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Abstract 

The northern pike (Esox lucius) has been intensively studied in terms of behaviour due to its 

relevance to fisheries and its importance for structuring fish communities in freshwater ecosystems.  

However, little is known about the behaviour of coastal pike living in brackish lagoons. Freshwater 

ecosystems, particularly lakes and small rivers, are usually finite in space, which can limit the 

expression of space use as a function of body size and other traits. Better understanding the spatial 

behaviour shown by coastal pike in extended brackish lagoons and its relationship to gear encounter 

and vulnerability to fishing allows examining fundamental size-based allometries and can inform 

management. Here, we present two years of acoustic telemetry data acquired on a large sample of 

coastal pike (n=216) with extended size range (480 to 1.210 mm total length) living in coastal 

lagoons bordered by the islands of Hiddensee, Rügen and Usedom in the Baltic sea. The extended 

home range (95% utilization distribution, UD) by pike scaled positively with body size, with larger fish 

using significantly more space overall, while the size-UD% relationship was not significant for core 

area (50% UD) after controlling for co-variates. However, the ratio of 50% UD on 95% UD scaled 

negatively with size, meaning that larger-sized pike used areas out of their core ranges more 

intensively. Space use also differed between seasons with activity spaces being elevated in spring 

likely due to spawning migrations and increased activity. Spatial behaviour of pike also varied by 

lagoon, but was independent of sex. All space-use proxies were found to be repeatable, suggesting 

the strong influence of pike personalities on their individual spatial behaviour. Fish that used less 

space were more likely to be captured by anglers and fishers, indicating fisheries can induce 

selection pressures on space use behaviour.  
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Introduction 

The northern pike (Esox lucius) is large freshwater predatory fish, and an increasingly popular model 

organism in ecology and evolution (Forsman et al., 2015). Broadly distributed in the northern 

hemisphere, pike is also an important species for recreational and commercial fisheries (Arlinghaus 

& Mehner, 2004; Arlinghaus et al., 2021; Lehtonen et al., 2009). Because of its relevance to fisheries 

and adequacy as a study model for (?), pike behaviour and population ecology has been extensively 

studied (Craig & Lucas, 1996; Raat, 1988; Skov & Nilsson, 2018). Detailed studies on the behaviour of 

pike have been conducted in aquaria and mesocosms (e.g., Nilsson et al., 2006; Skov & Koed, 2004; 

Stålhammar et al., 2012) as well as in lakes and rivers using radio telemetry, acoustic telemetry 

(Jepsen et al., 2001; Koed et al., 2006; Masters et al., 2005; Ovidio & Philippart, 2005) and marc-

recapture (Haugen et al., 2006; Miller et al., 2001). However, populations of pike are also present in 

brackish environments, most notably in the Baltic Sea (Forsman et al., 2015; Wennerström et al., 

2017; Winkler, 1987), and there is limited knowledge on the behaviour of adult pike from such oligo- 

and mesohaline environments.  

First insights on the spatial behaviour of coastal pike was generated through standard mark 

recapture methods, which suggested that coastal pike rarely moved beyond 10 km in the Baltic 

across Finland and Sweden (Karas & Lehtonen, 1993). More recently, biotelemetry work in the Baltic 

has been completed using data storage tags to assess depth use of coastal pike in Sweden (Nordahl 

et al., 2020) and passive integrated transponders to track anadromous behaviour of Swedish pike 

into streams and wetland (e.g., Tibblin et al., 2016). As far as we are aware, only two acoustic 

telemetry-based studies have been completed on coastal pike, one of which documented that fish 

tagged in a tributary to a Danish lagoon did not use the brackish water (Birnie-Gauvin et al., 2019) 

and the other revealing extensive movements from brackish lagoons to the open coast by a fraction 

of fish in Denmark (Jacobsen et al., 2017). The lack of receiver networks in the open coastline 

outside the core lagoon where the study happened (Stege Nor), did not allow Jacobsen et al., (2017) 



to quantify the extent of the space used by the fish over the course of the year. Generally, adult pike 

have been reported to tolerate salinities up to 15 Practical Salinity Units (PSU; Raat, 1988) and may 

thus be found over a wide range of brackish conditions. 

Understanding patterns of space-use is an important topic in species that are also fisheries targets.  

Vulnerability to capture by different fishing gears has been theorized to be higher in individuals that 

use more space as they have higher likelihood of encountering fishing gear, but whether selection on 

home range is positive, negative or not significant depends on the type of fishery and the movement 

behaviour of fishers (Alós et al., 2012; Lennox et al., 2017b; Villegas-Ríos et al., 2017). Positive 

selection on larger home ranges was empirically documented in pearly razorfish (Xyrichtys novacula) 

fished by anglers near Mallorca, Spain (Alós et al., 2016). This was also observed in a lake population 

of northern pike where individuals with larger home ranges were more likely captured by anglers 

(Monk et al., 2021). In more complex fisheries with multiple gear types and a mixture of protected 

and open areas, support for the hypothesis that fish with larger home range are more likely to be 

captured remains mixed. For example, no selection on home range behaviour in a fjord was found in 

Atlantic cod (Gadus morhua; Olsen et al., 2012), and the direction of harvest selection on home 

range size in anadromous trout (Salmo trutta) roaming along  the coast depended on whether the 

fish were predominantly within protected area (positive) or outside protected areas (negative) 

(Thorbjørnsen et al., 2021). Selection on space-use will be especially pronounced if individuals are 

consistent in their behaviour (i.e. exhibit personality; Thorbjørnsen et al., 2021), for which there is 

evidence in freshwater pike (Kobler et al., 2009; Laskowski et al., 2016).  

In pike, and in many other species, space-use has been shown to be related to the body length and 

in turn to the body mass of the fish (Rosten et al., 2016). Moreover, larger and faster growing pike 

are systematically more vulnerable to harvest than smaller fish (Crane et al., 2015; Monk et al., 

2021), and as pike show sex-dimorphic growth, the generally larger females are more likely captured 

by angling than males (Casselman, 1975). A positive relationship of body size with space-use (i.e. 



allometric scaling of space use) can be expected because absolute metabolism is expected to scale 

with body mass (Darveau et al., 2002), so that larger fish may require more space to fill their 

metabolic demand. Larger pike are also less likely to be cannibalized, which can increase their 

motivation to roam freely (Haugen et al., 2006), while smaller conspecifics are often bound to littoral 

refuges with low relative movements (Chapman & Mackay, 1984; Eklöv, 1997; Grimm & Klinge, 

1996). Although positive relationships between body-size and space-use have been reported in pike 

(Monk, 2019; Monk et al., 2021; Rosten et al., 2016), there is uncertainty regarding the rate of the 

scaling. In a meta-analysis across fish species, Woolnough et al. (2009) found the scaling of body size 

and space use to be shallower in rivers than in lakes, a phenomenon that the authors attributed to 

the differences in the water-body sizes. Relatedly, the allometric scaling of space use of freshwater 

fish was shallower than that of similar body-sized land mammals (Minns, 1995). But Rosten et al. 

(2016) found the allometric scaling of space use with the mass of pike to be higher (with an 

exponent of 1.08) than expected from mass-metabolism relationships (exponent of 0.75) in an 

English river pike population. Other work failed to relate the space use behavior to the size of pike 

(Jepsen et al., 2001; Koed et al., 2006). Possible explanation for the discrepancy in findings regarding 

the allometric scaling of space-use in the pike behavioural ecological literature may involve the 

ambush-like foraging behavior of pike, which is often confined to hunting from structures (Eklöv, 

1997). Other local factors within a given ecosystem (e.g., underwater vegetation or turbidity) may 

also affect space use behavior and possibly override length effects (Andersen et al., 2008; Říha et al., 

2021). Another reason could be that the space use of fish more generally is related to the size of the 

water-body in which the animals live, potentially confounding body size effects (Woolnough et al., 

2009). Methodologically, assessment of space-use depends on sampling methods that allow for 

regular position estimates (e.g. passive acoustic telemetry with broad receiver coverage), and 

irregular samplings, (e.g., in manual radio telemetry which was common in the past in lake studies; 

e.g., Jepsen et al. 2001), might substantially underestimate the space use of fish (Kobler et al., 

2008a, 2008b). A final issue is that the size gradient of the fish under investigation must be large 



enough to be able to detect differences. Investigating body-size effects on space-use in the Baltic in 

fish with a large size gradient across an extensive network of lagoons alleviates some of these 

concerns, given that the area that the fish can explore is very large and thus the expression of 

extensive space use is not confined by the boundaries of for example small lakes (Rogers & White, 

2007). 

Sex effects may also explain discrepancies in the allometric scaling of space-use in pike. Pike are 

sexually dimorphic, with females achieving larger body sizes than males (Crane et al., 2015; Haugen 

et al., 2006; Tibblin et al., 2016). After controlling for length, in some studies males have been found 

to use more space than females (in one of two study lakes, Jepsen et al., 2001a). In this case, the 

presence of small-bodied males with high space-use in a sample may blur the expected allometric 

scaling of space-use if sex is not controlled for. Other work has shown that female pike might be 

more active than males during the spawning period, with no sex differences outside the spawning 

period (Koed et al., 2006). If sex also affects behaviour of pike, the relationship between body size 

and space use is better studied when controlling for potential sex effects. This is further supported 

as a recent telemetry study from a Norwegian lake that reported complex interaction effects of sex 

and length on the behavioural response of pike to temperature variation across the year (Haugen, 

2018). Sex effects on space use may be especially important to understand in brackish water pike, 

because in the Baltic, and notably in the lagoons surrounding the islands of Hiddensee, Rügen and 

Usedom in Germany, trophy pike (body-length > 100 cm) are a key target of recreational anglers 

(Koemle et al., 2021). Such trophy pike are usually females, and harvest selection on body-size 

and/or space-use may disproportionally target these key individuals in the intensively fished lagoon 

of Rügen and similar exploited systems. 

Spatial and temporal effects may also influence space-use, all adding potential confounding effect 

when investigating body size effects on space use. Pike have been shown to use more space in turbid 

conditions than in clear conditions (Jepsen et al., 2001). The authors speculated that turbid waters 



acted as a refuge, and therefore that pike space-use was less constrained by potential dangers than 

it would in a clear habitat. Similarly, shallow, and vegetated habitats have been found to be favoured 

by pike, serving as spawning habitat and refuge (Chapman & Mackay, 1990) and may have an effect 

on space use, with lower movement rates in more structured habitats (Říha et al., 2021). Further, 

temperature is known to affect pike activity, with spontaneous swimming activity being maximal 

around 19 – 20 °C, and pike being significantly less active at temperatures below 6 °C than at 

temperatures above 9 °C (Casselman, 1978). In this case, space use can be expected to be lowest in 

the winter months, but several studies have reported that summer and winter movements may be 

similar in pike (Baktoft et al., 2012; Kobler et al., 2008b), while home ranges might be elevated in the 

winter months as pike search for prey to build their gonads (Kobler et al., 2008b). Elevated 

movements of pike have been repeatedly observed during spawning time in pike (Cook & Bergersen, 

1988; Diana, 1980). But some studies did not report such increase in space use in spring (Baktoft et 

al., 2012; Koed et al., 2006). Because coastal Baltic pike are known to perform anadromous 

spawning migrations in spring from studies in Germany, Sweden, and Estonia (Engstedt, 2011; 

Tibblin et al., 2015), we may expect space uses to be larger in spring. 

Here, we present two years of acoustic telemetry data from 216 pike (n=120 females; n=134 males) 

with a large size range from roughly 50 to 120 cm total length tagged in the brackish lagoons 

surrounding the islands of Hiddensee, Rügen and Usedom in northern Germany (Figure 1). Pike were 

monitored using an array of 140 passive acoustic receivers deployed at fixed locations in an area 

spanning over more than 1.200 km2 of interconnected brackish water lagoons and major freshwater 

tributaries (Figure 1). To test whether larger pike used more space, we computed utilization 

distributions (50% and 95%) as proxies for space use and expected to find a positive relationship of 

space use and pike body-size and an impact of sex on space use (after controlling for size effects), 

especially during spawning time. Because the lagoons around our study area differ in trophic state, 

salinity, underwater vegetation and turbidity and are differently exposed to hydrographic water 

inflows from the open Baltic (Selig et al., 2009, and see Table 1.) we expected variation in space use 



between lagoons. Finally, we expected pike to use different amounts of space across the season, 

with space use being highest in spring corresponding with the spawning period.  

  

Figure 1. Map of the study area, featuring the positions of acoustic receivers and the main lagoons of 

interest. The study focuses on six different brackish water lagoons (Peenestrom = PS, Greifswalder 

Bodden = GB, North Rügen Bodden chain = NRBC, Kubitzer and Schaproder Bodden = KBSB, Barther 

Bodden = BAT and S = Strelasund). Inset shows, in a red square, the position of the study area in 

relation to Northern Europe. 

 

  



Table 1: Summary of environmental and geographic parameters of the lagoons within the study area 

of this work. Mean values were calculated for each area over the last 12 years (2010 – 2022) BAT: 

Barther Bodden; KBSB: Kubitzer and Schaproder Bodden; NRBC: Northern Rügen Bodden chain; S: 

Strelasund; GB: Greifswalder Bodden; P: Peenestrom. Values after ± represent standard deviations. 

Parameter BAT KBSB NRBC S GB P 

Chlorophyll a (mg/m3) 27.7 ± 19.6 7.9 ± 6.9 16.8 ± 12 15 ± 9.1 14.6 ± 13.6 63.6 ± 48.1 

Total phosphorus (µmol/l) 1.8 ± 0.7 1.3 ± 0.6 1.8 ± 1.1 1.6 ± 0.6 1.5 ± 0.7 3.2 ± 1.9 

Salinity (PSU) 8.3 ± 1.6 8.7 ± 1.1 8.3 ± 1 7.8 ± 1.1 7.2 ± 0.9 3.2 ± 2.1 

Secchi depth (m) 1 ± 0.8 1.9 ± 0.8 1.4 ± 0.7 1.4 ± 0.6 1.7 ± 0.8 0.7 ± 0.5 

Water temperature (°C) 11.5 ± 6.6 11.6 ± 6.7 12.5 ± 6.5 11.9 ± 7 11.7 ± 6.8 11.9 ± 6.7 

Area (km2) 59.8 231 132.9 47.6 540.1 181.9 

Mean depth (m) 2 1.8 3.5 3.9 5.8 2.6 

Max depth (m) 16.5 7.6 10.3 16 13.5 16 

Catchment area (km2) 1,578 NA 312 238 665 5,772 

 

Methods 

Study species and area 

The study was conducted in lagoons bordered by the islands of Hiddensee, Rügen and Usedom in 

north-eastern Germany (Mecklenburg Vorpommern, 54.41N, 13.37E, Figure 1). The islands lie in the 

southern Baltic Sea and are surrounded by brackish water lagoons that are used by fauna of both 

freshwater and marine origin (Winkler, 1989). The lagoons are oligo- to mesohaline and show a 

pronounced salinity gradient from the more enclosed lagoons (oligohaline, e.g., Northern Rügen 

Bodden Chain) and lagoons in the estuary of large rivers (e.g., Peenestrom) to the mesohaline 

lagoons. Within the mesohaline lagoons salinity decreases from north (Kubitzer and Schraproder 

Bodden) to south (Greifswalder Bodden). The lagoons are typically shallow (with the more linear 

Strelasund linking Kubitzer and Schaproder Bodden and Greifswalder Bodden as an exception) and 



vary in trophic state with the more enclosed lagoons being hypertrophic and turbid and the more 

exposed lagoons being eutrophic and having clearer water (see Secchi depth, Table. 1).  

Northern pike have adapted to the waters of the Baltic and can be found in brackish waters up to 15 

practical salinity units (PSU; Jacobsen & Engström-Öst, 2018; Jacobsen et al., 2017), with some 

subpopulations known to use freshwater tributaries for spawning (Berggren et al., 2016; Sunde et 

al., 2019). Anadromy has also been documented at our study-site, but only 7% of 79 fish sampled in 

central Kubitzer Bodden and Strelasund right before spawning time were found to have freshwater 

origin (Möller et al., 2019). Therefore, the current hypothesis is that most pike in the lagoons spawn 

in brackish waters, similar to what was reported by Jacobsen et al., (2017) in southern Denmark 

where salinity goes up to of up to 10 PSU.  

We captured pike (N = 316, see supplementary material section A for number of pike tagged per 

month) in our study area using rod and reel fishing, fyke nets, gill nets and electrofishing, mainly in 

the brackish water lagoons surrounding the island and their freshwater tributaries (Figure 1) 

between February 2020 and December 2020. Upon capture, pike were measured (total length, 

nearest mm; mean ± standard deviation (SD) = 764 ± 123, min = 480, max = 1.210), weighted 

(nearest g, mean ± SD = 3,737 ± 2,048, min = 1,272, max = 15,000), externally sex determined 

(spilling of eggs or milt when gently pressing the body cavity or shape of the cloaca (Casselman, 

1974); Females=176, males= 139, Unknown=1), externally tagged (Floy T-bar anchor, Floy Tag & Mfg. 

Inc., NE, U.S.A.) with a high reward of 100 € upon reporting, and implanted with an internal acoustic 

transmitter (MM-R-16-50 HP, random pulse rate: 60 to 180 s, Frequency = 69kHz, MAP-113, dry 

weight = 26.75 g, in-water weight = 17.2 g, Lotek Wireless Inc., ON, Canada). Tag in-water weight 

was always below 2% of the pike’s body mass, with the lightest pike in our sample weighing 1.272g 

(2% of 1.272 = 25.44 > 17.2 g, Jepsen et al., 2005). The tag implantation procedure followed previous 

work on pike (Hühn et al., 2014). Once the tag implantation was completed, the pike were released, 

and we monitored their recovery until they swam off. Recovery of the pike usually took between 10 



and 30 minutes. A full overview of the tagged pike is available as supplementary information 

(section A). 

Recapture reporting 

We used a participatory recapture database to record recaptures of the tagged pike by fishers and 

anglers. In addition to a unique ID, the Floy tags we used to externally mark the fish indicated the 

web address at which recaptures could be reported (www.boddenhecht-forschung.de). Using this 

website, anglers and commercial fishers could report the ID of the pike they recaptured as well as 

the capture location, the gear used and the body size. To motivate reports, a prize of 100 € was 

given to anyone who reported an individual pike with a transmitter for the first time. We added to 

this database the pike that we recaptured while scientific sampling for the project. Due to sample 

size issues, we only focused for this paper on whether a pike was recaptured or not, and disregarded 

potential gear effects (see supplementary material, section A). 

Acoustic receiver network 

Acoustic receivers (VR2Tx, Frequency: 69kHz, MAP-113, Innovasea Systems Inc. DE, U.S.A) were 

deployed in March 2020 at 140 locations in an area of approximately 1.000 km² of water, comprising 

brackish water lagoons and freshwater streams (Figure 1.). Having little a priori knowledge on the 

spatial behavior of northern pike in our lagoons, we created an array of non-overlapping receivers 

that covered all major lagoons with a focus on areas that are known to be key to pike fisheries (e.g. 

KBSB, BAT, NRBC, Figure 1.). Our array was not meant for fine scale movement analysis but rather as 

a tool to quantify broad movements and connectivity within the areas of interest. The receivers 

were mounted upright on the top of a fiberglass pole (approx. 50 cm) embedded into a concrete 

base (approx. 30 kg). The concrete base was attached with a 20 m polyester line (diameter = 1cm) to 

a 10 kg anchor. The anchor was deployed first, and its coordinates recorded (Global Positioning 

System, GPS), then the receiver on its concrete base was dropped in the water 15 to 20 m further, 

http://www.boddenhecht-forschung.de/


and its coordinates recorded. Receivers were retrieved, cleaned, downloaded and their batteries 

changed in winter 2020 and winter 2021 in collaboration with the Institut für Fish und Umwelt 

(FIUM), Rostock. Thirteen receivers were lost during the study due to high currents and shifting 

substrate or equipment failure (i.e. mounting system damage; FIUM, personal communication). In 

the spring of 2021, five receivers were moved from brackish water areas to freshwater streams for a 

concurrent research project on anadromy behavior of pike (Figure 1).  

Detection filtering 

Upon download, the receiver logs (format .vrl) were processed in the FATHOM software (Innovasea 

Systems Inc. DE, U.S.A, https://fathomcentral.com/) to correct for clock drift, then saved as .csv. All 

further processing was done in R (R Core Team, 2017) version 4.0.5. We used the development 

version of ATfiltR (https://github.com/FelicieDh/ATfiltR) to filter the data. We first trimmed the 

detections and kept only data that belonged to our animals and that was within our deployment 

window (i.e. between the date and time of deployment and the date and time of retrieval). We then 

erased detections that were solitary on a given receiver in a 1 h window (similarly to Kessel et al., 

2014). If an individual was detected on two different receivers consecutively and the time span 

between detections was shorter than the time the fish would have needed to swim between the two 

receiver locations, the second detection was removed (similarly to Kessel et al., 2014; Monk et al., 

2021). To achieve this, we calculated the in-water distance between receivers using actel (Flávio & 

Baktoft, 2021) and used the critical speed formula for freshwater fish provided by (Wolter & 

Arlinghaus, 2003) (critical speed (m/s) = 0.019*Total Length0.79) to estimate the time a pike would 

need to go from one receiver to another, taking into account the receiver range. Receiver range was 

estimated monthly at six different locations using the internal transmitters of the receiver units. 

These locations were selected because the receiver densities allowed for range estimations and 

receivers that were not part of the range testing were later assigned one of the six calculated ranges 

according to their environmental surroundings (see supplementary material section B). Detection 

https://github.com/FelicieDh/ATfiltR


range was estimated as the maximum distance (in meters) at which at least 50% of emitted acoustic 

signals were detected. 

Utilization distributions 

Utilization distributions (UDs; probability distributions of individuals use of space; Van Winkle, 1975) 

were calculated monthly for each individual using a dynamic Brownian Bridge Movement Model 

(dBBMM) in the R package move (Kranstauber et al., 2021). To avoid unrealistic movements over 

landmasses, we first processed the telemetry data in the package RSP (Niella et al., 2020) to 

compute the shortest in-water paths for each individual. The obtained paths, which accounted for 

receiver ranges, were converted to a move object and used for utilization distribution calculations 

with the error computed by RSP used as dynamic error in the model. To avoid any error inflation of 

the model when pike were undetected, we constrained the variance anytime a pike had >24 h of 

absence from the receiver array. For the same reason, the dynBBMM was only applied if a minimum 

of 15 positions were available for a fish during a given month, and these positions were spanning 

over a minimum of 10 days. The landmasses were removed from the obtained rasters and their 

values redistributed to all in-water raster cells that contained positive values.  

The size of the 50% and 95% UDs were then calculated using the fishtrack3d package (Aspillaga et 

al., 2019). The results are given in km2 and represent the size of the core area used by the fish (50% 

UD), and the extended range (95%UD). We also computed the range-ratio, which represents the 

pattern of space use within the range, as the ratio between the size of the core area (50% UD) and 

the extended range (95% UD) (Börger et al., 2008; Spiegel et al., 2017; Webber et al., 2020). Values 

closer to zero indicate bigger differences between the size of the core area and the extended range, 

and values closer to one indicate similarities in the sizes of the core and the range. 

Maximum horizontal displacement 



To describe pike spatial behavior in a way that is comparable to Karas & Lehtonen, (1993) we 

additionally computed the maximum horizontal displacement as the maximum distance between 

receivers visited per month for each fish. Because our study area is bound by many landmasses, 

calculating the distance between receiver locations “as the crow flies” using the haversine formula 

would not yield realistic results. Instead, we used the package actel (Flávio & Baktoft, 2021) to 

compute an in-water distance matrix between our receiver locations.  

Statistical analysis 

We built three linear mixed models using the lme4 (Bates et al., 2015, 4) library in R. One model had 

the logarithm (all logarithms calculated with base 10; log) of the size of the 50% UD as response 

variable, another had the log of the size of the 95% UD (hereafter logUD50 and logUD95), with the 

log transformations used to respect the normality assumptions and for examining allometric 

relationships that are expected to be non-linear (Rosten et al., 2016). For the third model, range-

ratio (UD50/UD95) was the response variable. In all models, we tested the hypothesis that body size 

predicted space use by including the log transformed total length (logTL) and the log transformed 

mass (logW) as fixed effects. Importantly, Rosten et al., (2016) worked on the log of the mass, but 

we expect the body length on the log scale to behave similarly, as body size and mass can be 

expected to correlate. Importantly, Because some pike in the brackish waters of the Baltic are known 

to take seasonal spawning migrations (Tibblin et al., 2015), we added season (categorical: Winter 

from December to February, Spring from March to May, Summer from June to August and Autumn 

from September to November) to the model. Pike being known to be sexually dimorphic, we 

expected size effects to depend on the pike’s sex (Haugen, 2018), we therefore added Sex 

(categorical: Male, Female, Unknown) as an interaction with total length and weight. We also tested 

whether the seasonality of movements depended on sex by exploratorily modelling an interaction 

between season and sex. To test whether pike that use a specific space are more likely to be 

captured, we added recaptured (by anglers or fishers; categorical: yes, no) to the models. Finally, we 



estimated differences between fish coming from different lagoons, by adding lagoon (categorical: 

BAT, PS, S, GB, KBSB, NRBC, Fig. 1) to the model, and we estimated yearly effects by also adding year 

(categorical: 2020, 2021). Differences between individuals were accounted for by including fish ID as 

a random effect. We tested whether our fixed effects were correlated using Pearson correlation 

tests. In the event of correlated fixed effects, we kept in the model only the effect for which we had 

the most data (i.e., higher sample size). 

The full models were backward simplified using consecutive chi-squared test until a most 

parsimonious model was found. Fit of each model was assessed by plotting the residuals on the 

fitted values and looking for any discernable patterns, if no patterns could be seen, fit was 

considered adequate (Martin et al., 2017). The confidence intervals (CI) for each effect in the final 

model was computed using the confint() function in R, and fixed effects were considered significant 

if their 95% confidence interval excluded zero. 

If the random term ID significantly improved the model, we calculated adjusted-repeatability (𝑅 =

	 !!	#

!!	# "!$#
 where 𝜎#	%  is the between-individual variance and 𝜎&% is the within-individual variance, 

Nakagawa & Schielzeth, 2010) to assess how repeatable pike were in their space-use. High 

repeatability can be interpreted as evidence of the presence of spatial behavioural phenotypes 

(Stuber et al., 2022). 

Results 

Sample description 

Following data filtering and UD calculations, the dataset used for this analysis comprised a total of 

210 individuals (88 males, 120 females and 2 individuals of unknown sex; see supplementary 

material, Section A for complete breakdown). Monthly sizes of the core area spanned from 0.17 to 

8.66 km2 at an average of 0.89 km² (figure 2.A.), and the monthly sizes of the extended range 

spanned from 0.57 to 71.16 km2 for an average of 5.38 km² (figure 2.B.). Pike had a maximum 



horizontal displacement ranging from 0 to 56.63 km, with the average being 3.36 km (Figure 2.C.). 

The distribution of core and extended home ranges were highly skewed with most individuals 

showing relatively small home ranges. 

Figure 2. Probability distribution of A) the size of the core area (50% UD) b) the size of the extended 

range (95% UD) and C) the maximum horizontal displacement in Baltic pike. 

As expected, length and weight were highly correlated (R = 0.95, p <0.0001), and therefore we 

present in the main text only models that include length but not weight in the fixed effects, as we 

had the most data on length (n=202 vs. n=189). Models including weight instead of total length can 

be found in supplementary material, section C, and yielded similar results.  

Monthly core area size 

The most parsimonious model for size of the core area (logUD50) included lagoon, recaptured by 

anglers/fishers and season as well as the random term ID (table 2). Sex, year and logTL were 

dropped from the model. Fish in Peenestrom (PS) had significantly smaller core areas than the 

intercept (taken as Barther Bodden, BAT), and fish in Strelasund (S) had significantly larger ones than 

the intercept (table 2, figure 3.A.). Core areas were largest in spring, with all other seasons not 

differing from one another (table 2, Figure 3.C.). Fish that were recaptured used significantly smaller 



core areas than fish that were never recaptured by anglers or fishers (table 2, Figure 3.E.). 

Repeatability for the size of the core area was high and estimated as 0.59 (see Table 2 for p-value). 

Table 2. Results of the consecutive chi-square tests performed on the full models. The full models 

were set up with the following formula Response~ Season*Sex+ logTL*Sex+Recaptured+ Year+ 

Lagoon+ (1|ID) and each row of this table indicates which effect was removed to perform the chi-

square test. Effects that were not in an interaction were tested against a model that contained no 

interactions. Bold results indicate effects that improved model fit. 

 logUD50 logUD95 UD50/UD95 

Variable Chi (DF) P Chi (DF) P Chi (DF) P 

Random ID 279.7 (1)  < 0.0001 237.6 (1) < 0.0001 193.1 (1) < 0.0001 

Season*Sex 6.4 (5) 0.26 7.3 (5) 0.19 7.7 (5) 0.17 

logTL*Sex 4.5 (2) 0.10 1.2 (2) 0.55 2.9 (2) 0.23 

no interaction 10.3 (7) 0.17 8.1 (7) 0.32 11.4 (7) 0.12 

Year 1.1 (1) 0.30 0.3   0.59 0.1 (1) 0.79 

Lagoon 25.1 (5) < 0.0001 36.1 (5) < 0.0001 37.6 (5) < 0.0001 

Recaptured 7.1 (1) 0.007 4.3 (1) 0.03 1.1 (1) 0.29 

Season 53.6 (3) < 0.0001 67.7 (3) < 0.0001 34.8 (3) < 0.0001 

Sex 2.3 (2) 0.31 1.2 (2) 0.55 0.1 (2) 0.92 

logTL 2.5 (1) 0.11 4.7 (1) 0.03 11.3 (1) < 0.001 

 

Monthly extended range 

For the extended range (logUD95), the most parsimonious model included lagoon, season, 

recaptured, andlogTL (table 2). Sex and year were dropped from the model. Fish in Strelasund (S) 

and in the Northern Rügen Bodden Chain (NRBC) used the most space (with the intercept taken as 



Barther Bodden, BAT, table 2., Figure 3.B.). Fish used the most space in spring, with no significant 

differences between the other seasons (table 2., Figure 3.D.). As before, fish that were recaptured 

used significantly less space than the others and the size of the extended range scaled positively with 

total length (with an exponent of 0.61 on total length Table 2., Figure 3.F and G.). There was also a 

significantly positive scaling of mass of pike and extended home range, where the estimate of the 

scaling was 0.24 [95% CI = 0.02, 0.47] (see supplementary material, Section C). Repeatability for the 

size of the extended range was estimated as 0.42 (see table 2. for p-value). 

Monthly range-ratio 

The range-ratio was also predicted by the lagoon, season and logTL, but did not vary according to 

whether a fish was recaptured and was independent of sex and year (Table 2.). Fish in Strelasund (S) 

and the Northern Rügen Bodden Chain (NRBC) had lower ratio indices, meaning that the size of their 

core area was more different from the size of their extended range than in other places (Table 2.). 

The ratio index was also lowest in Spring (Table 2.). Larger fish had significantly lower range-ratios, 

meaning that the differences between the size of the core area and the size of the extended range 

increased with the size of the fish (Table 2., Figure 4.). 

 

Table 2. Estimates and 95% confidence intervals of the most parsimonious models for logUD50 (left) 

and logUD95 (right). The intercept is taken as Autumn in BAT and fish that were not recaptured 

(recaptures = “No”). Bold results indicate variables that are significantly different from the intercept, 

or slopes that differ significantly from zero (i.e. confidence intervals do not overlap zero).  

 Log UD 50 Log UD 95 UD 50/UD 95 

variable Estimate [95%CI] Estimate [95%CI] Estimate [95%CI] 

Intercept -0.11 [-0.18, -0.03] -1.19 [-2.78, 0.38] 0.60 [0.37, 0.84] 



Lagoon:GB -0.09 [-0.19, 0.01] -0.07 [-0.20, 0.05] -0.002 [-0.02, 0.02] 

Lagoon:KBSB 0.02 [-0.06, 0.11] 0.10 [-0.01, 0.21] -0.03 [-0.05, -0.01] 

Lagoon:NRBC 0.08 [-0.03, 0.19] 0.15 [0.01, 0.28] -0.03 [-0.05, -0.006] 

Lagoon:PS -0.11 [-0.21, -0.02] -0.12 [-0.24, 0.001] 0.01 [-0.005, 0.03] 

Lagoon:S 0.11 [0.01, 0.19] 0.18 [0.07, 0.29] -0.03 [-0.04, -0.01] 

Spring 0.08 [0.05, 0.11] 0.12 [0.08, 0.16] -0.01 [-0.02, -0.008] 

Summer -0.01 [-0.04, 0.02] -0.01 [-0.05, 0.04] 0.002 [-0.006, 0.01] 

Winter -0.03 [-0.06, 0.01] -0.04 [-0.08, 0.01] 0.005 [-0.003, 0.01] 

Recaptured:Yes -0.10 [-0.18, -0.02] -1.11 [-0.20, -0.01]  

logTL  0.61 [0.07, 1.15] -0.13 [-0.22, -0.05] 

 



 



Figure 3. Effects of lagoon (see Figure 1. for legend of lagoons) (A, B), season (C, D), recaptures (E, F) 

and log (total length) on the size of the core area (logUD50, panels A, C, E) and the size of the 

extended range (logUD95, panels B, D, F, G). Significantly positive effects (For categorical effects, 

against the intercept taken as BAT, Autumn, non-recaptured, see table 2.) are shown in maroon, and 

the significantly negative ones are shown in teal.  

 

Figure 4. Effect of log(total length) on the range-ratio (50%UD/95%UD), the significant negative 

effect is represented in teal (see table 2.). Lower values of range-ratio indicate larger differences 

between the sizes of the core area and the extended range. 

Discussion 

In this paper, we present two years of acoustic telemetry data on 216 coastal pike with a large size 

range that roam in shallow brackish water lagoons of the southern Baltic Sea. We took advantage of 

our very large study system (> 1.200km2) and the broad size spectrum of our study animals (ranging 

from 480 to 1.210 mm total length) to firmly test the allometric scaling of space use in a virtually 

unbounded waterbody. We calculated the 50 and 95% Utilization Distribution (UD) of each individual 

pike on a monthly basis and found the size of the extended range (95% UD) to scale positively with 

pike size, according to our expectations, but not the size of the core area (50% UD). Further, we 



found the range-ratio (ratio of core area size on extended range size) to scale negatively with body-

size. We had males and females in our sample but found no sex effects on any of our space use 

proxies when controlling for body-size, contradicting our expectations. Space-use was also 

consistent among study years. The amount of space used by pike differed according to the lagoon of 

origin and according to the season with pike using the most space in spring. Fish that had smaller 

core areas and smaller ranges were more likely to be recaptured than their conspecifics, but there 

were no differences in range-ratio between the recaptured and non-recaptured fish. Finally, we 

found the size of the core area, the size of the extended range and the range-ratio to be highly 

repeatable, suggesting strong inter-individual variation in behaviour (i.e. personalities). The presence 

of personality is a precondition for potential impacts of behaviour-based selection (Arlinghaus et al., 

2017b; Olsen et al., 2012).  

This study is an important step to updating our knowledge on coastal pike behaviour in the Baltic 

Sea. Using marc-recapture of externally tagged pike, Karas & Lehtonen, (1993) suggested that Baltic 

pike across the adult stage do not move more than 10 km and often substantially less. We found 

pike to travel up to 56 km in a month, indicating either that the fish in the lagoons in Germany move 

more than reported from Sweden and Finland based on marc-recapture data or that marc-recapture 

data severely underestimate the movement rates of pike. However, similar to Karas and Lehtonen 

(1993) the distribution of the space use proxies we documented were right skewed with many fish 

showing localized behaviour and only a few individuals showing very high movements. Also, the 

monthly core areas were on average 0.89 km² or 89 ha, which is a rather localized movement given 

the extensive nature of the lagoon ecosystems. However, the small core areas may also be due to 

the non-overlapping nature of our telemetry array, which does not allow to capture spatial 

behaviour on a small scale. On average, the extended home range of the our fish was 5.38 km² (or 

538 ha), which is substantially greater than the average home ranges reported from small lakes (e.g. 

mean extended range = 3.6 km2 in winter and 1.4 km2 in summer;  Kobler et al., 2008b). Jacobsen et 

al. (2017) is the only other study directly using telemetry in the Baltic, the authors did not quantify 



space use but rather excursions out of their study areas. There, the number of spays spent outside of 

the lagoon correlated positively with pike size, which also suggests space-use allometry. In passive 

telemetry, where stationary acoustic receivers record the presence of animals that swim within their 

range from fixed locations, array design (i.e. positions of the receivers in the study area) is a 

particularly important consideration and will affect home range estimates. For example, we likely 

underestimated the extended ranges of fish in the Greifswalder Bodden given the poor coverage of 

receivers in that area. Array design of different studies depend on the study question, on the budget 

(i.e. number of receivers available) but also on prior knowledge on the spatial behaviour of the 

target species. Our results provide first estimates of the areal space use to expect in Baltic pike and 

can thus support future research effort that aim to use similar technologies on these pike 

populations. 

Our finding that in the coastal pike of Rügen the size of extended range scales positively with body-

size (with exponent 0.61), and with weight (with exponent 0.24) (see supplementary material 

section C for results of the weight models) is in agreement with many other studies that found 

proxies for space-use to be predicted by body-size (e.g. Andersen et al., 2008; Jepsen et al., 2001; 

Monk et al., 2020; Rosten et al., 2016). But both our scaling exponents for total length (0.61, see 

table 3.) and weight (0.24, see supplementary material section C) were lower than those calculated 

by Rosten et al., in 2016 (1.08) and both were lower than those expected from body mass-metabolic 

rate scaling (roughly 0.75, Rosten et al. 2016). This is surprising because Woolnough et al. (2009) 

found the scaling of home range size to be higher for larger waterbody sizes (i.e. higher exponents in 

lakes than in rivers), so we expected to find higher scaling in our virtually unbounded study system 

than Rosten et al., (2016) found in a river. One possible explanation is that the sample used by 

Rosten et al., (2016) presented much more variability in body-masses than our study (range: 7 to 

12,060 g) and allometric scaling on the arithmetic scale appeared to be much steeper for smaller 

individuals than for larger ones. The lack of fish < 1.200 g in our sample may then explain the 

shallower scaling exponent for extended range and may conceal waterbody size effects. 



Alternatively, the lower scaling might represent ecosystem effects and be explained by the fact that 

pike as ambush predator can meet energetic demands and achieve growth rates that are similar to 

more active fish, who have higher prey encounter rates but also have higher energetic costs through 

swimming (Kobler et al., 2009). Thus, metabolic rate-size scaling may not be expected to represent 

body size space-use scaling perfectly. 

Importantly, the size of the core areas was not predicted by body size, which suggests that larger fish 

do not meet their energetic requirements by expanding their core areas but rather via an increase in 

excursions out of the core. This notion is further supported by the significant negative relationship 

between body-size and range-ratio we detected (Figure 4). Range-ratio can be linked to foraging, 

with higher indices being linked to more intense use of a small portion of their range (i.e. more 

intense use of a small portion of their 95% UD) by individuals, and smaller ones representing more 

rapid switches between different foraging spots within the extended range (95% UD) at longer 

distances from the core area (50% UD) by individuals (Spiegel et al., 2017; Webber et al., 2020). Such 

phenomenon can be explained in two ways. First, for a given resource patchiness, the intensification 

of foraging outside of the core area in large pike may be an effect of their higher energetic demand 

(Darveau et al., 2002), with smaller fish being better able to sustain themselves within their core 

areas. Then, avoiding risk of predation is likely to play an important role in this pattern and affect the 

size-structure of pike and their spatial arrangements (Nilsson, 2006), with specifically the smaller 

individuals needing to balance the benefits of foraging with the risks of encountering predators 

(Pettersson & Brönmark, 1993). This is because larger pike are less vulnerable to natural predation 

(Nilsson & Brönmark, 2000, 1999), which can increase their motivation to roam freely (Haugen et al., 

2006; Skov & Koed, 2004). By contrast, smaller conspecifics are often bound to be hiding in littoral 

refuges (Chapman & Mackay, 1984; Grimm & Klinge, 1996), which can increase the overlap of the 

core and the extended home range (leading to higher home range ratios). These patterns are likely 

to hold only for the size range we tagged, which encompassed adult fish of 50 cm total length and 

larger. In larval and juvenile pike, the smaller conspecifics have been found to be displaced from 



core vegetated refuge areas by superior, typically larger conspecifics, leading to largest movement 

distances found in the smallest pike individuals (Skov et al., 2011). We suggest this pattern may 

reverse as the fish grow and the largest fish become freed from predation risk. The situation might 

change if larger predators, e.g. seals see their population increase in the study area. 

We found the range-ratio (along with all other range metrics) to be highly repeatable, after 

controlling for body size and sex. This indicates that some individuals are consistently more likely to 

forage outside of their core areas (i.e. proactive phenotypes, Laskowski et al., 2016; Monk et al., 

2021) and others less likely to do so (i.e. reactive phenotypes) (Spiegel et al., 2017). The field of 

animal personality (i.e. consistent individual differences in behaviour) has long been guided by a 

framework recommending the study of five traits measured in standardized captive assays (Réale et 

al., 2007). This common framework has allowed for the accumulation of knowledge on this 

phenomenon and the growth of the research field. More recently research has started advocating 

for a broader definition and the expansion to any behaviour (Dingemanse & Wright, 2020), 

normalizing research on “spatial-personalities” or “spatial-behaviour types” in free-ranging animals 

(Alós et al., 2019; Stuber et al., 2022). Our work suggests, unsurprisingly, that pike have spatial 

behavioural phenotypes, thereby extending previous knowledge on the presence of activity-based 

personalities in wild pike populations (Kobler et al., 2009). 

When spatial behaviour is repeatable, particular behavioural phenotypes may be more likely 

harvested than others, creating selection pressures and potentially influencing the evolution of 

behaviour towards the least harvested phenotypes (Alós et al., 2019; Arlinghaus et al., 2017b). We 

found the size of the core area and the size of the extended range to both be repeatable and to both 

be smaller in the portion of the fish we recaptured. This may seem surprising, because selection is 

predicted to happen on fish that use the most space, as higher space use coincide with higher 

probability of gear encounter (Alós et al., 2012; Monk et al., 2021). However, encounter is a 

necessary precondition, but not sufficientfor capture in recreational fisheries (Lennox et al., 2017a). 



In angling for perch (Perca fluviatilis), for example, encounter was insufficient to explain vulnerability 

to the gear as the fish had to also attack the artificial lure once found by the angler (Monk & 

Arlinghaus, 2018). Alós et al. (2012) also showed in simulations that the direction of selection was 

determined by the movements of both the fish and the fisher, with limited potential for a directional 

hypothesis as to which direction of selection to expect on home range behaviour. Relatedly, 

Thorbjørnsen et al., (2021) demonstrated that in anadromous brown trout, selection on home range 

depended on time spent in protected areas, with individuals that used more space being less 

vulnerable to harvest if they spent most time outside the protected zones. Our study area presents 

intricate area-based regulations, made of situational (e.g. that may apply only to anglers, but not 

fishers), temporal (e.g. that target only the spawning season) and spatial (i.e. two national parks, a 

biosphere reserve and multiple small conservation areas) limitations that can provide varying 

degrees of protection to pike (Arlinghaus et al., 2021). This complexity of full and only partial 

protected areas that apply only to a selected subset of fishing gear renders it difficult to exactly 

estimate the overlap of the fish we tagged with level of protection. We found lower recaptures of 

pike with the larger ranges which may be due to an increased probability for these individual’s 

ranges to overlap with protection zones. It is interesting to note that there were no differences in 

the range-ratio of recaptured and non-recaptured individuals, which indicates that the rate at which 

individuals explore out of their core-area does not predict their probabilities of being recaptured.  

We found the space use of the pike to be driven by seasons, with pike using the most space in 

spring, which coincides with the spawning time of pike (Skov & Nilsson, 2018). Pike also had the 

lowest range-ratios in spring, which indicates an intensification of activity outside of their core area, 

possibly indicating the active use of spawning areas. Range-ratio is traditionally linked to foraging 

strategies (i.e. Genero et al., 2020; Spiegel et al., 2017; Webber et al., 2020), but here the low ratios 

are most likely explained by individuals taking relatively large spawning migrations (Müller, 1986; 

Stott & Miner, 2022). Some coastal pike will have adapted to spawning in brackish lagoons as is 

documented in the similarly saline Danish populations (Jørgensen et al., 2010) and for which there is 



evidence in our study area (Möller et al., 2021, 2019). Other fish will likely still depend on low 

salinities for successful egg development (Sunde et al., 2018), encouraging the maintenance of 

anadromy in the sexually mature part of the population (Engstedt, 2011), which in turn might induce 

spawning migrations. Anadromy and brackish spawning might not be the only spawning strategies in 

our study system, as Birnie-Gauvin et al., (2019) found pike that spend the whole year in a Danish 

freshwater tributary only rarely making use of the neighbouring brackish bay. The marked 

differences in space-use between the lagoons may in part be due to such distinct strategies or to the 

distance pike must travel to get to the next freshwater tributary. For instance, in the absence of 

tributaries in Strelasund (S) and the Northern Rügen Bodden Chain (NRBC), it may be reasonable to 

think that pike will have to travel a longer distance (expanding their ranges) to their spawning 

ground than pike in Barther Bodden (BAT) or in Kubitzer and Schaproder Bodden (KBSB), which are 

fed by rivers such as Barthe, Sehrowbach and Duwenbeek.  

Differences in space-use between different lagoons may also be driven by environmental conditions 

and be additionally affected by the receiver network and where pike were tagged and released. Pike 

have been described to use more space in turbid waters (Jepsen et al., 2001), which may be due to 

turbid water acting as a refuge for prey (encouraging their dispersal), thereby promoting higher 

space-use. Variation in behaviour can also emerge through variability in salinity (which is particularly 

high in lagoons that are opened to the Baltic Sea), variation in vegetation density or in lagoons 

serving as transitory spaces among other lagoons (e.g., Strelasund). This might explain why home 

ranges were larger in Strelasund relative to other areas. Interestingly, in the highly turbid lagoon 

(Peenestrom, PS) pike had the smallest core areas. The reason for this lower range might lie in the 

fact that many of the pike in this area where tagged in the River Peene (n=25) which may consist 

mainly of freshwater residents similarly to Birnie-Gauvin et al., (2019). The ranges of fish in linear 

rivers are smaller than in lakes, and so, residents pikes in the Peene river could lower the range 

estimates for Peenestrom (Minns, 1995). Given the low receiver coverage in the Greifswalder 

Bodden we might have underestimated space use by pike there as well. Strelasund (S), where pike 



had the largest space-uses is narrower than other areas and may be used as a corridor for pike to go 

from Greifswalder Bodden (GB) and Kubitzer and Schaproder Bodden (KBSB). This area is also deeper 

than other lagoons, possibly generating thermal refuges in summer. Fully explaining the 

environmental correlates of lagoon specific movements was however beyond the scope of our work. 

Conclusions and implications 

In conclusion, using a sample of pike tagged in coastal areas of the Baltic Sea we found space use of 

the extended home range to scale with pike’s body sizes, but our scaling exponent was lower than 

one found in a river in England, suggesting that space-use is not bounded by the size of the 

waterbody alone. Larger pike used more space but also used the periphery of their ranges more 

intensively than smaller conspecifics, suggesting that the decline in predation risk and an increase in 

foraging needs drive these individuals away from their core areas. But this increase in range space 

did not result in these individuals being more likely to be recaptured despite a potential increase in 

their likelihood to encounter fishing gear. As the larger pike may have had more experiences with 

fishing gear, and lure avoidance behaviour is described in pike (Arlinghaus et al., 2017a; Beukemaj, 

1970), it is possible that the larger pike roam more, while being effective at avoiding being captured. 

The recaptured individuals in our sample had significantly smaller ranges, which might indicate that 

the more mobile fish are in fact more likely to encounter protected zones and decrease their 

recapture probabilities or are simply better at avoiding fishing gear. Because every space-use proxy 

used here was repeatable, our findings suggest that commercial and recreational fisheries in the 

Baltic Sea may induce selection pressures on space use behaviour and that full protection of the 

activity space used by specifically large pike might not be possible with protected areas alone, 

requiring other tools, such as implementation of harvest slots and maximum mesh sizes in gill nets 

(Ahrens et al., 2020). 
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