and Willmot coefficient
yield values of 0.089, 0.74 and 0.77, respectively (Figure 2). For the other two

Fig. 2 Validation of: (A) significant wave height (Hs), and (B) wave period (Tm−01) in the
central Caribbean Sea between SWAN simulation and observations provided by buoy 42058
(Figure 1). Color scale of dispersion diagrams corresponds to associated density of data used
for validation. The linear regression is represented by a black dashed line.

buoys, a good fit was found between modeled Hs and in-situ Hs estimates.
Correlation coefficients for buoy NOAA 42059 and buoy SAI Dimar were 0.7
and 0.91, respectively (Figure 3). Willmot coefficient values were 0.822 and
0.974 for buoy NOAA 42059 and buoy SAI Dimar, respectively, while bias
coefficients for buoy NOAA 42059 and buoy SAI Dimar of 0.03 and 0.0034,
respectively.

4.2 Characterization of mean WEF and surface wind in the Caribbean Sea

Monthly mean and standard deviation of WEF and surface wind are shown in
Figure 4 (A-B and C-D, respectively). The large mean wind speed is reflected
in the intensification of the CLLJ over approximately 68◦W to 80◦W and
between 12◦N and 16◦N, with average speeds between 8 and 10 m/s. Wave
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Fig. 3 Validation of Hs in the west and east of Caribbean basin (see buoys SAI DIMAR and
NOAA 42059 locations in Figure 1, respectively). Color scale of dispersion diagrams corre-
sponds to associated data density used in the validation. The linear regression is depicted
by a black dashed line.

response to this forcing is shown in Figure 4A, where WEF starts to rise
dramatically at about 70◦W and then extends toward the west of the basin.
As the WEF is related with the wave height and the period, when the WEF
reaches the highest values (1400 W/m, between 75◦W and 78◦W), wind waves
are completely developed. The standard deviation of both mean wave energy
flux and wind fields in the study area are shown in Figures 4B and D. The
largest deviation for the mean WEF is obtained between 75◦W-80◦W and
12◦N-16◦N, whilst for wind speed this is obtained between 73◦W-80◦ W and
10◦N-13◦N.

4.3 Spatial patterns of monthly mean WEF over the Caribbean Sea from
SOM Analysis

As mentioned above, spatial patterns are obtained by applying a joint SOM
analysis between the monthly mean WEF and the monthly mean horizontal
surface wind fields. The analysis is restricted to the Caribbean Sea and cov-
ers the period between 1958 and 2017. Figure 5 (first set of 3×3 neurons,
i.e., nine upper sub-figures) and Figure 6 (first set of 3×3 neurons, i.e., nine
upper sub-figures), show the coupled patterns obtained from the 3×3 SOM
neurons of WEF and surface winds with their corresponding probability of oc-
currence, which indicates how often these specific patterns occur over the 60
yr. In Figure 5 (nine lower sub-figures) and Figure 6 (nine lower sub-figures)
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Fig. 4 (A)-(C) Mean wave energy Flux (WEF) and wind field used in the simulations,
respectively. (B)-(D) Standard deviation of both mean WEF and wind fields. Background
color indicates the magnitude of WEF (in W/m, top panels) and wind speed (in m/s, bottom
panels), respectively and the arrows their direction.

the corresponding anomalies are shown for every neuron. Moreover, Figure 7
shows the monthly frequency of occurrence of the patterns determined by the
best matching unit (BMU). The BMU is obtained comparing all patterns (1–9)
with each sample of the mean WEF to calculate the frequency of occurrence
and select the pattern more similar to the sample. All patterns shown in the
nine upper sub-figures (Figures 5 and 6) are restricted to a common area in
the western Caribbean Sea strongly influenced by the CLLJ. Patterns with
the largest probability of occurrence (P1, P6 and P7) are associated with the
meridional migration of the ITCZ throughout the year (Figure 7). P1, with
an occurrence of 22.6%, is associated with the dry season (December to April,
see Figure 7), with the highest probability occurring from January to March
(>35%). P7, with an occurrence of 14.6%, is associated with the transition sea-
son. This pattern is presented with a low frequency of occurrence during May
and August, and with high frequency during June and July (>35%), when the
“Veranillo de San Juan” occurs. P6, with an occurrence of 10.4%, is associated
with the wet season (from August to November). The highest probability of
occurrence of this pattern is presented during the months of September and
October (>35%). This pattern also appears in May, a month that corresponds
to the transition period, but with lower frequency (15%). Although with less
probability of occurrence, other patterns (P2, P3, P4, P5, P8 and P9) also
take place in any of the three climatic seasons. For instance, P2 and P4, with
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Fig. 5 Spatial patterns of mean wave energy flux (WEF) given by a 3 × 3 SOM analysis
with their direction in the Caribbean basin (top panel). Standard deviation for the above
mentioned spatial patterns (bottom panel). The percentage shown in each pattern reflects
its total occurrence probability in %.

6.7% and 4.4% probability of occurrence, have a low frequency during the dry
season (March, April, May and December). P5 and P8, with 2.6% and 7.9%
probability of occurrence each one, are associated with the transition season.
P9, with 10.4% probability of occurrence, is associated with the wet season
(low frequency during June and October and moderate one during May, Au-
gust and September). P3, with 13.3% probability of occurrence, is presented
randomly throughout the year (see Figure 7): the highest probability takes
place in November (30%), the intermediate one in April and December (20%),
and the lowest one in February and March (10%). In order to assess the spatial
and temporal changes of both WEF and surface wind fields we have computed
the standard deviation of every SOM pattern (Figure 5 for the WEF and Fig-
ure 6 for the wind). Those patterns with the largest variability are P1, P6
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Fig. 6 Spatial patterns of wind fields obtained from the SOM analysis given by a 3 × 3
with their respective direction, in the Caribbean basin (top panel). Standard deviation for
the computed above mentioned spatial patterns (bottom panel). The number depicted at
the bottom-right in each pattern corresponds with total occurrence probability in %.

and P9 for WEF, and P1 and P9 for wind, being in all cases restricted to the
western Caribbean basin. As observed, the increase in the magnitude of the
WEF and wind speed, are the result of both the latitudinal displacement of
the ITCZ and the intensification of trade winds.

4.4 Temporal patterns of WEF over the Caribbean Sea from SOM analysis

To better explore the dominant direction of WEF, we have applied a temporal
SOM analysis over zonal (Fx) and meridional (Fy) components of monthly
mean WEF. As we use 3 × 3 neurons again, this analysis also provides 9
zones of co-variability in the Caribbean Sea (Figure 8). Figure 9 shows time



Spatio temporal variability of mean wave energy flux in the Caribbean Sea 15

Fig. 7 Seasonal occurrence probability of each spatial pattern of mean WEF and surface
horizontal wind fields shown in Figure 5 and Figure 6.

Fig. 8 Regions given by the temporal SOM analysis. SOM was applied with 3×3 neurons
over the monthly mean WEF. We refer for these patterns to Figure 9 and Figure 10.

series of Fx and Fy components for every region in top and bottom panels,
respectively. The sign (+/−) in the abscissas provides the direction of each
component: a negative value indicates a direction towards the west in the zonal
component and towards the south in the meridional component, whereas a
positive value indicates a direction towards the east in the zonal component
and towards the north in the meridional one. Most of the time series conserve
the same sign, which allows to clearly identify the dominant direction. As
seen, the zonal component is generally twice larger than the meridional one.
According to the magnitude of WEF, we can distinguish three groups of zones:
the largest values (in absolute magnitude) are observed in zones 7, 4, 1 (in
descending order), located in the center and western areas of the Caribbean
Basin, from 70◦W, extending toward the south and to the west of the basin
(Figure 8). Time series of WEF associated with zone 7 (Tp7 in top and bottom
panels) reach values between -1300 and -400 (W/m) for Fx, and between -220
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and 0 (W/m) for Fy (Figure 9), which indicates that WEF is predominantly
oriented towards WSW-W over the 60 years. Similar results are found in zone
4, but with a stronger meridional component. In contrast, zone 1 shows weaker,
and slightly turned to the south components (oriented SW-WSW). Moderate
values of WEF are observed in zones 8, 5 and 2. These regions cover the
center Caribbean basin between 64◦W and 70◦W, and extend toward the zone
7 (Figure 8). In zone 8, time series of u and v components take values between
-1000 and -350 (W/m), and between -60 and 100 (W/m), respectively (Figure
9). It indicates that WEF is predominantly oriented toward the W. Similarly,
components in zone 5 are also mainly oriented westward, with values between
-850 and -300 (W/m) and between -100 and 40 (W/m) (Figure 9).

Fig. 9 Temporal patterns provided by a 3 × 3 SOM time domain analysis computed over
the monthly mean WEF for zonal (Fx) and meridional (Fy) components (top and bottom
panels, respectively). Names on the top-left side of every panel: Tp1, Tp2, . . . , Tp9 refer to
patterns shown in Figure 8. µ and σ are the mean and the standard deviation of every time
series, respectively. Unit in W/m.
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Components of zone 2 show weaker zonal values, ranging from -700 and
-250 (W/m), and a stronger meridional component, between -240 and -40
(W/m), which is reflected in a slightly turned to the south dominant orien-
tation (WSW). Finally, the lowest values of WEF are observed in zones 9, 6
and 3, which are located at latitudes above the zone 8, in the eastbound of the
basin, and off the coastal zones of Colombia, Venezuela and Nicaragua (Fig-
ure 8). Time series of Fx and Fy in zone 9 show values between -650 and -250
(W/m) and between 20 and 140 (W/m), respectively (Figure 9). The latter
depicts a predominant WNW-W orientation. Similarly, time series of zone 6,
with values between -500 and -200 (W/m) and between -40 and 60 (W/m)
for u and v, respectively (Figure 9), show a dominant W-WNW orientation.
As occurred in zones 5 and 4, components are also slightly turned southward
in zone 3, with values between -400 and -150 (W/m) and between -80 and
0 (W/m) for u and v, respectively (Figure 9), with a predominant W-WSW
orientation.

4.5 Analysis of WEF direction at seasonal scale

Departing from the time series of Figure 9 we study the direction of mean
WEF at a seasonal scale for the 9 zones depicted in Figure 8. To obtain
the annual cycle we compute the 60-year monthly mean for each zone and
component (Figure 10). Results illustrate a semi-seasonal signal in the zonal
component of all regions characterized by two peaks. These peaks take place
in January and June (see the most negative values), while the minimum values
(in magnitude) are reached in April and September. These relative extremes
are associated to the latitudinal migration of the ITCZ, which affects the
magnitude of the trade winds. Regarding the meridional component, we find a
mixed behavior: Zones 1, 2 and 4 also show two peaks (see Figure 10, bottom
panel), while in northern regions such (Zones 6, 8 and 9) there is only one peak,
which takes place in May. Figure 11 summarizes previous results showing the
resultant 60-year monthly mean direction of WEF for every pattern shown
in Figure 8. As seen above, the largest WEF (>1000 W/m) comes from east
and east-northeast and correspond to patterns P7 and P4. Other modes such
as P2, P3 and P9 represent weaker configurations (100-500 W/m), although
waves keep coming from east-northeast or east-southeast, thus depicting small
fluctuations in the direction throughout the year. This small variation in the
direction is expected from the dominant trade winds.

4.6 Relationship between ENSO and the inter-annual variability of WEF

To evaluate the influence of ENSO on the inter-annual variability of WEF
we have performed a correlation analysis between both variables. To this end,
we use monthly time series of ONI and monthly mean WEF spanning from
1958 to 2017 (both years included). Results show relatively large simultane-
ous correlations (of about r = 0.4) between the mean WEF and the ONI
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Fig. 10 60-year monthly mean WEF zonal (top panel) and meridional (bottom panel)
components. Units in (W/m).

off the Caribbean coasts of Colombia and in the central Caribbean Sea, at
latitudes between 11◦N and 17◦N and longitudes between 70◦W and 77◦W
(Figure 12). Lower positive correlations (r ∈[0.1, 0.2]) are found at latitudes
between 10◦N and 17◦N, and at longitudes between 77◦W and 85◦W. Con-
versely, negative correlations (r ∈[-0.3, -0.1]) are observed off Venezuela coasts,
in the southeastern Caribbean basin (Figure 12). Next, we have computed the
wavelet coherence (WTC) for all zones provided by the temporal SOM de-
composition. The results show that ENSO correlates well and coherently with
the mean WEF over a long range of time scales and frequencies (Figure 13).
Additionally the spectrum reveals a strong co-variability between ENSO and
WEF in all regions for periods ranging from 24 to 32 months, and from 32 to
64 months. The longest period with significant correlation corresponds to 74
months (≥ 6 years). The relative phase indicates that ENSO leads WEF by
45◦ at periods between 32 and 64 months, and by 90◦ for periods between 64
and 72 months in all regions (see arrows in Figure 13 pointing downward). For
example, for periods between 32 and 64 months WTC revealed a lag (ENSO
leads) during 1993 and 1999 in all zones (see the large coherence during El
Niño 1998). Moreover, there is a longer lag (ENSO leads) during 2001 and
2011 for regions 4–9. The WTC also reveals a significant coherence between
ENSO and mean WEF for periods between 24 and 40 months, as well as an
increase in the coherence for periods between 24 and 92 months at the end of
the two series, mainly in regions 1, 4 and 7 (Figure 13A-C, respectively). The
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Fig. 11 Monthly mean WEF roses for the amplitudes shown in Figure 9, which correspond
to the 9 zones displayed in Figure 8. Units in W/m.

coherence between 24 and 40 months is initially in phase for years 1964 and
1967, lagged (ENSO leads) between 1972 and 1974, and almost in phase be-
tween years 1978 and 1983. Regarding the periods between 24 and 92 months,
the coherence is lagged (ENSO leads) from 1993 to 2017. The larger positive
correlation between WEF and ONI found during El Niño events (either during
Canonical or Modoki events, although is larger during Modoki ones) is likely
caused by the strengthening of the CLLJ, especially in the Colombian basin
(Wang 2007; Garćıa-Mart́ınez and Bollasina 2020).

5 Conclusions

Departing from a 60-year wave simulation, the analysis features the spatial
and temporal variability of the mean wave energy flux (WEF). First, we have
performed a validation of the simulated significant wave height (Hs) and mean
wave period (Tm−01), against in-situ measurements from buoy 42058 of NOAA
(Figure 2). Correlation, Weibull and Bias coefficients shown a good agreement
between modeled and observed data. The database used here contributes to
reduce the lack of available information of wave parameters in the Caribbean
Sea (Orejarena-Rondón et al. 2021). Indeed such a simulation is the longest if
compared to any other wave reanalysis available for the Caribbean Sea (Arias
et al. 2009; Dagua et al. 2013; Appendini et al. 2015; Osorio et al. 2016), and it



20 Andrés F. Orejarena-Rondón et al.

Fig. 12 Map of spatial correlation between monthly mean WEF and ONI for the study area.
White color indicates a non statistically significant correlation. Red (blue) color indicate a
positive (negative) correlation.

Fig. 13 Wavelet coherence (WTC) between monthly ONI and monthly mean WEF for all
patterns provided by the temporal SOM analysis (Figure 8): (A) zone 1, (B) zone 2, (C)
zone 3, (D) zone 4, (E) zone 5, (F) zone 6, (G) zone 7, (H) zone 8, and (I) zone 9. Arrows
determine the phase between both series. Arrows pointing to the right represent positive
correlation (in phase signals). Arrows pointing to the left represent anti-correlation (out of
phase signals). Contours depict the wavelet squared coherence significant at 95%.

has already been employed for marine energy assessment (Orejarena-Rondón
et al. 2022). However, this simulation can also be used for studies of coastal
vulnerability, to analyze climate variability, or to study open sea extreme wave
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conditions for coastal and offshore engineering, among other possible applica-
tions. The database is freely accessible in the repository https://nimbus.

imedea.uib-csic.es/s/JEaPEeeQNLPFJ3S (Orejarena-Rondón et al. 2021).
By applying a spatial SOM analysis over monthly mean WEF data it was
possible to regionalize the WEF variability in the Caribbean Sea. Thus, WEF
information was classified into 9 patterns that captured the complex behavior
of WEF (magnitude and direction). A similar analysis was also performed for
the surface horizontal wind. Results indicate that the behavior of mean WEF
is strongly modulated by the wind seasonal variations, which in turn changes
with the latitudinal migration of the Inter Tropical Convergence Zone (ITCZ)
over the Caribbean basin (Andrade 1993; Andrade and Barton 2013; Poveda
et al. 2006). Obtained patterns (Pi) with highest probability of occurrence are:
P1 with 22.64% (dry season), the P6 with 17.36% (wet season) and the P7
with 14.58% (transition season), all of them associated with the growth of the
wave height and the change in wave period of waves as they move westward,
reaching the maximum for P1 off the Colombian coasts. Other patterns are less
frequent and are distributed throughout the seasons: P4 and P2 occur during
the dry season; P3 during the wet season (November); P5 and P8 occur dur-
ing the transition season and in the beginning of the wet season. Finally, P9
occurs during both transition and wet seasons. As mentioned above, a SOM
analysis was also applied to the surface winds used to force the model. Results
are consistent with the 9 patterns obtained in the analysis of WEF (Figures 5
and 6, top panel). In this case, one observe greater influence of the Caribbean
Low Level Jet (CLLJ) in the eastern side of the basin, between longitudes
68◦W-78◦W and latitudes 11◦N - 18◦N, which differs from the WEF influence
zone (72◦W-83◦W, and 10◦N-16◦N). A plausible explanation is the large fetch
in the Caribbean Sea, which allows wind waves some space to growth until
they reach their most energetic state (Figures 5 and 6, top panels). After-
wards, we performed a temporal SOM analysis over the zonal and meridional
component of WEF in the Caribbean Sea. As a result, one identified 9 zones of
co-variability where WEF features different magnitudes and directions (Fig-
ures 10 and 11). Unsurprisingly, the zonal component is more energetic, due
to the dominant trade winds. In particular, the most energetic zones are 7,
4, 1 and 8 (Figure 9 in the top panel). Regarding the meridional component,
the most energetic zones are the 1, 4, 7 and 2. These results illustrate why
the resultant direction points sometimes to the west (P1). On the other hand,
departing from above time series of WEF we have computed the seasonal cycle
by calculating the 60-year monthly mean of the zonal and meridional compo-
nents, respectively. As a result, we get the seasonal cycle for each component
and every region. Figure 10 illustrates the influence of ITCZ latitudinal dis-
placements. Interestingly, the zonal component depicts a seasonal cycle with
two peaks in all regions. However, the meridional component has one peak in
the three regions located more to the north in the Caribbean Sea. The more
energetic is the region the more clearly defined are the two peaks since the
CLLJ, whose semi-annual cycle has been reported in previous works (Chunzai
2007; Orfila et al. 2021), has a stronger influence. As one could expect, the

https://nimbus.imedea.uib-csic.es/s/JEaPEeeQNLPFJ3S
https://nimbus.imedea.uib-csic.es/s/JEaPEeeQNLPFJ3S
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two peaks are more visible in the meridional component in those zones below
12◦N (zones 1, 4 and 2). This is consistent with the description by Andrade
(1993); Andrade and Barton (2013); Poveda et al. (2006), who described that
northernmost position of ITCZ is located between 10◦N-12◦N. Above of this
latitude the direction of WEF differs, as shown in Figure 11 for zones 6, 8 and
9.

Next, we have explored the relationship between ENSO and WEF at inter-
annual scales. The correlation analysis has shown a strong positive correlation
in the central part of the basin (0.4), lower but still positive in the Gulf of
Darien (0.1–0.2), and negative off Venezuela (−0.3 to −0.1, Figure 12). This
behavior is consistent with the findings of Enfield and Mayer (1997); Huang
et al. (2002), who determined that when the Pacific warm anomalies during an
ENSO event reach their maximum at the end of the year, trade winds weaken
over the eastern Caribbean Sea at a latitude between 10◦N and 20◦N, and ex-
tend until Africa, while in the western Caribbean Sea trade winds strengthen.
Finally, to determine the periods and lag times of common variability between
ENSO and WEF we have computed the Wavelet Coherence (WTC). Results
suggested the existence of a statistical correlation between changes in ONI
and WEF in different time periods, thus indicating that the monthly mean
WEF is sensitive to changes in ENSO. All regions were correlated with the
ONI for periods between 24 and 40 months during years 1964–1967, 1972–1974
and 1978–1983, characterized by the occurrence of large warm events in the
eastern Pacific. This correlation occurs with the same phase in all periods,
being larger between zones 4–9 (see Figure 13). Similarly, a strong correlation
during years 1993–2017 is observed in all regions for periods that span from
24 to 92 months, especially in zones 1, 4 and 7.
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