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Abstract 13 

Viral mutations within patients nurture the adaptive potential of SARS-CoV-2 during chronic 14 

infections, which are a potential source of variants of concern. However, there is no integrated 15 

framework for the evolutionary analysis of intra-patient SARS-CoV-2 serial samples. Herein we 16 

describe VIPERA (Viral Intra-Patient Evolution Reporting and Analysis), a new software that integrates 17 

the evaluation of the intra-patient ancestry of SARS-CoV-2 sequences with the analysis of evolutionary 18 

trajectories of serial sequences from the same viral infection. We have validated it using positive and 19 

negative control datasets and have successfully applied it to a new case, thus enabling an easy and 20 

automatic analysis of intra-patient SARS-CoV-2 sequences. 21 

Keywords: SARS-CoV-2, within-host evolution, serially-sampled infection, intra-patient diversity, 22 

Snakemake workflow, bioinformatics  23 
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Background 24 

During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, almost 7 million 25 

deaths have been reported by the World Health Organization (WHO) [1] due to COVID-19. The 26 

pandemic has been driven by SARS-CoV-2 variants of concern (VOC), which are variants with an 27 

increased pathogenicity [2]. This VOCs have appeared several times in the COVID-19 pandemic, and 28 

it has been observed that the clades containing the VOCs are preceded by a steam branch that shows, 29 

on average, a 4-fold increase in the substitution rate [3], which was usually around 10-3 substitutions 30 

per site and year in 2020 [4,5]. 31 

Different hypotheses —such as undetected acute infections [6] or secondary hosts— have been 32 

proposed to explain the increase in the substitution rate and thus, the appearance of VOCs. Nowadays, 33 

several pieces of evidence support the hypothesis that VOCs originated in chronic infections. First, the 34 

immune system of immunocompromised patients can fail to clear acute SARS-CoV-2 infections leading 35 

to long term infections [7]. The high number of viral mutations from long term infections, most of them 36 

in the spike protein coding region [8], would suggest an increased evolutionary rate, as observed in 37 

branches that give rise to VOCs clades [9]. Second, defining mutations of several VOCs have been 38 

detected in sequences from chronic infections [10]. Following these findings, there has been an effort 39 

to study SARS-CoV-2 chronic infections, trying to enhance the surveillance of VOCs, but also to better 40 

understand the mechanisms behind their emergence [8,11–13]. While there are pipelines that integrate 41 

reproducible workflows to analyze genomic diversity between patients [14,15], there is a lack of easily 42 

deployable, accessible, and integrated workflows for analyzing and reporting the evolutionary 43 

trajectories of SARS-CoV-2 chronic infections. Current pipelines for processing serially-sampled 44 

sequencing data that take into account the particularities of intra-host samples are restricted to certain 45 

analyses, such as detecting mixed viral populations, or identifying chronic infections but using only 46 

consensus sequences [12,16–19]. For this reason, carrying out this type of studies through public 47 

databases is a difficult task especially without further clinical information. 48 

Here, we present VIPERA (Viral Intra Patient Evolution Reporting and Assessment), a user-friendly 49 

workflow to easily identify and study within-host evolution in SARS-CoV-2 serially-sampled 50 

infections. Our tool provides an aggregate of population genomics and phylogenetic analyses that 51 

allows researchers to determine if a collection of SARS-CoV-2 samples originates from a serially-52 

sampled viral infection. Furthermore, VIPERA provides insights into intra-host evolution, tracking 53 

variant trajectories and selective pressure over time. 54 
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Results 55 

A comprehensive report of a serially-sampled SARS-CoV-2 56 

infection 57 

VIPERA offers an integrated framework for detecting and studying serially sampled SARS-CoV-2 58 

infections. The necessary data inputs are the read mappings (in BAM format) and the consensus 59 

genomes (in FASTA format) for each sequence of the target dataset, as well as the associated sample 60 

metadata. The main output from VIPERA is a report file in HTML format summarizing all the analyses 61 

in three main sections: “1. Summary of the target dataset”, “2. Evidence for single, serially-sampled 62 

infection”, and “3. Evolutionary trajectory of the serially-sampled SARS-CoV-2 infection”. In addition, 63 

the intermediate files which are instrumental in the creation of the final report —such as the lineage 64 

demixing summary, the maximum-likelihood phylogeny of the target dataset within its spatiotemporal 65 

context, the pairwise weighted-distance matrix for the target dataset, or the variant calling results with 66 

the dataset ancestor as reference— are also made available to the user (see Additional file 1: Table S1 67 

for a full list). This offers a great degree of flexibility and control over the data, allowing for further in-68 

depth analysis if required. The three sections of the report are described hereafter. 69 

1. Summary of the target sample dataset 70 

First, the report displays a summary of the target sample dataset that includes the date and location of 71 

sampling. This summary also reports the lineage assignment and a time-sorted index of each sample 72 

that is used to identify the samples in the downstream analyses. 73 

2. Evidence for single, serially-sampled infection 74 

The first aim of VIPERA is to streamline the process of confirming that samples originate from a single, 75 

serially-sampled infection collected from the same patient at different time points —as opposed to 76 

multiple successive infections, co-infections, or instances of sample contamination. For this, the 77 

following analyses are conducted. 78 

2.1. Lineage admixture. A lineage composition profile of each sample based on read mappings is 79 

reported to detect if different viral lineages are present in the sample (e.g. in co-infections or 80 

contaminations).  81 

2.2. Phylogeny and temporal signal. A maximum-likelihood tree including target and context samples 82 

is displayed in the VIPERA output. A group of SARS-CoV-2 sequences originating from a serially-83 

sampled infection must be monophyletic. The phylogeny enables users to assess whether the target 84 
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samples are monophyletic based on ultrafast bootstrap (UFBoot) and the Shimodaira–Hasegawa-like 85 

approximate likelihood ratio test (SH-aLRT) support values.  86 

Additionally, the temporal signal is also evaluated for the studied samples. When previous evidence 87 

supports the hypothesis, a robust temporal signal further validates that the target dataset was serially 88 

sampled from a single infection. 89 

2.3. Nucleotide diversity comparison. The nucleotide diversity (π) for the target samples is compared 90 

with the distribution of π obtained for random subgroups extracted from a patient-independent context 91 

dataset. If the target dataset has a significantly lower π than the distribution of π values for sequences 92 

from different patients, then we can assume that they come from the same viral infection. The report 93 

includes the estimated significance of π being lower in the target samples. 94 

3. Evolutionary trajectory of the serially-sampled SARS-CoV-2 infection 95 

The next step is to characterize within-host evolution. To this end, VIPERA reports a set of analyses 96 

focused on describing the intra-host evolutionary trajectory of the target samples. 97 

3.1. Number of polymorphic sites. To investigate the within-host viral diversity we use the number of 98 

polymorphic sites (minor allele frequency > 0.05) as a measure of diversity. The report displays the 99 

number of polymorphic sites of each sample and the correlation of this parameter with time, which 100 

allows for the observation of fluctuations in diversity throughout the course of the infection. 101 

3.2 Description for within-host nucleotide variants. The report includes a summary of within-host 102 

nucleotide variants with respect to its predicted ancestral sequence. The summary includes a genome-103 

wide depiction of the proportion of sites in which we find a polymorphism. This allows for the 104 

identification of mutation hotspots. The summary also depicts each individual mutation throughout the 105 

genome for each sample. Mutations are represented according to their classification in single-nucleotide 106 

variants (SNVs) or insertions and deletions (indels) and colored depending on whether they are 107 

synonymous or non-synonymous SNVs, in-frame or frameshift indels, or intergenic nucleotide changes. 108 

Due to the relevance of the spike protein for SARS-CoV-2 adaptation, a zoom-in of the summary is 109 

also generated for the S gene. 110 

3.3. Time dependency for the within-host mutations. Allele frequencies at each polymorphic site are 111 

tested for correlation with time. In the report, the correlation coefficient and the adjusted significance 112 

of the correlation is included first. Then, significantly positively correlated allele frequencies —113 

assumed to be affected by selective pressures or hitchhiking— are displayed on a time series of allele 114 

frequencies, along the viral genome. All sites with more than one alternative allele are also displayed. 115 
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3.4. Correlation between alternative alleles. To evaluate if there are interactions between mutations, 116 

the report includes an interactive heatmap of pairwise allele frequency correlation coefficients, which 117 

includes the relationships between alleles. The interactive heatmap enables the user to easily obtain 118 

correlation values and restrict the region for visualization. 119 

3.5. Non-synonymous to synonymous rate ratio over time. Finally, the report includes a time series 120 

of the synonymous mutations per synonymous site (dS) and non-synonymous mutations per non-121 

synonymous site (dN) of each sample with respect to the ancestor sequence. 122 

Validating the detection of serially-sampled infections 123 

To validate the evidence of serially-sampled infection we tested the pipeline with two control sets of 124 

samples. The positive control dataset includes 30 sequences from a chronic infection collected in Yale 125 

between February 8, 2021, and March 7, 2022 [11]. All sequences from the positive control were 126 

designated as the B.1.517 lineage. Its context dataset (n = 170) was automatically fetched from GISAID, 127 

searching for samples assigned to the same lineage, and collected in the same location, from February 128 

1, 2021, to March 12, 2022. 129 

The negative control dataset combines 15 sequences from two different patients (4:1 ratio). Both were 130 

collected in Barcelona between March 24, 2020, and November 16, 2020, and designated as lineage 131 

B.1 (see Material and Methods). Its context dataset (n = 84) was also automatically fetched from 132 

GISAID by searching for the same lineage, and collected in the same location, from March 11, 2020, 133 

to November 28, 2020. 134 

Lineage composition analysis 135 

When samples were decomposed in lineages, two different landscapes appeared in the positive and 136 

negative control datasets. All 30 samples from the positive control had a 100% estimated abundance of 137 

the B.1.517 lineage (Figure 1A). Conversely, for the negative control, five samples were mostly B.1 or 138 

B.1.399, while in the remaining 10 samples, B.1 and B.1 sublineages had an estimated abundance of up 139 

to 88% (Figure 1B). 140 
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 141 

Figure 1. Lineage admixture of the control datasets, calculated with Freyja. Columns depict the estimated relative lineage 142 
abundance in each sample in the positive control (PC) dataset (A) and in the negative control (NC) dataset (B). Samples in 143 
the X-axis are ordered chronologically, from more ancient to newer. 144 

Monophyly supports the detection of serially-sampled infections 145 

A maximum-likelihood tree was constructed with both the target and the context datasets for the two 146 

validation cases. In the positive control, all 30 samples fell into a robust clade together with other eight 147 

sequences from the context dataset (UFboot: 97 %; SH-aLRT: 77 %) (Figure 2A). Those eight samples 148 

were later confirmed to have been sampled from the same patient (personal communication with Dr. 149 

Anne Hahn and Dr. Nathan Grubaugh). Thus, considering the eight additional sequences as part of our 150 

study dataset, rather than part of the context, we can conclude that the positive control sequences were 151 

monophyletic. 152 
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 153 

Figure 2. Maximum-likelihood phylogenies of the control datasets and their context samples with 1000 support replicates. 154 
A) Positive control dataset. B) Negative control dataset. 155 

As for the negative control, all 15 sequences were paraphyletic and fell into a clade with weak support 156 

(UFBoot: 7.0 %; SH-aLRT: 0.00 %) together with another 61 context sequences. However, sequences 157 

were divided into two strongly supported monophyletic clades that correspond with the two groups of 158 

samples coming from two different patients that we had artificially mixed. One clade contained the 3 159 

sequences from the patient B of the negative control (UFBoot: 96 %; SH-aLRT: 92 %) and the other 160 

clade contained the 12 sequences from the patient A of the negative control (UFBoot: 97 %; SH-aLRT: 161 

87 %) (Figure 2B). 162 

Based on the pairwise distance between samples accounting for allele frequencies, neighbor-joining 163 

trees were constructed for each control dataset (Figure 3A and Figure 3C). Root-to-tip distances were 164 

used to estimate their temporal signal (Figure 3B and Figure 3D). We found a robust temporal signal 165 

for the positive control dataset, with an estimated 24.94 substitutions per year, 95% confidence interval 166 

(CI) [19.59, 30.28] (R2 = 0.76, F(1, 28) = 91.26, p < 0.001; Figure 3B). In light of previous evidence 167 

supporting the dataset having been serially sampled from an intra-patient infection, the temporal signal 168 

further supported the hypothesis. Additionally, we found a robust temporal signal in the negative control 169 

dataset too, with an estimated 30.82 substitutions per year, 95% CI [25.21, 36.43] (R2 = 0.92, F(1, 13) 170 
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= 141.1, p < 0.001; Figure 3D). Since earlier findings did not back up the serial sampling scenario, the 171 

temporal signal does not hold any value as evidence for the hypothesis for the negative control dataset. 172 

 173 

Figure 3. Neighbor-joining trees of the control datasets and time series of tree root-to-tip distances. Trees are based on 174 
pairwise allele frequency-weighted distances and include the samples that compose the negative control (A) and the positive 175 
control (C). The scatterplot shows the relationship between root-to-tip distances and the number of days passed since the first 176 
sample for the positive control (B) and the negative control (D). The red lines depict the linear model fit. 177 

Nucleotide diversity reveals chronic infections 178 

For each validation dataset, we calculated the nucleotide diversity of the studied samples and compared 179 

it with the nucleotide diversity of 1000 subsets of samples of the same size as the target dataset, 180 

extracted from each corresponding context dataset. The nucleotide diversity of the positive control (π = 181 

1.80·10-4) was significantly lower than that of its corresponding context dataset (average = 5.30·10-4, 182 

SD = 2.87·10-5; t-test t = 376.27, p < 0.001; Figure 4A) assuming a normal distribution of the context π 183 

values (Shapiro-Wilk test W = 0.997, p = 0.076). Conversely, the negative control dataset did not show 184 

a significantly lower nucleotide diversity (π = 1.03·10-4) compared to its context dataset π distribution 185 

(average = 1.34·10-4, SD = 3.55·10-5; empirical p = 0.137; Figure 4B) without assuming normality 186 

(Shapiro-Wilk test W = 0.98, p < 0.001). 187 
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 188 

Figure 4. Analysis of the nucleotide diversity (π) of each control dataset. The orange dashed lines describe a normal 189 
distribution with the same mean and standard deviation as the distribution of π values. The red vertical lines indicate the π 190 
value for the studied samples. A) Analysis of the positive control against 1000 replicates (n = 15 each) of its context dataset. 191 
B) Analysis of the negative control against 1000 replicates (n = 30 each) of its context dataset. 192 

Furthermore, we repeated the analysis of the positive control, but considered the eight additional 193 

samples of the same patient as a part of the studied samples, instead of the context. Nucleotide diversity 194 

was lower compared with the original analysis (π = 1.3·10-4). Additionally, it was significantly lower 195 

compared to its corresponding context (average = 5.20·10-4, SD = 2.45·10-5; t-test t = 514.19, p < 0.001). 196 

Using VIPERA to analyze a novel case 197 

We applied the pipeline to study the within-host evolution in a set of 12 SARS-CoV-2 samples collected 198 

from the same patient and designated to lineage B.1. These 12 sequences belong to patient A included 199 

in the negative control. Their context dataset was automatically constructed searching for B.1 sequences 200 

collected in Barcelona between March 24, 2020, and November 16, 2020, in the GISAID database, and 201 

included 85 sequences. Additionally, another custom context dataset was also constructed with 110 202 

samples manually selected from the SEQCOVID Consortium. These were collected in Barcelona from 203 

independent patients between March 11, 2020, and November 28, 2020, and classified as B.1. Results 204 

using both context datasets were consistent, so we report those with the automatically constructed 205 

context dataset because it is the default VIPERA option. 206 

Evidence for single, serially-sampled infection 207 

Weakly defined lineages can lead to false lineage admixtures 208 

We investigated the most probable lineage admixture for all 12 samples. We observed two pairs of 209 

samples with an estimated lineage abundance of nearly 100% for lineages B.1 and B.1.399, respectively. 210 
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The remaining samples were further classified in B.1 sublineages, with their estimated abundances 211 

ranging from 0.07% to 88% (Figure 5A). The low number of mutations between B.1 and B.1 212 

sublineages (1-2 SNPs) might reflect variations during the evolution of the virus over time rather than 213 

the mixture of different viruses. 214 

 215 

Figure 5. Lineage admixture and nucleotide diversity (π) analysis of the 12 case study samples. A) Estimated relative lineage 216 
abundance in each of the 12 case study samples, calculated with Freyja. Samples in the X-axis are time-ordered from more 217 
ancient to newer. B) Nucleotide diversity (π) distribution for 1000 samples (n = 12) of context sequences for the case study. 218 
The orange dashed curve depicts a normal distribution with the same mean and standard deviation as the π value distribution. 219 
The red vertical line indicates the π of the case study dataset. 220 

All target samples form a monophyletic cluster 221 

The maximum-likelihood phylogeny revealed that the case study dataset formed a monophyletic cluster. 222 

The clade that contained all studied samples was supported by a UFBoot score of 97 % and a SH-aLRT 223 

score of 92 % (Figure 6A and 6B). 224 

Allele frequency-weighted pairwise distances were calculated, and a neighbor-joining tree was 225 

constructed (Figure 6C). Time (in days) since the first sample predicted root-to-tip distances (R2 = 0.95, 226 

F(1, 10) = 174.8, p < 0.001) with an estimated substitution rate of 32.02 substitutions per year, 95% CI 227 

[26.62, 37.41] (Figure 6D). 228 
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 229 

Figure 6. Phylogenetic analysis of the case study dataset. A) Maximum-likelihood phylogeny with 1000 supporting replicates 230 
for both studied and context samples of the case study. The clade containing all target samples is highlighted in red. B) Zoom 231 
of the clade in (A) containing all studied samples. C) Neighbor-joining tree constructed with pairwise weighted distances for 232 
the case study samples. D) Temporal signal for the case study using a neighbor-joining tree constructed with pairwise weighted 233 
distances. The red line depicts the linear model fit. 234 

Nucleotide diversity is reduced when compared with context samples 235 

The nucleotide diversity (π = 4.11·10-5) was lower than that of its corresponding context dataset 236 

(average = 1.44·10-4, SD = 4.04·10-5; empirical p < 0.001; Figure 5B) without assuming a normal 237 

distribution of the context π values (Shapiro-Wilk test W = 0.967, p < 0.001). This finding supports the 238 

hypothesis of these sequences coming from a serially-sampled, single-virus infection. 239 

To summarize the evidence from section 2 of the report. Firstly, we found that lineage composition 240 

analysis supported a homogeneous lineage classification of all serial samples. Secondly, the maximum-241 

likelihood phylogeny showed that the studied samples are monophyletic, thus indicating a proximal 242 

common origin. Thirdly, the analysis of nucleotide diversity showed that it was significantly lower in 243 

the studied dataset than in the context dataset. Finally, the strong temporal signal observed in the studied 244 

samples in addition with the previous evidence led us to conclude the common infectious origin of the 245 

serially sampled studied samples. Based on this premise, we proceeded to examine intra-host evolution, 246 

which is described in the following part of the report. 247 
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Evolutionary trajectory of the serially-sampled SARS-CoV-2 infection 248 

Diversity increases over time 249 

Using the number of polymorphic sites as an estimate of genetic diversity, we observed that diversity 250 

was positively correlated with time in days since the first sample (Figure 7A). In fact, time since the 251 

initial sampling significantly predicted the number of polymorphic sites (R2 = 0.7, F(1, 10) = 22.69, p 252 

< 0.001). 253 

 254 

Figure 7. Diversity analysis of the case study samples. A) Number of polymorphic sites of the case study samples, depending 255 
on collection date. The red line shows the linear model fit. B) Time series of dN and dS and ω (dN/dS). Each point corresponds 256 
to a different sample, sorted in chronological order. 257 

Nucleotide variants appearing due to within-host evolution 258 

We found 10 indels, six of which led to frameshifts: 2 in the ORF1ab, 2 in the ORF7b, one in the ORF3a 259 

and other in the N gene. Also 99 different SNVs were found, 67 of which were non-synonymous (see 260 

Additional file 2). Genomic variation was not evenly distributed along the SARS-CoV-2 genome. Some 261 

regions such as NSP3 in the ORF1ab, the S gene and the N gene reached peaks of 1% of polymorphic 262 

sites (Figure 8). 263 
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 264 

Figure 8. Summary of the intra-host accumulation of nucleotide variants (NV), using the dataset ancestor as reference. A) 265 
Nucleotide variants per site along the SARS-CoV-2 genome. Relative abundance of NVs is calculated with a sliding window 266 
of width 1000 nucleotides and a step of 50. Labels indicate the coding regions of the non-structural proteins (NSP) within 267 
ORF1ab. B) Genome variation along the genome for each sample. The Y-axis displays samples in chronological order, with 268 
the earliest collection date at the bottom, and the latest, at the top. 269 

The nucleotide variants found were tested for their correlation with time. Eight out of 109 showed a 270 

significant correlation with time, being positive for all of them, with Pearson’s coefficients ranging 271 

from 0.873 to 0.957 (Figure 9A). We also found two positions with more than one alternative allele 272 

(Figure 9). Site 4230 had one allele that was positively correlated with time (ORF1ab:T1322K and 273 

ORF1ab:T1322I, both located in the coding region of NSP3). Two deletions in the S gene were detected: 274 

S:V143D + ΔY144 and S:V143D + ΔY144/Y145 (Δ21990-21992 and Δ21990-21995 at the genome 275 

level, respectively). 276 
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 277 

Figure 9. Analysis of the accumulation of polymorphisms in the case study. A) Pearson’s correlation coefficients and BH-278 
adjusted p-values for all 110 detected nucleotide variants. Red dashed line indicates adjusted p = 0.05. Labeled dots represent 279 
nucleotide variants correlated with time (adjusted p < 0.05). B) Time series of relative allele frequencies. The shown positions 280 
include nucleotide variants with a significant correlation with time and sites with more than two possible states. Each subplot 281 
depicts the progression of the allele frequencies in time for a given genome position. 282 

Moreover, the pairwise correlation analysis showed that, in fact, ORF1ab:A260V (NSP2), 283 

ORF1ab:S1188L (NSP3), ORF1ab:T1322K (NSP3), ORF1ab:K1795Q (NSP3), A28272G, 284 

ORF1ab:H1213Y (NSP13), N:P383L and ORF3a:Q213K had pairwise correlations above 0.85 285 

(Figure 10). In addition, these variants formed a cluster that also included ORF8:I121L and 286 

ORF1ab:P970S (NSP13) (Figure 10B). 287 
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 288 

Figure 10. Analysis of the association between polymorphism trajectories in the case study. A) Hierarchically clustered 289 
heatmap of the pairwise Pearson’s correlation coefficients between the time series of allele frequencies in the case study. The 290 
cluster containing the previously found mutations is squared in black. B) Subset of the correlation heatmap, restricted to the 291 
cluster marked in (A). 292 

Selective pressure 293 

We calculated the number of non-synonymous substitutions per non-synonymous site (dN) and the 294 

number of synonymous substitutions per synonymous site (dS) for each sample. Despite of dN and dS 295 

being 0 in the first sample, dN showed a higher growth over time reaching a value of around 0.0007 in 296 

the last sample while dS kept a lower value of 0.0001, hinting at positive selection during the infection. 297 

The dN/dS ratio (ω) ranged between 1.11 and 5.98, with an average value of 2.36 (Figure 7B). These 298 

findings suggested a sustained positive selective pressure throughout the infection. 299 

Discussion 300 

Chronic infections are becoming an important issue in SARS-CoV-2 evolutionary studies due to the 301 

relationship between the prolonged within-host viral evolution and the emergence of VOCs [20]. 302 

However, the study of serially-sampled SARS-CoV-2 samples lacks integrated workflows that facilitate 303 

the analyses. To close this gap, we have developed VIPERA, a tool that automatizes the analysis of 304 

serially-sampled SARS-CoV-2 samples. 305 

A key strength of VIPERA is the combined use of phylogenetic and population genomics approaches 306 

to analyze SARS-CoV-2 samples and yield information to ascertain whether there is a serially-sampled 307 

infection or not. To do so, mapped reads are used in different ways to take into account the entire intra-308 

host viral population. First, the lineage assignment of the samples is calculated using allele frequencies. 309 
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This analysis enables the user to detect co-infections or viral lineage replacement events, which can go 310 

unnoticed in a consensus genome analysis. Second, VIPERA also reports a maximum-likelihood 311 

phylogeny including the study and the context dataset. The tree allows the user to assess whether the 312 

studied samples are monophyletic, which is a good indicator for serially-sampled infections. Third, 313 

because nucleotide diversity is expected to be reduced for SARS-CoV-2 sequences from the same 314 

infection compared to independent samples, we use this metric to evaluate serially sampled infections. 315 

Comparison of within and between-host diversity has been previously used for viral outbreak analysis 316 

to detect transmission chains [21], and it has proven to be a strong indicator of serially-sampled infection 317 

in this work. Even when the context dataset includes some samples from the same patient as the studied 318 

sequences, we found that nucleotide diversity still contains enough signal to differentiate intra-patient 319 

variation. This is partly due to the robustness of the context dataset. Although VIPERA cannot assess 320 

in a systematic manner whether all samples in the context dataset are independent, we found identical 321 

results when we compared a customized context dataset with truly independent sequences and the 322 

automatic one. Thus, these results support the robustness of our approach to select a context dataset 323 

automatically. Finally, a strong temporal signal can further indicate that a target dataset has been serially 324 

sampled from a single infection, but it is not sufficient. Samples from different origins can exhibit a 325 

similar rate of evolution if they share collection dates, sampling locations and viral lineage. That could 326 

explain why our negative control showed a strong temporal signal. Furthermore, the size disparity 327 

between the two datasets in our negative control could influence too, because the larger dataset might 328 

be overshadowing the temporal signal of the smaller one. For this reason, temporal signals by 329 

themselves cannot be considered as evidence of intra-host evolution and must be taken into account 330 

only when previous evidence suggests a serially-sampled infection. 331 

Once assessed if all sequences derive from the same infection, VIPERA’s results can be used to study 332 

the evolutionary process. Phylodynamic processes of inter-host and intra-host evolutionary dynamics 333 

can produce distinctive phylogenetic patterns [22]. In our work, monitoring the evolution of the virus 334 

during eight months allowed for the observation of both intra and between-host phylodynamic patterns 335 

within the same phylogeny. We achieved this by including a well-designed context dataset, as described 336 

earlier. We observed a balanced phylogeny for population level samples of our case study, but a heavily 337 

unbalanced one for within-patient samples, reflecting the different intra-host versus inter-host 338 

processes. VIPERA also reports dN/dS estimates through time which can reveal if natural selection has 339 

operated on the viral genomes during the studied serially-sampled infection. In the case studied here, 340 

dN/dS increased over time, showing a maximum value after eight months of infection. The phylogeny 341 

patterns along with the analysis of strength and mode of natural selection, suggests that intra-host 342 

evolution in our case study is driven by strong positive selection, and supports the hypothesis of a high 343 

evolutionary rate at the within-patient level. 344 
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Description of the intra-host nucleotide variants and their relationship with other variables such as 345 

collection date or other intra-host nucleotide variants is also reported by VIPERA. In our case study, 346 

we detected different mutations that are concerning because of their relationship with immune system 347 

evasion, such as ORF1ab:T1638I (NSP3), ORF1ab:S1188L (NSP3) and ORF3a:Q213K [23,24]. We 348 

also found mutations previously found in within-host evolution analyses such as N:P383L, 349 

ORF1ab:H1213Y (NSP13) and S:V143D + ΔY144 [25–27].  350 

In summary, VIPERA facilitates the analysis of SARS-CoV-2 chronic infections by providing evidence 351 

for serially-sampled infection, describing the viral within-host evolution, and setting up an environment 352 

with the files needed for further custom within-host viral evolution analysis. For these reasons, we 353 

foresee VIPERA as an enhancer for SARS-CoV-2 serially-sampled infections studies and thus, helping 354 

to the surveillance of VOCs and to understand the mechanisms behind VOCs appearing. Although 355 

VIPERA is designed for reporting on SARS-CoV-2 sequence data, the framework could be extended 356 

to other viruses in further iterations of the software. 357 

Conclusions 358 

VIPERA (Viral Intra-Patient Evolutionary Reporting and Analysis) is a new bioinformatic tool for 359 

studying and analyzing serially sampled SARS-CoV-2 infections. VIPERA provides an aggregate of 360 

analysis for detecting whether there is a serially-sampled infection or not, including novel approaches 361 

such as genetic diversity and genetic distance at the population level approaches. It also provides a 362 

description of the within-host evolution observed in the studied samples. Having undergone rigorous 363 

validation through two stringent control cases, our tool has proven its efficacy in a real-world case 364 

study. Being on the cusp of a new era in understanding the intra-host evolution of SARS-CoV-2, 365 

VIPERA paves the way for a more efficient analysis of serially-sampled SARS-CoV-2 samples. 366 

Methods 367 

Pipeline implementation 368 

To facilitate the study of SARS-CoV-2 within-host evolution using data from single-virus serially-369 

sampled infections, we have implemented VIPERA (Viral Intra-Patient Evolutionary Reporting and 370 

Analysis), a user-friendly, customizable and reproducible workflow using Snakemake [28], R v4.1.3 371 

[29] and Python v3.10 [30] in addition to other software listed in Additional file 1: Table S2. VIPERA 372 

enables the automated analysis of an arbitrary number of samples collected from a single patient at 373 

different time points after infection. VIPERA takes as input sorted BAM files, consensus sequences in 374 

FASTA format and also a metadata file with collection dates, locations and GISAID IDs. While our 375 
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tool is suited for the computational capabilities of an average laptop, we leveraged Snakemake profiles 376 

to ensure seamless deployment in a high-performance computing (HPC) environment. On our cluster, 377 

we achieve a consistent run time of under 15 minutes, using one Intel(R) Xeon(R) Gold 6230 CPU @ 378 

2.10GHz and less than 1 GB of RAM. The run time decreases by up to a factor of 5 on 16 cores, using 379 

around 6 GB of RAM. The main output of VIPERA is a report file in HTML format that includes 380 

different analytical results and data visualization for detecting single-virus sustained infections and 381 

studying within-host evolution. 382 

Dataset retrieval and preprocessing 383 

Three sets of SARS-CoV-2 samples were used in order to test and use VIPERA: a positive control, a 384 

negative control and a novel case. 385 

For the positive control, we used 30 SARS-CoV-2 samples collected in Connecticut between June 1, 386 

2021, and March 7, 2022, described as a chronic infection by Chrispin Chaguza et al. [11]. FASTQ files 387 

were fetched from the SRA using fastq-dump, implemented in the SRA toolkit v3.0.0 [31]. Reads were 388 

mapped against the Wuhan-Hu-1 reference genome (NCBI RefSeq accession no. NC_045512.2) [32] 389 

using BWA-MEM v0.7.17 [33]. ARTIC v4.1 primer schemes [34] were trimmed from the generated 390 

BAM files using iVar v1.4.2 [35]. Using samtools v1.17 [36] and iVar v1.4.2 [35] trimmed BAM files 391 

were sorted and indexed to obtain the consensus sequence with a minimum frequency threshold of 0.6 392 

and a minimum depth of 20 reads. 393 

The negative control and the novel case datasets were selected from samples for which we had access 394 

to BAM files, consensus sequences and metadata via the SeqCOVID Consortium. Viral samples were 395 

collected in the Hospital Clínic de Barcelona and sequenced in the Institute of Biomedicine of Valencia 396 

using the ARTIC v3 primer scheme [34]. Libraries were prepared using the Nextera Flex DNA Library 397 

Preparation Kit and sequenced on the Illumina MiSeq platform. Reads were processed through the 398 

SeqCOVID pipeline for SARS-CoV-2 bioinformatic analysis [37]. The case study comprised 12 399 

samples collected from the same patient (Patient A) in Barcelona, Spain between March 30, 2020, and 400 

November 11, 2020, and previously designated as lineage B.1 (Table 1). For the negative control, the 401 

previous 12 samples were mixed with three samples from a different patient (Patient B), also collected 402 

in Barcelona, Spain between March 30, 2020, and November 16, 2020, and previously designated as 403 

B.1 (Table 1).  404 
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Table 1. Summary of the SARS-CoV-2 genomes analyzed in the negative control and in the case study. The “NC” and “CS” 405 
abbreviations refer to the negative control and case study datasets, respectively. Index columns refer to the temporal order 406 
within each dataset, used as a label in neighbor-joining trees. Patient A is the target of our novel case study. 407 

ENA accession number Collection date Patient NC ID NC Index CS ID CS Index 

ERR5709045 2020-03-24 A NC_1 1 CS_1 1 

ERR5709316 2020-04-01 B NC_2 2 - - 

ERR5708640 2020-04-28 A NC_3 3 CS_2 2 

ERR5709318 2020-05-18 A NC_4 4 CS_3 3 

ERR5709345 2020-06-02 A NC_5 5 CS_4 4 

ERR5709354 2020-06-22 A NC_6 6 CS_5 5 

ERR5709412 2020-07-02 B NC_7 7 - - 

ERR5709379 2020-08-03 A NC_8 8 CS_6 6 

ERR5709385 2020-08-07 A NC_9 9 CS_7 7 

ERR5709420 2020-08-19 A NC_10 10 CS_8 8 

ERR5709429 2020-08-28 B NC_11 11 - - 

ERR5708628 2020-11-06 A NC_12 12 CS_9 9 

ERR5708657 2020-11-10 A NC_13 13 CS_10 10 

ERR5709055 2020-11-12 A NC_14 14 CS_11 11 

ERR5709463 2020-11-16 A NC_15 15 CS_12 12 

Characterizing serially-sampled infections from a single virus 408 

Longitudinal analysis of viral lineage assignment and admixture 409 

The descriptive analysis of the target dataset of intra-patient samples includes the assignment of a Pango 410 

lineage according to sample consensus sequences, as well as the evaluation of possible lineage 411 

admixture within each sample. A lineage is assigned to the genome sequences of each sample using 412 

Pangolin v4.3 [38] in accurate (UShER) mode. A demixing step is performed using Freyja v1.4.2 [39], 413 

which utilizes read mappings to estimate the lineage admixture of each sample based on lineage-414 

defining mutational barcodes by solving a convex optimization problem. 415 

Construction of a context dataset 416 

The analyses require a collection of independent samples —ideally, samples that originate from 417 

different hosts and separate infection events. This set of samples is referred to as the “context dataset” 418 

in our study. Automated construction of the context dataset is enabled by default, contingent upon the 419 
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provision of user credentials for the GISAID SARS-CoV-2 database [40], using GISAIDR v0.9.9 [41]. 420 

This facilitates the retrieval of a dataset comprising samples that fulfill the spatial, temporal and 421 

phylogenetic criteria, including a sampling location that corresponds to that of the target samples, a 422 

collection date that falls within a time window encompassing 95% of the date distribution of the target 423 

samples (with 2.5% trimmed at each end to account for extreme values) ± 2 weeks, and a lineage 424 

assignment that is shared by at least one of the target samples. During the process, a series of tweakable 425 

checkpoints are enforced to ensure a robust downstream analysis. By default, samples whose GISAID 426 

accession number matches any of the target samples are removed. In addition, the dataset is rejected if 427 

the number of samples does not allow at least as many possible combinations as replicates. 428 

Alternatively, a manually constructed context dataset may be provided. For all the analyses shown in 429 

this article, an automatically constructed context dataset has been used. Additionally, a manually 430 

constructed context dataset was also used for the case study to compare the results with the ones 431 

obtained using an automatically constructed context dataset. 432 

Nucleotide diversity comparison 433 

Nucleotide diversity (π) of the target dataset is compared with that of the context dataset, composed of 434 

independent samples. By default, nucleotide diversity is calculated for 1000 random sample subsets of 435 

size equal to the number of target samples, extracted with replacement from the context dataset. The 436 

number of replicates can be easily modified by the user. Then, the obtained distribution is compared 437 

with the nucleotide diversity obtained for the target dataset; empirically, if the π distribution is not 438 

normal, or via parametric tests, if it is. Calculations are performed in R, and nucleotide diversities are 439 

calculated with pegas v1.2 [42]. 440 

Assessing phylogenetic relationships and temporal signal 441 

Consensus sequences of the target and context datasets are aligned to the Wuhan-Hu-1 reference 442 

genome (NCBI RefSeq accession number: NC_045512.2) [32] using Nextalign v2.13 [14]. Positions 443 

classified as problematic [43] are masked in the alignments. Then, a maximum-likelihood phylogeny is 444 

constructed using IQTREE v2.2.2.3 [44]. By default, inference is performed under a GTR substitution 445 

model with empirical base frequencies, a heterogeneity model with a proportion of invariable sites and 446 

a discrete Gamma distribution with 4 rate categories, ultrafast bootstrap (UFBoot) [45,46] with 1000 447 

replicates, and the Shimodaira–Hasegawa-like approximate likelihood ratio test (SH-aLRT) [47] with 448 

1000 replicates. This inference enables the study of the taxonomic grouping of the target dataset within 449 

the relevant epidemic context. 450 

To take the within-host variability in the viral population into account, we propose a pairwise distance 451 

metric between samples that integrates the differences in allele frequencies across the whole genome. 452 
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We define the difference between two vectors of J allele frequencies, based on the FST measure [48], 453 

such that the distance between two samples (M and N) is the sum for all I polymorphic sites of the 454 

differences between allele frequencies at each position (see Equation 1). Then, with this distance matrix, 455 

a neighbor-joining tree is constructed in R using ape v5.7 [49]. Patristic distances to the root are 456 

calculated with adephylo v1.1-13 [50]. 457 

𝑑(𝑀, 𝑁)  =  ∑
∑ (𝑀𝑖𝑗 − 𝑁𝑖𝑗)2𝐽

𝑗 = 1

4 − ∑ (𝑀𝑖𝑗 + 𝑁𝑖𝑗)2𝐽
𝑗 = 1

𝐼
𝑖 = 1  (1) 458 

Finally, the evolutionary rate is estimated by linear regression of the patristic distances to the root in 459 

each phylogeny on the days passed since the first within-patient sample collection, using the lm 460 

implementation in the stats R library. 461 

Describing within-host variability 462 

Variant calling and nucleotide variant description 463 

Variants are called using samtools v1.17 [36] and iVar v1.4.2 [35] using a reconstructed ancestral 464 

genome as reference to restrict the analysis to sequence variation related to the within-host evolution. 465 

Variants are re-annotated using snpEff v5.1d [51]. To reconstruct the ancestral sequence, the target 466 

samples are aligned to the Wuhan-Hu-1 reference genome (NCBI RefSeq accession no. NC_045512.2) 467 

[32] using Nextalign v2.13 [14]. Then, the ancestral genome is obtained with IQTREE v2.2.2.3 [44]. 468 

By default, maximum-likelihood trees are inferred under a GTR substitution model with empirical base 469 

frequencies and a heterogeneity model with a proportion of invariable sites and a discrete Gamma 470 

distribution with 4 rate categories. The quality criteria for variant calling were a minimum base quality 471 

of 20, a minimum depth of 30 and a minimum frequency cutoff of 5%. Nucleotide variants supported 472 

by less than 20 reads or less than 2 reads in one strand were filtered out. 473 

The distribution for the polymorphisms found along the SARS-CoV-2 genome is calculated using a 474 

sliding window (default width: 1000 nucleotides; step: 50 nucleotides). The number of mutations per 475 

site for each window is represented on its right side. Positions are annotated using the Python library 476 

gb2seq v0.0.20 [52]. 477 

To select the most interesting polymorphisms to plot, we perform a linear regression of the allele 478 

frequencies of each polymorphism on the time (in days) elapsed since the first within-patient sample 479 

collection. Correlation is measured with the Pearson’s correlation coefficient, and the p-value of the 480 

linear regression is adjusted for multiple testing using the Benjamini-Hochberg method [53]. This 481 

analysis is performed using the stats R library. Then, polymorphisms that have a significant correlation 482 

with time progression are selected for further characterization. Additionally, sites with more than one 483 
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alternative allele are also selected to monitor potential associations or interactions between the 484 

alternative alleles. 485 

Moreover, we calculate pairwise correlations between allele frequencies for all pairs of polymorphisms. 486 

Mutations are hierarchically clustered based on correlation values. Pairwise correlations are measured 487 

with the Pearson’s correlation coefficient using the stats R library. Display of the hierarchical clustering 488 

and correlation values is carried out through the heatmaply R library [54] with hclust (from the stats R 489 

library) as the clustering function. 490 

Investigating traces of selection 491 

To track selection footprints, substitutions per synonymous site (dS) and substitutions per non-492 

synonymous site (dN) are calculated for each sample. Synonymous and non-synonymous sites are 493 

calculated with respect to the reconstructed ancestral sequence. Then, dN and dS are calculated taking 494 

into account allele frequencies. Calculations are performed in Python using the Nei-Gojobori method 495 

[55] with support of gb2seq v0.0.20 [52] for codon annotation. 496 
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