SUPPORTING INFORMATION

SEPARATION OF ISOMERIC FORMS OF UROLITHIN GLUCURONIDES USING SUPERCRITICAL FLUID CHROMATOGRAPHY

Ana M. Ares,¹ Laura Toribio,¹ Rocío García-Villalba,² Jose M. Villalgordo,³ Yusuf Althobaiti,⁴ Francisco A. Tomás-Barberán,^{2,4} José Bernal^{1*}

¹ I. U. CINQUIMA, Analytical Chemistry Group (TESEA), Faculty of Sciences, University of Valladolid, 47011, Valladolid, Spain.

² CEBAS-CSIC, Research Group on Quality, Safety, and Bioactivity of Plant-Derived Foods.
 P.O. Box 164, Espinardo, Murcia 30100, Spain

³ Eurofins-VillaPharma Research S.L.; Parque Tecnológico de Fuente Álamo. E-30320. Fuente Álamo. Murcia. Spain.

⁴ Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.

*Corresponding author: Tel# 34-983186347; e-mail: jose.bernal@uva.es

Column	Stationary phase	Technical specifications	Manufacturer
	Achiral sta	tionary phases	
	Silica based s	tationary phases	
Luna [®] NH ₂	Aminopropyl bonded to silica gel	150 x 4.6 mm; 5 μm	Phenomenex (Torrance, CA, USA)
Spherex [™] Diol	Propanediol bonded to silica gel	250 x 4.6 mm; 5 μm	Phenomenex (Torrance, CA, USA)
Luna [®] Synergi Hydro	C ₁₈ polar endcapped bonded to silica	150 x 4.6 mm; 5 μm	Phenomenex (Torrance, CA, USA)
Luna [®] Omega Polar	C ₁₈ polar endcapped bonded to silica	100 x 2.1 mm; 3 μm	Phenomenex (Torrance, CA, USA)
Lichrosphere [®] CN	Cyanopropyl bonded to silica gel	150 x 4.6 mm; 5 μm	Phenomenex (Torrance, CA, USA)
Ultisil TM XB-C ₁₈	C ₁₈	150 x 4.6 mm; 5 μm	Welch Materials Inc. (West Haven, CT, USA)
Gemini [®] C ₁₈	C ₁₈ with TMS endcapping	150 x 4.6 mm; 5 μm	Phenomenex (Torrance, CA, USA)
Kinetex [®] F5	Pentafluorophenyl with TMS endcapping	150 x 4.6 mm; 5 μm	Phenomenex (Torrance, CA, USA)
Daicel DCpak [®] PV4P	Polybutylene terephthalate coated on silica gel	250 x 4.6 mm; 5 μm	Daicel (Osaka, Japan)
Daicel DCpak [®] PBT	Poly(4-vinylpyridine) coated on silica gel	250 x 4.6 mm; 5 μm	Daicel (Osaka, Japan)
	Hydrophilic base	ed stationary phases	
Luna [®] HILIC	Dihydroxypropane, unbonded silica	50 x 2.0 mm; 3 μm	Phenomenex (Torrance, CA, USA)
Kinetex® HILIC	Unbonded silica	50 x 2.1 mm; 2.6 µm	Phenomenex (Torrance, CA, USA)

 Table 1S. Stationary phases tested for the separation of the urolithin glucuronides studied.

Column	Stationary phase	Technical specifications	Manufacturer
	Chiral stationar	y phases	
	Polymer based station	onary phases	
Lux [®] i-Amylose 3	Amylose tris(3-chloro-5- methylphenylcarbamate) bonded to silica gel	150 x 4.6 mm; 3 μm	Phenomenex (Torrance, CA, USA)
Regis Reflect [®] I-Cellulose C	Cellulose tris(3,5- dichlorophenylcarbamate) bonded to silica gel	150 x 4.6 mm; 3 μm	Regis Technologies (Morton Grove, IL, USA)
	Others		
Regis (S,S) Welk-O [®] 1 Kromasil	1-(3,5-Dinitrobenzamido)- 1,2,3,4,- tetrahydrophenanthrene bonded to silica gel	150 x 4.6 mm; 3.5 μm	Regis Technologies (Morton Grove, IL, USA)
Chiralpak® Zwix (+)	Quinine -derived (8S, 9R) bonded to silica gel	150 x 3.0 mm; 3 μm	Daicel (Osaka, Japan)
Astec Chirobiotic [™] T2	Macrocyclic glycopeptide antibiotic teicoplanin	250 x 2.1 mm; 5 μm	Supelco (St. Louis, MO, USA)

Table 1.- Continued.

Table 2S.- Separation parameters calculated according to Purnell's formula referred to Figure**3S**.

t0 = 0.76 min		Figure 3S									
Compound	t _r / min	$\begin{array}{c} \mathbf{Rs}_{1-2} \\ (\alpha) \end{array}$	$\begin{array}{c} \mathbf{Rs}_{2-3} \\ (\alpha) \end{array}$	Rs ₃₋₄ (α)	Retention factor (k)	Symmetry Factor	NTP				
1	4.20	1.00			4.53	2.92	1672				
2	4.68	(1.14)	0.86		5.16	2.47	1548				
3	5.16		(1.12)	0.13	5.79	3.31	1370				
4	5.23			(1.02)	5.88	3.23	1500				

Table 3S.- Separation parameters calculated according to Purnell's formula referred to Figure**4S**.

t0 = 0.76 min		Figure 4S									
Compound	t _r / min	$\begin{array}{c} \mathbf{Rs}_{1-2} \\ (\alpha) \end{array}$	$\frac{\mathbf{Rs}_{2-3}}{(\alpha)}$	Rs ₃₋₄ (α)	Retention factor (k)	Symmetry Factor	NTP				
1	3.68	0.98			3.84	1.13	6060				
2	3.86	(1.06)	0.84		4.08	1.14	7124				
3	4.02		(1.05)	2.53	4.29	1.16	7074				
4	4.62			(1.18)	5.08	1.13	6060				

Table 4S.- Separation parameters calculated according to Purnell's formula referred to Figure**5S**.

t0 = 0.76 min		Figure 5S									
Compound	t _r / min	$\begin{array}{c c} \mathbf{Rs}_{1-2} \\ (\alpha) \end{array}$	$\begin{array}{c} \mathbf{Rs}_{2-3} \\ (\alpha) \end{array}$	Rs ₃₋₄ (α)	Retention factor (k)	Symmetry Factor	NTP				
1	3.88	0.71			4.11	1.24	5005				
2	4.03	(1.05)	1.60		4.30	1.31	5838				
3	4.38		(1.11)	2.31	4.75	1.23	6416				
4	4.98			(1.17)	5.55	1.28	5883				

Table 5S.- Separation parameters calculated according to Purnell's formula referred to Figure6S.

t0 = 0.76 min		Figure 6S									
Compound	t _r / min	$\begin{array}{c} \mathbf{Rs}_{1-2} \\ (\alpha) \end{array}$	$\begin{array}{c} \mathbf{Rs}_{2-3} \\ (\alpha) \end{array}$	Rs ₃₋₄ (α)	Retention factor (k)	Symmetry Factor	NTP				
1	4.78	0.85			5.29	1.37	4413				
2	5.07	(1.07)	0.92		5.67	1.73	3491				
3	5.34		(1.06)	4.70	6.03	1.31	5259				
4	7.52			(1.48)	8.89	1.79	4207				

Table 6S.- Effect of temperature on the separation of the pairs of isomers with the (S, S) Whelk- $O^{\text{\tiny (B)}}$ 1 column. Chromatographic conditions: mobile phase composed of CO_2 and 0.1% of trifluoracetic acid in isopropanol (65:35, v/v) applied in isocratic mode at a flow rate of 2.0 mL/min and 120 bar.

Compounds	uro-A	A glucur	onides	iso-uro-A glucuronides			
Temperature (°C)	\mathbf{k}_1	\mathbf{k}_2	Rs	\mathbf{k}_1	\mathbf{k}_2	Rs	
20	5.11	5.47	0.84	5.58	8.21	5.05	
25	5.29	5.67	0.85	6.03	8.89	5.19	
30	5.34	5.75	0.89	6.24	9.26	5.21	
35	5.57	6.04	0.99	6.95	10.32	5.34	

Table 7S.- Thermodynamic parameters and isoelution temperatures (T_{iso}) for the pairs of isomers with the (S, S) Whelk-O[®] 1 column. Chromatographic conditions: mobile phase composed of CO₂ and 0.1% of trifluoracetic acid in isopropanol (65:35, v/v) applied in isocratic mode at a flow rate of 2.0 mL/min and 120 bar.

Compounds	ΔH_1 (cal/mol)	ΔH_2 (cal/mol)	ΔS ₁ (cal/mol K)	ΔS ₂ (cal/mol K)	T _{iso} (ºC)
uro-A glucuronides	964.1	1106.2	6.5	7.2	-43
iso-uro-A glucuronides	2479.4	2597.9	11.9	13.1	-172

Table 8S.- Separation parameters calculated according to Purnell's formula referred to Figure8S.

t0 = 0.76 min		Figure 8S									
Compound	t _r / min	$\begin{array}{c} \mathbf{Rs}_{1-2} \\ (\alpha) \end{array}$	$\begin{array}{c} \mathbf{Rs}_{2-3} \\ (\alpha) \end{array}$	Rs ₃₋₄ (α)	Retention factor (k)	Symmetry Factor	NTP				
1	6.43	1.40			7.46	1.19	2886				
2	7.15	(1.13)	1.81		8.41	1.22	3085				
3	8.05		(1.13)	4.62	9.54	1.35	4691				
4	10.80			(1.38)	13.21	1.45	5134				

Table 9S.- Separation parameters calculated according to Purnell's formula referred to Figure

2.

t0 = 0.76 min		Figure 2								
Compound	t _r / min	$\begin{array}{c} \mathbf{Rs}_{1-2} \\ (\alpha) \end{array}$	Rs ₂₋₃ (α)	Rs ₃₋₄ (α)	Rs ₄₋₅ (α)	Retention factor (k)	Symmetry Factor	NTP		
1	6.30	1.20				7.59	1.24	2505		
2	7.22	(1.12)	1.57			8.50	1.20	2143		
3	8.18		(1.15)	2.01		9.76	1.30	2998		
4	9.37			(1.16)	2.25	11.33	1.51	3966		
5	10.93				(1.18)	13.38	1.40	2998		

t0 = 0.91 Figure 9S-A min Rs_{1,2}. Retention Symmetry t_r/ Rs_{3-4} Rs_{4-5} Compound factor (k) NTP 3 min (α) (α) Factor (α) 1.27 1 3.51 2.29 2.86 1045 2 4.5 (1.38)3.95 1.35 1728 1.43 3 5.24 (2.64)2.65 4.76 1.55 1639 4 (1.33)6.32 1.62 2469 6.66 Figure 9S-B t0 = 0.91 min Rs_{1.2}. Retention **Rs**₄₋₅ t_r/ Rs_{3-4} Symmetry Compound factor (k) NTP 3 min (α) (α) Factor (α) 1 4.13 2.13 3.54 1.91 1034 2 5.62 0.52 5.18 (1.46)--3 6.01 (1.08)5.60 3.56 -4 8.53 (1.49)8.37 1.472318 t0 = 0.91 Figure 9S-C min Retention \mathbf{Rs}_{2} Rs_{3,4}. t_r/ Rs_{1-2} Symmetry Compound factor (k) NTP 3,4 5 min (α) Factor (*α*) (α) 10.58 10.63 1 0.92 -_ 2 11.89 1430 11.73 (1.12)0.89 -3 13.07 (1.12)5.15 1212 13.36 -(1.49)19.97 4276 4 19.08 1.33

 Table 10S.- Separation parameters calculated according to Purnell's formula referred to Figure

 9S.

Table 11S.- Separation parameters calculated according to Purnell's formula referred to Figure10S.

t0 = 0.91 min				F	igure 10S-A				
Compound	t _r / min	$\begin{array}{c c} \mathbf{Rs}_{1,2} \\ 3 \\ (\alpha) \end{array}$	Rs ₃₋₄ (α)	Rs ₄₋₅ (α)	Retention factor (k)	Symmetry Factor	NTP		
1	6.26	0.99			5.88	-	286		
2	7.60	(1.25)	0.80	\square	7.35	-	500		
3	8.96		(1.20)	1.87	8.85	-	441		
4	11.35			(1.30)	11.47	-	1250		
t0 = 0.91 min		Figure 10S-B							
Compound	t _r / min	$\begin{array}{c c} \mathbf{Rs}_{1,2} \\ 3 \\ (\alpha) \end{array}$	Rs ₃₋₄ (α)	Rs ₄₋₅ (α)	Retention factor (k)	Symmetry Factor	NTP		
1	7.13	0.90			6.84	-	368		
2	8.65	(1.24)	0.70		8.51	-	419		
3	10.08		(1.18)	1.23	10.08	-	385		
4	12.55			(1.27)	12.79	5.64	690		
t0 = 0.91 min	Figure 10S-C								
Compound	t _r / min	$\begin{array}{ c c } \mathbf{Rs}_{1-2} \\ (\alpha) \end{array}$	$\frac{\mathbf{Rs}_{2-3}}{(\alpha)}$	$\begin{array}{c} \mathbf{Rs}_{3-4} \\ (\alpha) \end{array}$	Retention factor (k)	Symmetry Factor	NTP		
1	9.19	2.91			9.10	-	924		
2	9.93	(1.09)	0.42	\square	9.91	-	24335		
3	10.68		(1.08)	1.14	10.74	-	575		
4	12.98			(1.24;	13.26	1.82	659		
5	17.89			$ \begin{array}{c} \mathbf{Rs}_{4-5} \\ (\alpha) \\ 2.74 \\ (1.41) \end{array} $	18.66	2.75	1597		
t0 = 0.91 min	Figure 10S-D								
Compound	t _r / min	$\begin{array}{c c} \mathbf{Rs}_{1,2} \\ 3 \\ (\alpha) \end{array}$	Rs ₃₋₄ (α)	Rs ₄₋₅ (α)	Retention factor (k)	Symmetry Factor	NTP		
1	3.51	2.28			2.86	1.27	1045		
2	4.50	(1.38)	1.43		3.95	1.35	1728		
3	5.24		(1.21)	2.66	4.76	1.55	1639		
		(1.21)		(1.00)	(00	1 ()	2460		

 Table 12S.- Separation parameters calculated according to Purnell's formula referred to Figure

 11S.

t0 = 0.91				F	igure 11S-A			
Compound	t _r / min	$\begin{array}{c} \mathbf{Rs}_{1,2} \\ 3 \\ (\alpha) \end{array}$	Rs ₃₋₄ (α)	Rs ₄₋₅ (α)	Retention factor (k)	Symmetry Factor	NTP	
1	6.26	0.99			5.88	-	286	
2	7.60	(1.25)	0.80	\square	7.35	-	500	
3	8.96		(1.20)	1.86	8.85	-	441	
4	11.35			(1.30)	11.47	-	1250	
t0 = 0.91 min				I	igure 11S-B			
Compound	t _r / min	$\begin{array}{c c} \mathbf{Rs}_{1,2} \\ 3 \\ (\alpha) \end{array}$	Rs ₃₋₄ (α)	Rs ₄₋₅ (α)	Retention factor (k)	Symmetry Factor	NTP	
1	9.41	1.31			9.34	0.86	271	
2	10.88	(1.17)	1.63	\square	10.96	2.19	1492	
3	12.87		(1.20)	3.00	13.14	1.57	1771	
4	16.64			(1.32)	17.29	1.71	2803	
t0 = 0.91 min	Figure 11S-C							
Compound	t _r / min	$\begin{array}{c} \mathbf{Rs}_{1,2} \\ 3 \\ (\alpha) \end{array}$	Rs ₃₋₄ (α)	Rs ₄₋₅ (α)	Retention factor (k)	Symmetry Factor	NTP	
1	14.68	1.61			15.13	2.08	911	
2	17.16	(1.18)	2.20		17.86	1.44	1989	
3	20.25		(1.19)	3.76	21.25	1.78	3310	
4	25.66			(1.28)	27.20	1.78	5083	
t0 = 0.91 min	Figure 11S-D							
Compound	t _r / min	$\begin{array}{c c} \mathbf{Rs}_{1,2} \\ 3 \\ (\alpha) \end{array}$	Rs ₃₋₄ (α)	Rs ₄₋₅ (α)	Retention factor (k)	Symmetry Factor	NTP	
1	10.58	2.61			10.63	2.07	1020	
•						1		
2	13.96	(1.35)	1.14		14.34	-	1852	
3	13.96 15.50	(1.35)	1.14 (1.12)	3.04	14.34 16.03	-	1852 2118	

Figure Captions

Figure 1S.- UV-Vis spectra of the urolithin glucuronides.

Figure 2S.- Representative SFC-UV chromatograms obtained from a mixture of urolithin glucuronide standards with different columns: **A**) Lichrosphere[®] CN; **B**) Daicel DCpak[®] PBT; **C**) SpherexTM Diol; **D**) Luna[®] HILIC.

Figure 3S.- Representative SFC-UV chromatograms obtained from a mixture of four urolithin glucuronide standards (100 mg/L; 1.- urolithin A 8-glucuronide; 2.- urolithin A 3-glucuronide 3.- isourolithin A 9- glucuronide; 4.- isourolithin A 3-glucuronide) using the Regis (S,S) Welk-O[®] 1 Kromasil column and the initial conditions (see *Optimization of the separation conditions* subsection).

Figure 4S.- Representative SFC-UV chromatograms obtained from a mixture of four urolithin glucuronide standards (100 mg/L; 1.- urolithin A 8-glucuronide; 2.- urolithin A 3-glucuronide 3.- isourolithin A 9- glucuronide; 4.- isourolithin A 3-glucuronide) using the Regis (S,S) Welk-O[®] 1 Kromasil column and 0.1% (v/v) trifluoroacetic acid in methanol as organic modifier (see *Optimization of the separation conditions* subsection).

Figure 5S.- Representative SFC-UV chromatograms obtained from a mixture of four urolithin glucuronide standards (100 mg/L; 1.- urolithin A 8-glucuronide; 2.- urolithin A 3-glucuronide 3.- isourolithin A 9- glucuronide; 4.- isourolithin A 3-glucuronide) using the Regis (S,S) Welk-O[®] 1 Kromasil column and 0.1% (v/v) trifluoroacetic acid in ethanol as organic modifier (see *Optimization of the separation conditions* subsection).

Figure 6S.- Representative SFC-UV chromatograms obtained from a mixture of four urolithin glucuronide standards (100 mg/L; 1.- urolithin A 3-glucuronide; 2.- urolithin A 8-glucuronide 3.- isourolithin A 9- glucuronide; 4.- isourolithin A 3-glucuronide) using the Regis (S,S) Welk-O[®] 1 Kromasil column and 0.1% (v/v) trifluoroacetic acid in isopropanol as organic modifier (see *Optimization of the separation conditions* subsection).

Figure 7S.- Representative SFC-UV chromatograms obtained from a mixture of four urolithin glucuronide standards (100 mg/L; isourolithin A 9- glucuronide) using the Regis (S,S) Welk-O[®] 1 Kromasil column and 0.1% (v/v) trifluoroacetic acid in acetonitrile as organic modifier (see *Optimization of the separation conditions* subsection).

Figure 8S.- Representative SFC-UV chromatograms obtained from a mixture of four urolithin glucuronide standards (100 mg/L; 1.- urolithin A 3-glucuronide; 2.- urolithin A 8-glucuronide 3.- isourolithin A 9- glucuronide; 4.- isourolithin A 3-glucuronide) using the Regis (S,S) Welk-O[®] 1 Kromasil column and 0.1% (v/v) trifluoroacetic acid in isopropanol as organic modifier with the selected conditions (see *Optimization of the separation conditions* subsection).

Figure 9S.- Representative SFC-UV chromatograms obtained from a mixture of five urolithin glucuronide standards (100 mg/L; 1.- isourolithin A 9- glucuronide; 2.- isourolithin A 3- glucuronide; 3.- urolithin A 8-glucuronide; 4.- urolithin A 3-glucuronide; 5.- urolithin B 3- glucuronide) using the ReflectTM I-Cellulose C column and 0.1% (v/v) trifluoroacetic acid in different organic solvents: A) methanol; B) ethanol; C) isopropanol (see *Optimization of the separation conditions* subsection).

Figure 10S.- Representative SFC-UV chromatograms obtained from a mixture of five urolithin glucuronide standards (100 mg/L; 1.- isourolithin A 9- glucuronide; 2.- isourolithin A 3- glucuronide; 3.- urolithin A 8-glucuronide; 4.- urolithin A 3-glucuronide; 5.- urolithin B 3- glucuronide) using the ReflectTM I-Cellulose C column and different acid additives 0.1% (v/v; **A**) no additive; **B**) formic acid; **C**) acetic acid; **D**) trifluoroacetic acid in methanol (see *Optimization of the separation conditions* subsection).

Figure 11S.- Representative SFC-UV chromatograms obtained from a mixture of five urolithin glucuronide standards (100 mg/L; 1.- isourolithin A 9- glucuronide; 2.- isourolithin A 3- glucuronide; 3.- urolithin A 8-glucuronide; 4.- urolithin A 3-glucuronide; 5.- urolithin B 3- glucuronide) using the ReflectTM I-Cellulose C column and different basic additives 0.1% (v/v;

A) no additive; B) diethylamine; C) trimethylamine; D) ethanolamine) in methanol (see*Optimization of the separation conditions* subsection).

Figure 4S

Figure 5S

Figure 6S

Time (min.)

Figure 8S

Figure 11S

Time (min.)