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A B S T R A C T

Connectomics data from animal models provide an invaluable opportunity to reveal the complex interplay be-
tween structure and function in the mammalian brain. In this work, we investigate the relationship between
structural and functional connectivity in the rat brain cortex using a directed anatomical network generated from
a carefully curated meta-analysis of published tracing data, along with resting-state functional MRI data obtained
from a group of 14 anesthetized Wistar rats. We found a high correspondence between the strength of functional
connections, measured as blood oxygen level dependent (BOLD) signal correlations between cortical regions, and
the weight of the corresponding anatomical links in the connectome graph (maximum Spearman rank-order
correlation ρ ¼ 0:48). At the network-level, regions belonging to the same functionally defined community
tend to form more mutual weighted connections between each other compared to regions located in different
communities. We further found that functional communities in resting-state networks are enriched in densely
connected anatomical motifs. Importantly, these higher-order structural subgraphs cannot be explained by lower-
order topological properties, suggesting that dense structural patterns support functional associations in the
resting brain. Simulations of brain-wide resting-state activity based on neural mass models implemented on the
empirical rat anatomical connectome demonstrated high correlation between the simulated and the measured
functional connectivity (maximum Pearson correlation ρ ¼ 0:53), further suggesting that the topology of struc-
tural connections plays an important role in shaping functional cortical networks.
1. Introduction

The study of brain connectivity from a network perspective (New-
man, 2003; Strogatz, 2001) has become a promising framework to un-
derstand how action, perception, and cognition emerge from a dense
ensemble of neural elements (Park and Friston, 2013). Leveraging ad-
vances in brain imaging and network science (Sporns, 2013; Sporns et al.,
2005), recent approaches have focused on the topology and dynamics of
large-scale projections linking anatomically distinct and functionally
specialized brain regions (Bullmore and Bassett, 2011). The structure of
these large-scale networks is thought to shape and constrain
inter-regional interactions and computations.

Interactions between neuronal populations spanning brain-wide
networks can be described from three different, but related, perspec-
tives (Friston, 2011). Briefly, anatomical or structural connectivity (SC)
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refers to patterns of synaptic connections linking brain areas. Functional
connectivity (FC) refers to statistical interdependence between activity
time series recorded in different, often spatially remote, areas. Finally,
effective connectivity (EC) refers to the influence that one neural system
in one area exerts over another. While the interplay of these three modes
of brain connectivity is not completely understood, some progress has
been made combining anatomy with both resting-state and task-based
functional connectivity (Hermundstad et al., 2013). Spontaneous or
intrinsic neural activity (Cole et al., 2010; Fox and Raichle, 2007), as
measured using fluctuations in the blood oxygen level dependent (BOLD)
signals of resting-state functional MRI (rs-fMRI), has proven to be a useful
technique for examining the extent to which structural patterns shape
functional interactions between neural assemblies (Honey et al., 2010).
Previous studies have shown that the presence of strong SC, as measured
with diffusion-weighted MRI, between two areas increases the
, Bloomington, IN 47405, USA.
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probability and strength of corresponding FC. Nevertheless, it has also
been reported that strong FC may exist between areas with no (direct)
anatomical connections, (Bowman et al., 2012; Damoiseaux and Grei-
cius, 2009; Skudlarski et al., 2008), suggesting that indirect signaling and
emergent dynamic processes make an additional strong contribution. For
example, a study of SC and FC in macaque cortex supported the idea that
functional interactions are strongly influenced by network-wide effects
(Adachi et al., 2012).

Approaches simulating spontaneous cortical dynamics, in both
humans and animal models, can yield invaluable insight into structure-
function relationships by assessing the capacity of simulated dynamic
patterns based on the SC scaffold to predict empirically measured BOLD
signal correlations (Deco et al., 2011; Honey et al., 2007; Nakagawa
et al., 2013). Connectomics data from animal models based on tract-
tracing procedures allows in-depth characterization of SC networks. In
contrast to MRI-based tractography, which provides coarse-grained un-
directed SC matrices, histological tracing technology yields highly
resolved and directed connectivity information, hence providing
important additional information for modelling cortical dynamics (van
den Heuvel et al., 2016a). For instance, recent work relating the struc-
tural connectome of the mouse brain and the intrinsic BOLD signal dy-
namics within individual brain regions have shown the importance of
considering both the weight and directionality of structural connections
(Sethi et al., 2017). In addition, the mapping of functional connectivity
networks in rodents provides an invaluable tool to understand neuro-
logical and psychiatric disorders from a more mechanistic way for
translational research. (Gozzi and Schwarz, 2016; Pan et al., 2015).
These experimental possibilities together with theoretical developments
in network analysis are extending systems neuroscience from unimodal
investigations of brain connectivity to a network-level understanding of
structure-function interactions (Adachi et al., 2012; Diez et al., 2015;
Go~ni et al., 2014; Hsu et al., 2016; Mi�si�c et al., 2016; Skudlarski et al.,
2016; Stafford et al., 2014; Wang et al., 2015; Wirsich et al., 2016).

In this work, we examine the relationship between SC and FC in the
rat cortical network. Using a detailed cortical SC matrix obtained from a
carefully curated meta-analysis of published histological tracing data in
rats (Bota et al., 2015), we first compare structural connections in the rat
cortex with their corresponding spontaneous correlations extracted
empirically from rs-fMRI data collected in a group of 14 Wistar rats. We
then show the results of this comparison taking into account
network-level effects by relating structural properties of brain connec-
tivity to the functional modularity of rs-fMRI networks. Specifically, we
study link reciprocity in both intra- and inter-modular connections as
well as the structural motif frequency spectrum within functionally
defined modules. Finally, we carry out computational simulations of
neural mass models implemented on the empirical SC to generate a
simulated FC matrix and compare it with the empirically measured FC.
Overall, our results provide evidence on rs-fMRI BOLD signal correlations
being constrained and shaped by the underlying structural connectiv-
ity patterns.

2. Materials and methods

2.1. Animals and MRI acquisition protocol

Experiments were carried out in a horizontal 7 T scanner with a 30 cm
diameter bore (Biospec 70/30v, Bruker Medical, Ettlingen, Germany).
The system had a 675 mT/m actively shielded gradient coil (Bruker, BGA
12-S) of 11.4 cm inner diameter. A 1H rat brain receive-only phase array
coil with integrated combiner and preamplifier, no tune/no match, in
combination with the actively detuned transmit-only resonator (Bru-
kerBioSpin MRI GmbH, Germany) was employed. Data were acquired
and processed with a Hewlett-Packard console running Paravision 5.1
software (Bruker Medical GmbH, Ettlingen, Germany) operating on a
Linux platform.

For the rs-fMRI experiments, 14 Wistar rats were anesthetized with
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urethane (1.2 g/Kg). Anesthetized animals were placed in a custom-made
animal holder with adjustable bite and ear bars, and positioned on the
magnet bed. The animals were constantly supplied with 0.8 L/m O2 with
a face mask and temperature was kept between 36.5 and 37.5 �C through
a water heat-pad. The temperature, heart rate, SpO2, and breathing rate
were monitored throughout the session (MouseOx, Starr Life Sciences,
Oakmont, US).

T2-weighted anatomical images were collected using a rapid acqui-
sition relaxation enhanced sequence (RARE), applying the following
parameters: field of view (FOV) ¼ 40 � 40 mm; 15 slices; slice
thickness ¼ 1 mm; matrix size ¼ 128 � 128; effective echo time
(TEeff)¼ 56ms, repetition time (TR)¼ 2 s, and a RARE factor of 8. The B0
field distribution in a large voxel (40 � 40 � 40 mm3) containing the
whole head was acquired (FieldMap). Briefly, the brain was localized
with T2-weighted RARE sequence, and first- and second-order shims
adjusted with MAPSHIM application in a sufficiently large voxel con-
taining the whole brain. Functional MRI acquisition was performed using
a GE-EPI sequence in 30 coronal slices applying the following parame-
ters: FOV ¼ 25 � 25 mm; slice thickness ¼ 0.5 mm; matrix
size ¼ 50 � 50; segments ¼ 1; FA ¼ 60�; echo time (TE) ¼ 15 ms;
repetition time (TR)¼ 2000 ms (300 samples per run, 10 min), rendering
an isotropic voxel of 0.5 � 0.5 � 0.5 mm3. Between one and three runs
were acquired from each animal. T2-weighted anatomical images with
exactly the same geometry were collected using a RARE sequence using
the following parameters: FOV ¼ 25 � 25 mm; 30 slices; slice
thickness ¼ 0.5 mm; matrix size ¼ 200 � 200; TEeff ¼ 56 ms; TR ¼ 2 s;
RARE factor ¼ 8.

2.2. Preprocessing of MRI data

Data preprocessing within runs was carried out using FSLv5.0 (FMRIB
Software Library, http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) (Jenkinson
et al., 2012) and MATLAB 2014a (The MathWorks, Inc., Natick, MA,
United States, https://www.mathworks.com/). Once images were con-
verted to NIfTI (Neuroimaging Informatics Technology Initiative, http://
nifti.nimh.nih.gov/) data format, the original voxel size, (x,y,z), was
scaled up by a factor of 10. This step is very common when analyzing
rodent data to accurately apply the same algorithms (largely those
involving spatial transformations) as in human analyses (Kalthoff et al.,
2013; Pan et al., 2015).

The very first volume of fMRI data was used as reference across runs
of the same subject for head motion correction, brain segmentation and
co-registration. As suggested by (Kalthoff et al., 2011), head motion
correction was applied to each individual slice and restricted to (coronal)
in-plane translations (x, y) and rotation (z) to reduce signal fluctuations
related to respiration in anesthetized rats. After applying motion
correction and brain segmentation (Smith, 2002), global intensity
normalization was set to 1000 and spike detection was performed
through using DVARS measure (Power et al., 2012). Note that DVARS is
highly dependent on the particular dataset (Power et al., 2014); we
therefore did not select an absolute threshold and instead considered as
outliers those temporal points exceeding the 75th percentile þ 1.5*IQR
(interquartile range). None of the runs were discarded since the number
of spikes was below 30 (out of 300 samples) in all cases (15 ± 4.6 spikes
per run, mean ± SD), hence ensuring a minimum length of 9 min to es-
timate functional interactions. By using a nuisance regression model,
each voxel was corrected for: (1) the three rigid body parameters
(translation in x and y, and rotation in z) previously computed and their
derivatives (backward difference); (2) a single regressor per spike with a
“b0, f0” window (Satterthwaite et al., 2013) (i.e. neither preceding nor
following samples were used); (3) the global signal and its derivative
(backward difference); and (4) two regressors modelling the mean and a
linear trend. A Band-pass filtering (nonlinear high-pass filter of γ ¼ 50 s,
and Gaussian linear low-pass filter of γ ¼ 2 s) was applied to retain those
frequencies ranging from 0.01 and at around 0.1 Hz (the resulting
spectrum of this filter is shown in Supplementary Fig. 1). Spatial
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smoothing was not applied to avoid introducing spurious high correla-
tions between a node and its neighbors (Fornito et al., 2010). Finally,
filtered rs-fMRI data were co-registered to the brain-extracted
T2-weigthed image using a rigid body transformation and then normal-
ized to a rat template described elsewhere (Schwarz et al., 2006).
Normalization was carried out through using an affine deformation
(Jenkinson et al., 2002; Jenkinson and Smith, 2001) and the template
was resampled to match the original resolution of functional images (i.e.,
0.5 � 0.5 � 0.5 mm3).

2.3. Rat connectome and definition of brain areas

We made use of a directed anatomical network coming from a sys-
tematic curation of the primary neuroanatomical literature for the rat
(for specific details as to annotation and collation methodology, see ref.
(Bota et al., 2015)). In particular, the dataset was originally composed of
73 cortical gray-matter regions that were defined according to the
Swanson-04 hierarchical nomenclature for the rat central nervous system
(Swanson, 2004). Connections in the rat cortical association macro-
connections (RCAMs) matrix are not yet defined bilaterally and are
encoded by means of eight different ordinally arranged weight cate-
gories: not present, very weak, weak, weak/moderate, moderate, moder-
ate/strong, strong, and very strong.

A critical point in neuroimaging research is the use of a common
framework for localization of brain structures, which allows comparison
among results coming from different studies. Nomenclature of the rat
connectome project is available in the Swanson space (SwS) (Swanson,
2004) and anatomical connectivity between regions is directly given in
matrix form, that is, no Analyze or NIfTI images are provided. On the
other hand, to the best of our knowledge, the most complete atlas
available in Analyze format (easily converted to NIfTI format) is that
developed by Schwarz et al. (2006), where brain areas are given in the
Paxinos&Watson space (PWS) (Paxinos and Watson, 1998). Therefore,
the first task before carrying out network analysis was to establish a
correspondence of brain regions between both spaces with the aim of
aligning functional correlation matrices with the anatomical network. To
this end, we carefully inspected both atlases as follows: (1) a particular
reference brain region from SwS was localized in its corresponding cor-
onal plane; (2) we sought the coronal slice/s in PWS containing the
previous region, and (3) by taking into account the spatial distribution of
surrounding areas as well as the relative anterior and posterior planes, we
identified which region or group of regions from PWS matched with the
reference region.

Since not all of the original structures contained in the RCAMs matrix
were available in the NIfTI atlas as a single mask, some of them were
grouped to cover the whole brain cortex (Supplementary Fig. 2 sche-
matizes the process carried out for computing these new connections).
Thus, we created a new pattern of cortical connections for the secondary
visual area (VISs), which was composed of the original anterior latero-
lateral area (VISlla), anterolateral area (VISal), rostrolateral area (VISrl),
intermediolateral area (VISli), laterolateral area (VISll), mediolateral
area (VISlm), posterolateral area (VISpl), and anteromedial area (VISam).
The tenia tecta cortical region (TT) was composed of the dorsal and
ventral parts (TTd and TTv, respectively). Interactions of the retro-
splenial area ventral part (RSPv) with other areas were obtained from the
original ventral part (RSPv), ventral part zone a (RSPv-a), and ventral
part zone b/c (RSPv). The hippocampal region was partitioned into
dorsal and ventral parts as follows. The dorsal part of the hippocampal
region (HIPd) was composed of CA1 dorsal part (CA1d), CA3 dorsal part
(CA3d), CA2 dorsal part (CA2d), dentate gyrus dorsal part (DGd), and
induseum griseum (IG). Whereas the ventral part of the hippocampal
region (HIPv) was composed of CA1 ventral part (CA1v), CA3 ventral
part (CA3v), CA2 ventral part (CA2v), and dentate gyrus ventral part
(DGv). Note that the current RCAMs matrix does not distinguish between
dorsal and ventral parts for CA2, CA3 and DG. To overcome this limita-
tion, and with the aim of including the whole hippocampal region in our
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analysis, structural patterns contained in the rat connectome for CA2,
CA3 and DG were assumed to be equal for both ventral and dorsal parts.
Categorical weight for the same region in different parts (e.g., between
CA2d and CA2v) were assumed to be very strong. A new pattern of
structural connections was also created for the cortical amygdalar nu-
cleus (COA), which was formed from the anterior part (COAa),
posterolateral part (COApl), and posteromedial part (COApm). The sec-
ondary auditory areas (AUDs) was composed of the ventral and dorsal
auditory areas (AUDd and AUDv, respectively). The medio-ventral part of
the orbital area (ORBmv) included the ventral and medial parts (ORBv
and ORBm, respectively). The presubiculum (PRE) and parasubiculum
(PAR) were grouped to form the PreParaSubiculum region (PREPAR).
The basolateral amygdalar nucleus (BLA) was composed of the anterior
and posterior parts (BLAa and BLAp, respectively). Finally, structural
interactions between the basomedial amygdalar nucleus (BMA) and the
rest of nodes were obtained from the anterior and posterior parts (BMAa
and BMAp, respectively).

Definition of nodes is a very important step for brain network anal-
ysis. In this work, two different brain parcellations were used, which
were based on the information available in the NIfTI atlas. Table 1 pre-
sents the 50 brain regions from SwS and their counterpart regions from
PWS used for simulations (see subsection 2.8). Robust BOLD signals were
not consistently available for the above 50 ROIs in our dataset due to
variations in the field of view across rats. Thus, a second parcellation was
used in which a reduced set of 32 ROIs (Table 1) were selected for the
comparison of empirical and simulated FC, as well as to investigate intra-
and between-module structural patterns.

2.4. Construction of functional networks

The mean time courses within each of the 32 regions of interest
(ROIs) were extracted and converted to z-scores (i.e. fMRI BOLD time
series were centered and scaled to have zero mean and unit variance).
Since the collation process of cortical associations in the current RCAMs
((Bota et al., 2015)) do not differentiate between hemispheres, voxels
within ROIs were also combined across hemispheres (Supplementary
Figs. 3, 4 and 5 present seed-based correlations analysis in three different
brain regions uncovering bilateral networks in the dataset). That is, the
time course from a given region, say the primary somatomotor area, was
obtained as the average between signals from right and left primary
somatomotor areas. Importantly, to create a homogeneous parcellation
by ensuring that all regions had the same size, we adopted the procedure
carried out in (Alexander-Bloch et al., 2012), where ROIs were eroded
until all of them were exactly the same volume, 1 mm3 here (0.5 mm3 in
each hemisphere). Before computing functional interactions, time sam-
ples marked during preprocessing were “scrubbed”. Functional networks
were then estimated for each single run by computing the Pearson cor-
relation coefficient. Next, raw correlations were converted to Fisher's
z-values and connectivity matrices of each run were averaged within
subject. Finally, FC matrices across the 14 subjects were averaged and a
group network was obtained and then used for comparative analysis with
the RCAM matrix and simulated FC matrices.

2.5. Modularity

Community structure detection involves the partition of a network
into “modules” or “clusters” wherein nodes are highly connected to each
other and only sparsely connected with nodes of different modules
(Newman and Girvan, 2004). In neuroscience applications, community
detection allows the grouping of neural elements (e.g. brain regions) in
both anatomical and functional networks into distinct modules (Sporns
and Betzel, 2016). Despite the fact that community detection is concep-
tually straightforward, its application is methodologically challenging as
indicated by the large number of algorithms and approaches dealing with
it (Fortunato, 2010; Fortunato and Hric, 2016). Whereas it is also
possible to perform graph partition with overlapping modules, we only



Table 1
Cortical brain regions used as network nodes in this work. All regions listed were used for
simulations, whereas those marked with an asterisk were removed for ensuring consistent
extraction of BOLD signals across rats.

Swanson structure Abbreviation Paxinos&Watson structure Abbreviation

Primary somatomotor
area

MOp Primary motor cortex M1

Secondary
somatomotor areas

MOs Secondary motor cortex M2

Primary somatosensory
area

SSp - Primary somatosensory cortex S1
- Primary somatosensory cortex,
barrel field

S1BF

- Primary somatosensory cortex,
dysgranural region

S1DZ

- Primary somatosensory cortex,
forelimb region

S1FL

- Primary somatosensory cortex,
hindlimb region

S1HL

- Primary somatosensory cortex,
jaw region

S1J

- Primary somatosensory cortex,
jaw region, oral surface

S1JO

- Primary somatosensory cortex,
trunk region

S1Tr

- Primary somatosensory cortex,
upper lip region

S1ULp

Supplemental
somatonsensory area

SSs Secondary somatosensory cortex S2

Visceral area VISC Granular insular cortex GI
Infralimbic area ILA Infralimbic cortex IL
Gustatory area GU Dysgranular insular cortex DI
Main olfactory bulb* MOB - Glomerular layer of the

olfactory bulb
Gl

- Granular cell layer of the
olfactory bulb

GrO

- Internal plexiform layer of the
olfactory bulb

IPl

- Mitral cell layer of the
olfactory bulb

Mi

- External plexiform layer of the
olfactory bulb

EPl

Accessory olfactory
bulb*

AOB - Accessory olfactory bulb AOB
- External plexiform layer of the
accessory olfactory bulb

EPlA

- Glomerular layer of the
accessory olfactory bulb

GlA

- Granule cell layer of the
accessory olfactory bulb

GrA

- Mitral cell layer of the
accessory olfactory bulb

MiA

Anterior olfactory
nucleus

AON - Anterior olfactory nucleus,
dorsal part

AOD

- Anterior olfactory nucleus,
external part

AOE

- Anterior olfactory nucleus,
lateral part

AOL

- Anterior olfactory nucleus,
medial part

AOM

- Anterior olfactory nucleus,
posterior part

AOP

Tenita tecta TT - Tenia tecta, layer 1 TT1
- Tenia tecta, layer 2 TT2
- Tenia tecta, layer 3 TT3

Piriform area PIR - Piriform layer Pir
- Region external to piriform
layer

Pir/ext

- Region internal to piriform
layer

Pir/int

- Piriform cortex PirCtx
- Cortex amygdala transition
zone

CxA

Postpiriform transition
area*

TR Amygdalopiriform transition
area

APir

Nucleus of lateral
olfactory tract*

NLOT - Nucleus of the lateral olfactory
tract

LOT

- Nucleus of the lateral olfactory
tract, layer 1

LOT1

- Nucleus of the lateral olfactory
tract, layer 2

LOT2

Table 1 (continued )

Swanson structure Abbreviation Paxinos&Watson structure Abbreviation

Cortical amygdalar
nucleus*

COA - Anterior cortical amygdaloid
nucleus

ACo

- Posterolateral cortical
amygdaloid nucleus

PLCo

- Posteromedial cortical
amygdaloid nucleus

PMCo

Primary auditory area AUDp Primary auditory cortex Au1
Secondary auditory
areas

AUDs - Secondary auditory cortex,
dorsal area

AuD

- Secondary auditory cortex,
ventral area

AuV

Secondary visual area VISs - Secondary visual cortex,
lateral area

V2L

- Secondary visual cortex,
mediomedial area

V2MM

- Secondary visual cortex,
mediolateral area

V2ML

Primary visual area VISp - Primary visual cortex,
binocular area

V1B

- Primary visual cortex,
monocular area

V1M

Anterior cingulate area,
dorsal part

ACAd Cingulate cortex, area 1 Cg1

Anterior cingulate area,
ventral part

ACAv Cingulate cortex, area 2 Cg2

Prelimbic area PL Prelimbic cortex PrL
Orbital area, lateral
part*

ORBl Dorsolateral orbital cortex DLO

Orbital area, medio-
ventral part

ORBmv - Medial orbital cortex MO
- Ventral orbital cortex VO

Orbital area,
ventrolateral part

ORBvl Lateral orbital cortex LO

Agranular insular area,
dorsal part

AId Agranular insular cortex, dorsal
part

AID

Agranular insular area,
ventral part

AIv Agranular insular cortex, ventral
part

AIV

Agranular insular area,
posterior part

AIp Agranular insular cortex,
posterior part

AIP

Retrosplenial area,
dorsal part

RSPd Retrosplenial granular B cortex RSGb

Retrosplenial area,
lateral agranular part

RSPagl Retrosplenial agranular cortex RSA

Retrosplenial area,
ventral part

RSPv Retrosplenial granular A cortex RSGa

Posterior parietal
association areas

PTLp Parietal association cortex PtA

Temporal association
areas*

TEa Temporal association cortex TeA

Ectorhinal area* ECT Ectorhinal cortex Ect
Perirhinal area* PERI Perirhinal cortex PRh
Entorhinal area, lateral
part*

ENTl Lateral entorhinal cortex LEnt

Entorhinal area, medial
part, dorsal zone*

ENTm Medial entorhinal cortex MEnt

PreParaSubiculum* PREPAR - Presubiculum PrS
- Parasubiculum PaS

Postsubiculum POST Postsubiculum Post
Subiculum, dorsal part SUBd Subiculum, dorsal part DS
Subiculum, ventral
part*

SUBv Subiculum, ventral part VS

Hippocampal region,
dorsal part

HIPd - Hippocampus posterior, dorsal
part

HCpd

- Hippocampus fronto dorsal HCfd
- Dentate gyrus, dorsal part DGd
- Field CA3 of hippocampus,
dorsal part

CA3d

- Indusium griseum IG
Hippocampal region,
ventral part

HIPv - Hippocampus posterior,
ventral part

HCpv

- Field CA3 of hippocampus,
ventral part

CA3v

- Dentate gyrus, ventral part DGv
Claustrum CLA Claustrum Cl
Endopiriform nucleus,
dorsal part

EPd Dorsal endopiriform nucleus DEn

EPv Ventral endopiriform nucleus VEn

(continued on next page)
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Table 1 (continued )

Swanson structure Abbreviation Paxinos&Watson structure Abbreviation

Endopiriform nucleus,
ventral part*

Lateral amygdalar
nucleus*

LA - Lateral amygdaloid nucleus,
dorsolateral part

LaDL

- Lateral amygdaloid nucleus,
ventrolateral part

LaVL

- Lateral amygdaloid nucleus,
ventromedial part

LaVM

Basolateral amygdalar
nucleus*

BLA - Basolateral amygdaloid
nucleus, anterior part

BLA

- Basolateral amygdaloid
nucleus, posterior part

BLP

- Basolateral amygdaloid
nucleus, ventral part

BLV

Basomedial amygdalar
nucleus*

BMA - Basomedial amygdaloid
nucleus, anterior part

BMA

- Basomedial amygdaloid
nucleus, posterior part

BMP

Posterior amygdalar
nucleus*

PA - Amygdalohippocampal area,
anterolateral part

AHiAL

- Amygdalohippocampal area,
posteromedial part

AHiPM

A. Díaz-Parra et al. NeuroImage 159 (2017) 170–184
consider in this work the detection of non-overlapping modules.
One popular approach for community detection attempts to maximize

a quality function Q commonly known as the modularity function. Let W
be the functional matrix, then the problem of community detection can
be formalized as:

Q ¼
X

ij

�
Wij � Pij

�
δ
�
σi; σj

�
:

In the previous expression, Wij represents the actual weight of the
connection between node i and j, whereas Pij refers to a specified null
network model so that nodes within communities are internally more
connected than expected by chance. The term σi 2 ½1;…;K� stands for the
assignment of the node i to the kth module, and the Kronecker function
δðσi; σjÞ is equal to unity when node i and j belong to the same commu-
nity, σi ¼ σj, and zero otherwise. Thus, only nodes belonging to the same
community contribute to maximizeQ. Themodularity function is typically
modified by including a constant factor before summation with the aim
of setting the maximum of the quality function to one. This last step has
no influence on the final partition.

The precise value of the null model Pij relies strongly on the nature of
the network being analyzed. Traditionally, the most popular null model
is the so-called configuration model, represented by the following
expression:

Pij ¼ sisj
2m

; (1)

with si ¼
P
j
wij and 2m ¼ P

ij
wij. However, it has recently been shown

that approaches using Eq. (1) can lead to biased results when correlation
matrices are considered (Bazzi et al., 2016; MacMahon and Garlaschelli,
2015). We therefore made use of a different null model known as the
constant Pottsmodel (Traag et al., 2011). This approach is named constant
because the weight matrix in expression (1) is compared to a tunable
parameter gamma γ:

Pij ¼ γ:

By varying gamma, one is able to reveal community structure at
different scales (given by the number of communities and their size),
hence mitigating the problem known as the resolution limit (Fortunato and
Barth�elemy, 2007).

In this work, we used 109 different gamma values ranging linearly
from�0.02 to 0.25 in increments of 0.0025 and, for each of them, we ran
the Louvain algorithm 10,000 times (Blondel et al., 2008). After
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optimizing Q, we computed the mutual similarity (as quantified by using
the z-score of the rand index, or z-Rand) over all pairs of partitions within
a given setting of γ (Traud et al., 2011). We then obtained a consensus
partition for each γ (Bassett et al., 2013; Lancichinetti and For-
tunato, 2012).

2.6. Reciprocity

Link reciprocity is a network measure that allow assessing the ten-
dency of node pairs to form mutual connections between each other, and
whose definition has been extended for weighted networks (Squartini
et al., 2013). Briefly, a real-world network can be decomposed into a
symmetric (reciprocated) part and an asymmetric (non reciprocated)
part. The weighted reciprocity, r, is then computed as the ratio between
the total reciprocity weight and the total weight of the network. After-
wards, this quantity is scaled relative to the average weighted reciprocity
derived from a random null model, meanðrnullÞ, as follows:

ρ ¼ r �meanðrnullÞ
1�meanðrnullÞ :

Thus, ρ indicates the tendency of the network to reciprocate (ρ > 0) or
to avoid reciprocation (ρ < 0). In this work, ρ was computed by gener-
ating 5000 random networks preserving the in- and out-degree sequences
as well as the total strength of the real network. As our main interest was
to compare weighted intra-modular (a)symmetries compared to those
taking place between modules, the measure ρ was computed separately
for each type of links. Put simply, by imposing the partition of functional
modules on the weighted anatomical matrix, we could study whether
modularity obtained from rs-fMRI data showed differences in link reci-
procity between intra- and inter-modular projections.

2.7. Network motifs

The dynamic behavior of a complex system relies critically on the
underlying interconnections and how nodes are linked to form specific
subgraphs or network motifs (Milo et al., 2002). The existence of these
“building blocks” can be recognized in many directed real-world net-
works such as biological and technological networks, as compared with
randomized networks. Motif analysis has been applied in a variety of
brain networks to identify motifs that are significantly increased in fre-
quency over various null models (Sporns and K€otter, 2004; van den
Heuvel et al., 2012; Varshney et al., 2011). In contrast to link reciprocity,
which is a measured quantifying second-order topological properties,
networks motifs examine higher-order connectivity patterns.

The total number of different subgraphs or network motifs depends
on the number of nodes being considered. For instance, for structural
motifs of size M ¼ 3 (third-order topological properties) there are 13
different possible alternatives or classes through which three nodes can
be linked (Table 2). Previous studies have addressed the problem of
modularity by clustering subgraphs or higher-order connectivity patterns
(Arenas et al., 2008; Benson et al., 2016), rather than considering dyadic
interactions. Interestingly, this framework, wherein community structure
detection and network motif approaches are related, can reveal new in-
sights into the topological organization of complex networks. In this
work, we were interested in the higher-order structural organization
within functionally defined modules. Based on the so-called motif
modularity (Arenas et al., 2008), we calculated the ratio of the number of
occurrences (summarized in the motif frequency spectrum) for a given
motif class i restricted to within communities, fwmi, to the motif fre-
quency spectrum computed over the whole network for the same class, f i:

Fi ¼ fwmi

f i
;

We calculated the normalized motif frequency spectrum for structural
motifs of size M ¼ 3. In this way, we could study whether modules



Table 2
The 13 different structural motif classes which can be obtained for motifs of size M ¼ 3,
along with the number of functional instances that each can generate.

Structural motif
class

Number of functional
motifs

Structural motif
class

Number of functional
motifs

1 10

1 9

1 10

3 10

4 24

3 54

4
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obtained from functional data are associated with a specific pattern of
intra-modular anatomical connections. Binary motif analysis was per-
formed for three connectivity levels of SC: (1) keeping all connections,
(2) removing very weak links, and (3) removing both very weak and weak/
moderate links.

The observed value Fi was statistically compared against an ensemble
of random networks (5000 samples) preserving the number of incoming
edges, outgoing edges and mutual edges of each node of the actual
network (Milo et al., 2002). Generating null models preserving mutual
edges allows us to ascertain that higher-order patterns does not simply
emerge as a result of lower-order properties (e.g., link reciprocity), but
the abundance of networks motifs inside communities is a feature of
real-world networks. Thus, we calculated Fi null for each reference
network, and we eventually obtained a null distribution that allowed us
to statistically evaluate the fraction of every motif class within commu-
nities using the z� scorei:

z� scorei ¼ Fi �meanðFi nullÞ
stdðFi nullÞ :

2.8. Simulations with The Virtual Brain

Finally, to investigate further the degree to which rat structural
connectivity can predict functional connectivity, simulations of rat
spontaneous neural dynamics were performed using the open-source
neuroinformatics platform The Virtual Brain (TVB). TVB, amongst other
features, allows for the modelling of the dynamics of large-scale brain
networks by giving users access to a library of Python-based models,
which range from complex models based on nonlinear differential
equations with dozens of parameters to simpler linear or oscillatory
models. TVB simulations take structural data about a brain - structural
connectivity, spatial coordinates of ROIs, and tract length distances be-
tween ROIs - and output simulated neural activity time series for each
ROI, using a given model type and set of simulation parameter values
(Sanz-Leon et al., 2015 ). Raw simulated activity time series were passed
through a Balloon-Windkessel model to generate synthetic BOLD re-
sponses; the period of the BOLD monitor was set to 2000 ms, reflecting
the TR of fMRI data (Friston et al., 2000; Sanz Leon et al., 2013). The
BOLD hemodynamic response function was created using a Volterra
kernel with the default parameters supplied by TVB. Numerical inte-
gration during the simulations was performed with a stochastic variant of
Heun's method with a step size of 0.1 ms, with a noise term drawn
randomly from a Gaussian distribution added. The standard deviation of
the Gaussian was determined by the noise parameter, and was never
more than 1% of the state variables to which it was added in each inte-
gration step. Raw BOLD time series were subjected to global signal
regression to match the processing steps carried out on the empirical
time series.

In order to take advantage of as much available structural information
as possible, while keeping the simulation results in the same parcellation
scheme as the empirical FC results, the full structural network based on
the 50-region SwS atlas was used as input for the simulations. Once a
simulation was complete, a 50-region simulated resting state FC matrix
was calculated based on the Pearson correlation between the simulated
BOLD time-series for each ROI pair. Comparison with the empirical FC
matrix (using raw Pearson correlations) was carried out only considering
the 32 regions that were common in the empirical and simulated data by
computing the pairwise Pearson correlation between the upper trian-
gular portions of the two matrices.

In order to test the stability of simulation results, multiple runs of
simulations with the same parameters and structural data were per-
formed while varying the initial random seed. FC matrices derived from
40 simulations of length 10 s with identical parameters but varying
random seeds never had pairwise correlations lower than 0.96, and
variability declined with length of the simulations - 10 simulations of
length 180 s all had pairwise correlations above 0.99.
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2.8.1. Parameter space exploration
In order to maximize the similarity between the functional connec-

tivity matrix derived from simulated time series and the empirical FC
matrix, two model parameters were optimized: one scaled global
coupling, and another represented the axonal conduction velocity, which
controls the time delay of signals between regions. To automate the
exploration of the parameter space of multiple TVB models, we adapted
the open-source Python utility “Distributed Evolutionary Algorithms in
Python” (DEAP) (Fortin et al., 2012), which allows for the implementa-
tion of evolutionary optimization algorithms. We used the package to
optimize the values of simulation parameters within given ranges. This
approach was inspired by BluePyOpt, an open-source software created by
members of the BlueBrain project team which implements DEAP to
optimize model parameters; however, BluePyOpt is most useful in, and
primarily intended for, the optimization of neuron-level models, so using
DEAP itself as opposed to BluePyOpt proved simpler for TVB simulations
(Van Geit et al., 2016). DEAP implementation allowed us to stochasti-
cally search a specified parameter space for any given model, with the
aim of finding parameter values that allow TVB models to generate
realistic simulated FC as measured by pairwise correlation.

DEAP optimization was performed on all available TVB models, with
the exception of two models designed to simulate epileptic activity.
Initial parameter ranges were derived from the TVB source code. The
evolutionary algorithm implemented using DEAP operated as follows.
For each model type, a collection of 600 different combinations of values
for each of the global (model and coupling) parameters being optimized
were initialized by randomly selecting values within a given range for
each parameter - these combinations are analogous to a population of
individuals. Individuals with high fitness, i.e. whose parameter value
combinations produced simulated FC matrixes with high similarity to the
empirical FC matrix, were copied, parameters were randomly swapped
between individuals, and some individuals had their parameter values
reassigned to random values within that parameter's range - processes
analogous to natural selection, mating, and mutation respectively. One
iteration of selection, mating and mutation of the various individuals
collectively forms a “generation”. Optimization was performed over the
course of 36 successive generations, and the simulated time period of
every simulation corresponded to 15 min of real time.
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3. Results

3.1. Characterization of SC and rs-fMRI-derived FC

Categorical weights of the RCAMs matrix (Bota et al., 2015) were
encoded between 0 (not present) and 7 (very strong) (Fig. 1a, left panel).
Out of the 32 selected regions defined for the cortex, 49.8% of the
possible pair-wise structural connections were not present, 7.2%were very
weak, 8.6% weak, 6.7% weak/moderate, 10.2% moderate, 5.9% moder-
ate/strong, 8.8% strong, and only 2.8% very strong (Fig. 1a, middle panel).
These values confirmed the overall sparsity of the anatomical network.
We next derived the FC within the same set of anatomical regions,
computed as the correlation between the average BOLD signals in each of
the 32 cortical regions (Fig. 1b, left panel). As expected, pair-wise
functional interactions between the 32 regions included negative corre-
lations, with FC values following a slightly right skewed and unimodal
distribution with a pronounced peak around zero (Fig. 1b, middle panel).

Although different studies have revealed that wiring minimization
itself cannot account for all topological features of anatomical and
functional networks (Betzel et al., 2016; V�ertes et al., 2012), the essential
role of physical distances between pairs of nodes is widely recognized.
We plotted the pair-wise SC and FC values as a function of distance
(approximated as Euclidean distance) and found that both SC and FC
values tend to be higher between brain regions separated by short dis-
tances (Fig. 1, right panels).

With the aim of investigating the relationship between the SC and the
rs-fMRI-measured FC in the rat cortex, we first calculated the association
between anatomical and functional matrices (Fig. 2). The Spearman
correlation ρ quantified to what extent the strength of a structural
connection predicted the corresponding functional connection between
two regions. Using all possible value pairs in the SC connectome (i.e.,
present and not present connections) and the FC matrix, we obtained a
Spearman (rank-order) correlation of ρ ¼ 0:48 (P<2� 10�29) between
the structural and functional networks. The Spearman correlation did not
vary after removing all node pairs for which an anatomical connection
was found to be not present, ρ ¼ 0:48 (P< 2� 10�19). This result reveals a
strong positive linear association between SC and FC matrices. In addi-
tion, we also calculated the association between both networks while
controlling the effect of the Euclidean distance. In this case, the
Spearman correlation dropped to ρ ¼ 0:35 (P< 3� 10�15) and ρ ¼ 0:33
(P<2� 10�9), relative to the total or zero weight-corrected SC matrix,
respectively, supporting the role of geometric distances between region
pairs in brain network organization. Functional connectivity patterns
without global signal regression and the relationship with the SC matrix
are shown in Supplementary Fig. 6.
3.2. Relationship between functional modules and structural network-level
patterns

Partitioning a network or graph into components offers the ability to
uncover modules at different spatial scales. Indeed, each module or
component can be interpreted as a subnetwork itself. Fig. 3a shows the
number of communities extracted from the functional data along with the
value of the modularity function, which represents the quality of the ob-
tained consensus partition, and the consistency of the partitions as
measured by the similarity of the modules generated in 10,000 iterations
of the partition algorithm (see subsection 2.5). Given that different
community structures might be equally feasible and plausible, we
investigated the distribution of motif classes within functionally define
modules at different scales of resolution, rather than targeting a unique
partition. We examined structural patterns at γ ¼ �0:0125 (Fig. 3b), γ ¼
0:005 (Fig. 3c), and γ ¼ 0:02 (Fig. 3d); these parameter settings were
selected for several reasons. First, these scales were located within in-
tervals of γ values where the number of communities remained relatively
constant, hence yielding partitions with two (γ ¼ �0:0125), three
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(γ ¼ 0:005) or five (γ ¼ 0:02) communities. Second, given a number of
communities, the selected scales were the most stable partitions, as
indicated by a high mean and a low variance of the z-Rand index. Finally,
we did not explore functional partitions beyond γ ¼ 0:02 because the
resulting partitions yielded numerous modules of very small size, which
makes motif analysis impractical. For example, at γ ¼ 0:035, the cortex
was partitioned into eight modules, with three modules of three nodes,
one module of two nodes, and another singleton module.

At the most coarse scale (γ ¼ �0:0125), the cortex was partitioned
into two modules (Fig. 3b). The wider module (M1) contained most re-
gions of the sensory-motor cortex including the primary somatomotor
(MOp), somatosensory (SSp, SSs), visceral sensory-motor (VISC, ILA),
gustatory (GU), olfactory (AON, TT, PIR), auditory (AUDp, AUDs), and
visual areas (VISs, VISp). Association areas such as orbital (ORBmv,
ORBvl), agranular insular (AId, AIv, AIp) and posterior parietal (PTLp),
together with the cortical subplate, namely, claustrum (CLA) and the
dorsal part of the endopiriform nucleus (EPd) were grouped in the same
module. On the other hand, the second module (M2) brought together all
parts of the hippocampal formation included in this analysis (HIPv, HIPd,
SUBd, POST) as well as retrosplenial (RSPv, RSPagl, RSPd), prelimbic
(PL), and anterior cingulate (ACAv, ACAd) areas. Along this association
structures, only one sensory-motor region was included, namely, the
secondary somatomotor region (MOs). As the resolution parameter was
increased (γ ¼ 0:005), the cortex was split into three functional modules
(Fig. 3c). The previous module M1 was divided into two different mod-
ules, whereas M2 remained largely intact, with only the infralimbic area
relocated fromM1 intoM2. Finally, at the finer scale (γ ¼ 0:02), a total of
five modules were obtained (Fig. 3d). In this case, the original module
M1 was partitioned into three communities and M2 into two. Again, the
infralimbic area was relocated with module M2.

The next part of our analysis focused on investigating structural
connections and their relationship with functional modularity. Regard-
less of the resolution scale, both intra- and inter-modular links showed
positive reciprocity, indicating that brain regions tend to be mutually
connected within and between modules. However, when comparing
reciprocity between both types of links, connections of the RCAMsmatrix
within communities showed a stronger reciprocity compared to pro-
jections connecting nodes from different modules: 0.506 vs 0.275, 0.534
vs 0.304, and 0.575 vs 0.326 when the brain cortex was partitioned into
two, three, and five modules, respectively.

We next investigated the density of each of the 13 potential motif
classes associated with structural motifs of size 3 within functionally
identifiedmodules and for the selected scales (Fig. 4). We obtained a very
high z� score for motif class 13 for all partitions and for all connectivity
levels investigated (when keeping all connections, when removing very
weak links, and when removing both very weak and weak/moderate links),
indicating that this maximally densely connected structural motif is
significantly enriched within functional communities. Comparable re-
sults were obtained for motif class 12 for scales 0.005 (Fig. 4b) and 0.02
(Fig. 4c), and for�0.0125 (Fig. 4a) after deletion of very weak links and of
both very weak and weak/moderate links. A few other motif classes were
significant at z> 3:7ðP<0:0001Þ, for example motif class 10 and 11 for
scales 0.005 and 0.02 and only when removing both very weak and weak/
moderate links. Regardless of the considered scale and connectivity level,
the significance level of all other motif classes was z � 3:7.

3.3. Dynamic simulations based on the rat connectome

Simulations of spontaneous rat cortical activity produced patterns of
simulated FC that were significantly correlated with empirical FC, reaf-
firming that the topology of the rat cortex SC predicts and shapes func-
tional relationships. To achieve realistic model dynamics we identified
optimal model parameters, in this case the conduction velocity and a
global coupling parameter that scales the strength of structural connec-
tions. Optimal values were identified by conducting stochastic optimi-
zations through an evolutionary algorithm powered by the DEAP python



Fig. 1. Structural and empirical functional networks of the rat cortex. (a) RCAMs matrix built from (Bota et al., 2015) (left panel), histogram of the weight distribution (middle panel), and
structural connections as a function of the Euclidean distance between pairs of ROIs (right panel). Color scale represents the categorical weights of structural links (0, not present; 1, very
weak; 2, weak; 3 weak/moderate; 4, moderate; 5, moderate/strong; 6, strong; 7, very strong). (b) Functional connectivity between pairs of ROI time courses (left panel), probability density
estimate of the Fisher's z-values (middle panel), and pair-wise functional connections as a function of the Euclidean distance between ROIs (right panel). Color scale represents the strength
of functional interactions between pairs of nodes. The same color scale for structural and functional networks is used throughout the work. Each dot represents a particular functional
connection between pairs of nodes. Euclidean distances are measured between centers of mass.

Fig. 2. Pair-wise functional interactions as a function of the underlying structural con-
nections. Box and whiskers plots representing the median (horizontal red line), first, Q1,
and third, Q3, quartiles (blue box), as well as the lower and upper (black) whiskers of the
functional connections. Those values greater than Q3 þ 1:5�ðQ3 � Q1Þ or lower than Q1 �
1:5�ðQ3 � Q1Þ were considered as outliers (red crosses).
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package (see subsection 2.8.1).
We subjected a broad range of computational models available in TVB

to joint optimization of their conduction velocity and global coupling
parameters through DEAP. DEAP performed automatic parameter opti-
mizations, with only parameter ranges as input. The highest performing
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model available in TVB, the Generic 2D Oscillator model, produced a
simulated FC matrix with a Pearson correlation of ρ ¼ 0:53 with the
empirical FC matrix (P<10�70) when the conduction velocity parameter
was set to 3.06 m/s and the global coupling parameter had a value of
0.3734 (Fig. 5). These simulation results implementing a generative
model for FC based on the network of structural connections and simple
biophysical node dynamics demonstrate are consistent with the notion
that a large proportion of the observed patterning of FC is shaped by the
underlying SC matrix.

4. Discussion

The study of structure and function at the large-scale in rodent ani-
mals offer the possibility of understanding the mechanisms underlying
psychiatric and neurological disorders for subsequent translation
research (Gozzi and Schwarz, 2016; Jonckers et al., 2015). Nevertheless,
knowing and describing the healthy rodent brain connectivity is the first
step for that endeavor. The organizational principles of the rat andmouse
structural networks have been previously described (Bota et al., 2015; Oh
et al., 2014; Swanson et al., 2016; van den Heuvel et al., 2016b). Com-
parisons between the mouse connectome and rs-fMRI connectivity have
revealed that both networks are intimately correlated (Sethi et al., 2017;
Stafford et al., 2014). In this work, we have carried out comparisons
between the cortical rat connectome (Bota et al., 2015) and the corre-
sponding functional network obtained from rs-fMRI data. The main
findings of this study reveal that: (1) in agreement with previous studies
in humans and various animal models, the level of functional interaction
between two anatomically connected brain areas in resting-state is
significantly predicted by the strength of the underlying structural
connection; (2) fMRI BOLD signal fluctuations in rat brain cortex can be
robustly partitioned into functional modules or clusters; (3) reciprocity of



Fig. 3. Community structure. (a) Different properties were computed at various γ levels (Louvain algorithm run 10,000 times): number of communities, modularity function (Q), measuring
the quality of the obtained consensus partition, and mean and variance of the z-score of the rand indices (z-Rand), measuring the similarity over all pairs of partition within scales.
Partitions below �0.015 and above 0.24 were unstable. For clarity, only scales in the range [-0.015, 0.15] are shown, and Q was rescaled between 0 and 10. (b) Functional partition
obtained at γ ¼ �0:0125 (two communities). (c) Functional partition obtained at γ ¼ 0:005 (three communities). (d) Functional partition obtained at γ ¼ 0:02 (five communities).
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links connecting nodes from the same functionally defined modules is
stronger than those linking regions from different modules; (4) within
functional communities under a control condition and in resting-state,
densely interconnected structural motifs (i.e. class 12 and 13 for motifs
of size M ¼ 3) are significantly enriched; and (5) simulations of the
intrinsic neural activity based on the rat connectome can reproducemuch
of the empirical functional patterns obtained empirically.
4.1. Role of higher-order patterns in shaping cortical functional modular
organization

Comparing SC and FC without taking into account network-level ef-
fects only supplies a partial view of the inherent complexity of the brain.
Therefore, network approaches are increasingly gaining prominence to
understand the SC-FC coupling (Wang et al., 2015). Here, we have first
shown that the 32 cortical brain regions considered in this work disclose
a distinct community structure, partitioned into two, three or five com-
munities, at γ ¼ �0:0125, γ ¼ 0:005 and γ ¼ 0:02, respectively. Previous
studies have investigated the modular structure of functional connections
over the whole rat brain under different states of consciousness (D'Souza
et al., 2014; Liang et al., 2012). Other authors have focused on specific
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resting-state networks (e.g. the default mode network), revealing func-
tional subcomponents and how interactions between and within these
submodules can be modulated in age-related neurocognitive disorders
(Hsu et al., 2016). Here, we have restricted our analysis to the brain
cortex. Future work may address additional brain regions, for example
including the association connectome of the rat cerebral nuclei (Swanson
et al., 2016).

After evaluating the modular organization of the cortex, we first
observed a stronger weighted link reciprocity within functionally defined
modules compare to inter-modular links. We then observed a high ratio
of structural motif classes 12 and 13 within functional modules. These
findings are consistent across resolution scales. In particular, whereas
motif class 12 is overrepresented at scale �0.0125 after removing very
weak links and both very weak and weak/moderate links, motif class 12 at
scales 0.005 and 0.02, and motif class 13 at all resolution scales were
strongly significant for all thresholds applied. This indicates that the
functional coherence of FC communities may in part reflect an underly-
ing aggregation of densely connected anatomical motifs. Note that motif
analysis was carried out on three binarized versions of rat connectome
since we were interested in the count of motif classes rather than in the
strength of the connections. Additionally, the abundance of these



Fig. 4. Network motif analysis. Functionally obtained partitions are imposed over the RCAMs matrix (upper row). Statistical evaluation of each of the 13 structural motifs classes (lower row) is shown for different binarized versions of the RCAMs
matrix, namely, when keeping all connections (threshold ¼ 1), removing very weak links (threshold ¼ 2), and removing both very weak and weak/moderate links (threshold ¼ 3). (a) Motif analysis at γ ¼ �0:0125. (b) Motif analysis at γ ¼ 0:005. (c)
Motif analysis at γ ¼ 0:02.
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Fig. 5. Comparison between experimental and simulated functional connectivity (FC) matrices. (a) Simulated FC network. (b) Empirical FC network. (c) Probability density estimate of the
simulated FC matrix. (d) Scatterplot showing the linear dependency between experimental and simulated FC matrices.
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anatomical subgraphs can not be trivially explained by lower-order fea-
tures because the generated network null models also preserved the
number of mutual edges of individual nodes (Milo et al., 2002). The
important role of motifs in shaping the SC-FC coupling has been previ-
ously observed in the macaque cortex (Adachi et al., 2012). Nevertheless,
whereas these authors computed motifs over the whole network, motif
analysis in this work was restricted to within modules and to small motifs
of size 3. For graphs with a greater size, a richer repertoire of larger
structural motifs could be investigated (e.g., network motifs of size 4 and
higher (Sporns and K€otter, 2004)). There has been an increasing interest
in detecting coherent groups of nodes forming specific network motifs
(Arenas et al., 2008; Benson et al., 2016). In this framework, one can
specify in advance a particular motif class of interest to guide the clus-
tering process. When domain-specific knowledge is not available, it is
also possible to analyze which type of motif organizes and shape the
modular structure of complex networks.

The term “motif” is widely applied for describing and understanding
recurring circuits of interactions that take place on real-world networks
(Alon, 2007). For instance, in the context of large-scale brain networks,
as in the present report, structural motifs consist of a set of nodes and
potential pathways supporting communication, whereas functional mo-
tifs refer to specific combinations of connections that can be activated
within structural motifs (Sporns and K€otter, 2004). That is, both struc-
tural and functional motifs are defined for directed anatomical networks
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(Table 2). In other settings, for example when approaching the func-
tioning of the brain from a computational perspective (Turkheimer et al.,
2015) or in the context of activation spreads recorded with different
modalities (Frostig et al., 2008; Mohajerani et al., 2013), the concept of
motif is related but not completely the same as that employed in this
work. The common message behind this general concept is that the brain
is a highly hierarchical and complex system wherein organizational
principles are repeated across space and time (Turkheimer et al., 2015).
4.2. Modelling how structure shapes function

The high levels of similarity between empirical FC and FC derived
from simulations using multiple computational models lend additional
support to the finding that structural connectivity both constrains and
enables functional connectivity in mammalian brains (Honey et al.,
2009). Structural connectivity data derived from tract tracing experi-
ments is generally considered to more closely approximate “ground
truth” than connectivity derived from DTI streamlines, with lower levels
of both type I and type II errors (Chen et al., 2015; Dauguet et al., 2007).
The high quality of the structural data, combined with the optimization
of model parameters through DEAP, likely contributes to the high levels
of FC prediction seen across different nonlinear models (max ρ ¼ 0:53,
33.5% of variance explained). This level of correlation is somewhat
higher than that typically achieved with nonlinear models using SC data
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derived from DTI images (Falcon et al., 2016; Mess�e et al., 2015).
Importantly, the structural network derived from tract tracing experi-
ments is directed, in contrast with SC obtained from DTI, which may
allow a neural mass model to produce a richer set of dynamics through
asymmetric connections between regions and more accurately defined
pathways of communication between regions (Knock et al., 2009). Our
findings from the simulation model support the notion that a (simple)
generative model based on structural connectivity and neural mass dy-
namics can account for a significant portion of the observed patterns in
empirical FC.

There are several limitations to the simulation portion of this work.
First, while the structural data used here is presumably of higher quality
than DTI, it is incomplete in that many parts of the rat brain are not
included. For example, the omission of sub-cortical structures such as the
cerebral nuclei or the thalamus may limit the potential range of dynamics
captured in the simulation. Furthermore, interhemispheric connections
are not included in the SC matrix, which may be important for simulating
more realistic neural dynamics. Second, our estimate of the anesthetized
rat hemodynamic response function may not accurately represent rodent
BOLD responses. The BOLD forward model available in TVB is intended
for use with primate data, and does not incorporate possible regional
variations in the hemodynamic response function (Sanz-Leon et al.,
2015). Third, the stochastic nature of the DEAP based parameter opti-
mization may result in the algorithm converging on local optima. These
limitations can be addressed in future work as additional parts of the rat
connectome become available (e.g. (Swanson et al., 2016)), with more
detailed physiological recordings of rodent fMRI responses, and further
improvements in simulation and optimization algorithms.

4.3. Construction of brain graphs

A very critical step for construction and analysis of brain network is
that of dividing the brain into discrete regions. The absence of a well-
established and accessible Swanson atlas in NIfTI format for parcella-
tion of fMRI data required us to perform a manual matching procedure
between cortical regions of Swanson space (SwS) (Swanson, 2004) and
Paxinos&Watson (PWS) (Paxinos and Watson, 1998). This entails several
caveats. First, although Swanson regions can also be expressed in ste-
reotaxic coordinates to correspond to Paxinos &Watson regions, coronal
planes from both spaces do not always exactly match with respect to
bregma reference. Therefore, taking into account the spatial distribution
of adjacent planes is fundamental to achieve an accurate alignment of
brain regions between different spaces. Second, a common problem
when using different spaces or atlases (not only restricted to SwS and
PWS) concerns nomenclature of brain regions, as different spaces may
use different nomenclature to label the same brain regions. In this case,
we have used the Swanson nomenclature after carefully inspecting both
SwS and PWS (see subsection 2.3 and Table 1). Finally, some cortical
regions were not available in the NIfTI atlas as a single mask (e.g., CA1
and CA2). To overcome these limitations, several areas from the
anatomical matrix were aggregated together by averaging the original
categorical weight. In addition, some cortical regions were discarded to
ensure a representative time course in each node from functional net-
works. All 32 ROI signals included in our analysis were averaged across
hemispheres, had exactly the same volume (i.e., 1 mm3 in total, 0.5 mm3

in each hemisphere), and were extracted from exactly the same voxels
across rats. The consequences of these methodological steps might
inevitable mask relevant feature of individual nodes. For instance, par-
ahippocampal regions, such as perirhinal and entorhinal cortices, were
not included in our analysis and, however, these areas have shown to be
critical for cortico-hippocampal integration in mice (Bergmann et al.,
2016). Despite these considerations, the main research goal of the pre-
sent report was to assess the empirical SC-FC coupling in the rat brain
cortex with a special emphasis in comparisons at regional scale (func-
tional modularity and structural networkmotifs), rather than the analysis
at more local scale (Ferezou et al., 2007; Kaiser, 2011).
181
4.4. Relevance of data preprocessing: global signal regression

An important issue in fMRI investigations is that of controlling for
head motion and physiological artifacts (mainly those related with res-
piratory and cardiac cycles) when estimating functional interactions
between brain areas, especially in task-free paradigms (Van Dijk et al.,
2012; Yan et al., 2013). Even though anesthesia can reduce rough head
movements, variance explained by motion parameters can substantially
improve the specificity of FC in anesthetized rodents (Kalthoff et al.,
2011). Numerous techniques have arisen with the aim of correcting or
minimizing variations in the BOLD signal as a consequence of these ar-
tifacts: scrubbing (Power et al., 2012), spike regression (Satterthwaite
et al., 2013), motion parameter regression (Friston et al., 1996), Inde-
pendent Component Analysis (ICA) (Pruim et al., 2015), as well as its
combined use with global signal regression (GSR). The inclusion of the
global signal as a nuisance regressor is a widely used but controversial
preprocessing step. How negative correlations should be interpreted after
GSR is very challenging given the nature of the BOLD signals (Fox et al.,
2009; Murphy et al., 2009). In our dataset, Spearman correlation
demonstrated a significant linear dependence between SC and empirical
FC after controlling for the global signal. Whether or not other pre-
processing steps would further increase the coupling between BOLD
signals and the underlying SC is an open question that would require a
separate study comparing the effects of different preprocessing pipelines
(Ciric et al., 2017). The removal of global signal variance has also applied
in a previous study relating structure and function in the mouse brain
(Stafford et al., 2014). It is important to acknowledge that the application
of GSR has shown to be effective to reduce the relationship between
connectivity and motion, but accentuates distance-dependent effects. On
the other hand, temporal censoring techniques (e.g., scrubbing or spike
regression) do appear to be suitable to reduce distance-dependent effects,
but using additional degrees of freedom in return (Ciric et al., 2017). In
this work, we preprocessed rs-fMRI data combining these techniques and
ensuring a minimum temporal window of 9 min to estimate functional
interactions between node pairs.

4.5. Effect of anesthesia on functional connectivity

Another very important consideration when examining fMRI data in
rodents, and other animal models, has to do with the effect of the anes-
thetic agent on brain physiology (Pan et al., 2015). Due to the
multi-compartmental origin of fMRI signals (Moreno et al., 2013),
interference of anesthetics on the neural computations, as well as on the
neurovascular coupling itself are expected. Advantages and disadvan-
tages of a number of anesthetic compounds, as well as mixtures of them,
have been reported in the literature (Paasonen et al., 2016; Williams
et al., 2016). It is well established that the degree of functional
inter-hemispheric coupling is dose-dependent, and previous studies have
uncovered bilateral functional networks in the rodent brain in a variety
of anesthetic agents at lower doses (Gozzi and Schwarz, 2016). For
instance, whereas the use of urethane anesthesia at higher levels
(1.5 g/Kg) has compromised functional inter-hemispheric coupling in
mice, cortico-cortical correlations improves when lower doses (1.2 g/Kg)
are used (Grandjean et al., 2014). In this work, where subjects were
urethane-anesthetized at 1.2 g/Kg, BOLD signals from homotopic ROIs
were averaged across hemispheres because bilateral networks were un-
covered using different seeds (Supplementary Figs. 3, 4 and 5). We note,
though, that for group studies where subtle inter-hemispheric differences
could be of relevance, extraction of ROIs should be performed separately.
Finally, it is important to highlight that the significant match found in our
study between FC and SC could be favored by a decrease in the repertoire
of functional configurations that the system can visit under anesthesia, as
previously reported in monkeys (Barttfeld et al., 2015). Therefore, the
remaining functional interactions under anesthesia would most likely
reflect the strongest, hard-wired, connections in the brain, this is, the
structural connectivity.
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5. Conclusions

We have proved in this work the structure-function relationship at
large-scale of the rat by directly comparing the structural and functional
connections spanning the brain cortex (maximum Spearman rank-order
correlation between was type of networks was 0.48), and relating
second-order properties (reciprocity) and higher-order structural con-
nectivity pattern (network motifs) with functional communities. We
highlight here the importance of densely connected structural motifs in
shaping the community structure of functional networks in resting-state.
The accuracy of computational models of the spontaneous neural activity
based on the rat structural connectome (maximum Pearson correlation
between the empirical and functional FC was 0.53) further supports the
idea that structural connectivity is coupled to and shapes functional
connectivity in cortical networks.
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