
MNRAS 520, 2451–2472 (2023) https://doi.org/10.1093/mnras/stad134 
Advance Access publication 2023 January 14 

Reverberation of pulsar wind nebulae – II. Anatomy of the ‘thin-shell’ 

evolution 

R. Bandiera , 1 ‹ N. Bucciantini, 1 , 2 , 3 ‹ J. Mart ́ın , 1 , 4 , 5 B. Olmi 1 , 6 ‹† and D. F. Torres 4 , 5 , 7 
1 INAF – Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze, Italy 
2 Dipartimento di Fisica e Astronomia, Universit ̀a degli Studi di Firenze, Via G. Sansone 1, Sesto Fiorentino, I-50019 Firenze, Italy 
3 INFN – Sezione di Firenze, Via G. Sansone 1, Sesto Fiorentino, I-50019 Firenze, Italy 
4 Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans s/n, E-08193 Barcelona, Spain 
5 Institut d’Estudis Espacials de Catalunya (IEEC), Gran Capit ̀a 2-4, E-08034 Barcelona, Spain 
6 INAF – Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134 Palermo, Italy 
7 Instituci ́o Catalana de Recerca i Estudis Avan c ¸ats (ICREA), E-08010 Barcelona, Spain 

Accepted 2022 December 26. Received 2022 November 4; in original form 2022 July 22 

A B S T R A C T 

During its early evolution, a pulsar wind nebula (PWN) sweeps the inner part of the supernova ejecta and forms a thin massive 
shell. Later on, when the shell has been reached by the reverse shock of the supernova remnant, the evolution becomes more 
complex, in most cases reverting the expansion into a compression: this later phase is called ‘reverberation’. Computations 
done so far to understand this phase have been mostly performed in the thin-shell approximation, where the evolution of the 
PWN radius is assimilated to that of the swept-up shell under the effect of both the inner pressure from the PWN, and the outer 
pressure from the supernova remnant. Despite the thin-shell approach seems rather justifiable, its implementations have so far 
been inaccurate, and its correctness, never tested. The outer pressure was naively assumed to be scaled according to the Sedov 

solution (or a constant fraction of it) along the entire evolution. The thin-shell assumption itself fails along the process, being 

the shell no longer thin in comparison with the size of the PWN. Here, through a combination of numerical models, dimensional 
arguments, and analytical approximations, we present a detailed analysis of the interaction of the PWN with the supernova 
remnant. We provide a new analytical approximation of the outer pressure, beyond the Sedov solution, and a revised ‘thin-shell’ 
able to reproduce results from numerical simulations. Finally, we compute the efficiency by which the PWN is compressed 

during reverberation over a wide population of sources. 

Key words: radiation mechanisms: non-thermal – methods: numerical – pulsars: general – ISM: supernova remnants. 
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 I N T RO D U C T I O N  

ulsar wind nebulae (PWNe) are among the most important high- 
nergy astrophysical sources in the Universe (Gaensler & Slane 
006 ; Hester 2008 ). Their close proximity makes them a unique
aboratory where to investigate high-energy processes: from particle 
cceleration (Arons 2012 ; Sironi & Cerutti 2017 ), to non-thermal 
mission (Westfold 1959 ; Weisskopf et al. 1978 ; Kennel & Coroniti
984 ), from the fluid-dynamics and physical conditions of relativistic 
utflows (Contopoulos, Kazanas & Fendt 1999 ; Spitko vsk y 2006 ),
o the properties of their interaction and confinement by the ambient 
edium (Rees & Gunn 1974 ; Kennel & Coroniti 1984 ). They act

s an imager for the pulsar wind, providing us a unique way to gain
nowledge on magnetospheric properties of compact objects that 
ill otherwise be unobservable (Gaensler & Slane 2006 ). PWNe 
ight be one of the major contributor to leptonic antimatter in the
alaxy (Blasi & Amato 2011 ; Amato & Blasi 2018 ). The techniques,
ethods, and tools developed for their investigation have in the past 
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ro v ed useful in many other contexts from active galactic nuclei
lack holes (Komissarov 2001 ) to gamma-ray bursts (Bucciantini 
t al. 2007 ). The Crab nebula is one of the most and best-studied
bject of the entire sky (Hester 2008 ). Moreover they constitute one
f the main targets of TeV gamma-ray observatories like LHAASO 

Aharonian et al. 2020 ) and the Cherenkov Telescope Array (CTA),
nd are likely to dominate the background of galactic diffuse TeV
mission (de O ̃ na-Wilhelmi et al. 2013 ; Klepser et al. 2013 ; H. E.
. S. Collaboration 2018 ; Fiori et al. 2021 ) and generate most of the
xpected source confusion in surveys (Mestre et al. 2022 ). 

So far, PWNe have been mostly described with time-dependent 
ne-zone (also named 0 + 1) models (Gelfand, Slane & Zhang
009 ; Bucciantini, Arons & Amato 2011 ; Mart ́ın, Torres & Rea
012 ; Torres et al. 2013 , 2014 ; Martin & Torres 2022 ), especially
hen a large number of systems, a wide parameter space, or an

xtended evolution is investigated. One-zone models represent the 
WN as a uniform bubble interacting with the surrounding supernova 
emnant (SNR) and subject to energy (adiabatic and radiative) and 
articles losses (Reynolds & Che v alier 1984 ). The PWN radius ( R )
s associated with that of the massive shell accumulating at the PWN
oundary, forming a thin layer of thickness � R � R . The validity
f that condition was originally demonstrated at early times (Jun 
998 ), but it can be shown it remains valid at later ones, before the
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WN starts to interact with the SNR. All of this will be discussed
n detail in Section 6 . The thin-shell approximation is – at least
n principle – well-moti v ated at early times, when the PWN still
nteracts with unshocked, and freely expanding SNR ejecta. Both
elf-similar solutions (Che v alier 1982 ) and numerical models (v an
er Swaluw et al. 2001 ; Bucciantini et al. 2003 ) indeed show that the
ass swept-up by the PWN form a rather thin-shell of relatively cold
aterial. And, apart from multi-D instabilities that could affect the

ntegrity of this shell (Blondin, Che v alier & Frierson 2001 ; Porth,
omissarov & Keppens 2014a ; Olmi & Torres 2020 ), it will be
reserved also at later times (Bucciantini et al. 2004a ). Observations,
o we ver, suggest that magnetic field might prevent the growth of
mall-scale instabilities and allow the PWN to retain a more coherent
hape (Ma et al. 2016 ). 

A more realistic representation of the highly dynamical – and
omplex – interaction of the PWN with the SNR would require
ulti-D models. Ho we v er, the y need huge computational resources,

specially in 3D, so that they have only been run for selected, and
ime limited, studies (Porth, Komissarov & Keppens 2014b ; Olmi
t al. 2016 ; Kolb et al. 2017 ; Olmi & Bucciantini 2019 ). These
tudies have shown that at such early ages, the pressure and even
he magnetic field within the PWNe are relatively uniform on large
cales, explaining the success of one-zone models in describing the
pectral energy distribution we measure from these objects. 

Thus, despite their limitations, one-zone models still represent the
est tools to describe the evolution of the PWN + SNR system.
hey were proved to be robust in describing the first phase of the
WN + SNR interaction, when the PWN expands inside the SNR
ith a mild acceleration (van der Swaluw et al. 2001 ; Bucciantini

t al. 2003 ; Gelfand et al. 2009 ; Mart ́ın et al. 2012 ). Moreo v er the y
re the only possible way to evolve the PWN + SNR system coupled
o the spectral properties of the PWN particles, while hydrodynamic
odels cannot account for the evolution of the particle spectra, that

equires the Particle In Cell (PIC) approach in more than 1D (Sironi &
pitko vsk y 2009 ; Sironi & Cerutti 2017 ), whose necessity in terms
f spatial resolution makes it not suitable to approach the present
roblem. 
Ho we ver, all good things come to an end. The first phase of

he PWN + SNR interaction terminates when the reverse shock
RS hereafter) of the SN explosion reaches the PWN, starting to
nteract with the swept-up shell. Due to the combined effect of mass
ccretion and thermal pressure of the shocked SNR medium, the
hell decelerates, in some cases leading to an efficient compression
f the PWN. As a consequence, the internal pressure of the PWN
tarts to increase and it eventually becomes high enough to let the
ystem re-expand. This phase of contraction and re-expansion is
alled re verber ation (Blondin et al. 2001 ; Bucciantini et al. 2003 ; van
er Swaluw et al. 2003 ). The compression may act as an energizer
or the emitting particles: the nebular magnetic field is enhanced
nd particles heated, producing a strong increase of the emission at
ll the wavelengths, changing significantly the spectral properties of
he source (Gelfand et al. 2009 ), and even leading to superefficiency
phases in which the emitted luminosity at giv en frequenc y range
xceeds the spin-down power at the time, Torres & Lin 2018 ; Torres,
in & Coti Zelati 2019 ). The critical issue is that in reverberation, the

otational power of the pulsar is no longer the energy reservoir of the
WN system, since during a compression it is receiving energy from

he environmental interaction. Much of this depends on the strength
f the compression and the relative values of the pressures in the PWN
nd in the SNR. The strength of the compression can be quantified
ith the so-called compression factor (CF hereafter), defined as the

atio of the maximum (close to the beginning of reverberation) to the
NRAS 520, 2451–2472 (2023) 
inimum radius of the PWN (at its maximum contraction, during
he first compression phase), namely: 

F = 

max [ R pwn ( t)] 

min [ R pwn ( t)] 
. (1) 

hile the pressure inside the PWN is easy to compute, the one in the
NR depends on the dynamics of the interaction itself, and several
d hoc prescriptions have been put forward, in general adopting
 scaling based on the Sedov solution, e.g. Gelfand et al. ( 2009 ),
ucciantini et al. ( 2011 ), Vorster et al. ( 2013 ), Mart ́ın, Torres &
edaletti ( 2016 ), and Torres et al. ( 2019 ). A preliminary attempt to

reat rev erberation be yond Sedo v approximation has been recently
ade by Fiori et al. ( 2021 ), but with no specific focus in reproducing

orrectly the dynamical effects of the PWN + SNR interaction. 
Despite reverberation may lead to a complete burn-off the pair

opulation, and to significant effects at the morphology level, it
s not uncommon to see it being simply ignored in the literature.
he models that do take reverberation effects into account use

he thin-shell approximation, in lack of a better treatment. The
ain weakness of those thin-shell models resides precisely in the

ssumption that the SNR pressure, right outside the shell ( P outer ), can
e set, at all times, as the central pressure in the Sedov solution, or
lternatively, as a constant fraction, scaled according to the Sedov
rofile, of the pressure downstream the SNR forward shock as derived
rom Truelo v e & McKee ( 1999 ): two formally different recipes,
ut giving similar results. Such an assumption is not justified: it
n fact represents only the asymptotic evolution of the pressure,
hich holds when the SNR is fully relaxed, and formally when the
ass of the ejecta becomes negligible with respect to that of the

wept-up ambient medium. Instead, the most rele v ant part of the
WN + SNR interaction, with the onset of the reverberation phase
nd first compression of the PWN, typically occurs at much earlier
imes, when the mass of the swept-up material becomes comparable
ith the mass of the ejecta. Furthermore, as we will discuss in the

ollowing, numerical models show that the time behaviour of the SNR
ressure just outside the PWN swept-up shell dramatically deviates
rom a Sedov-like trend. 

The reverberation phase may dramatically change the spectrum of
 source. Thus, a proper e v aluation of the many assumptions that go
nto the thin-shell modelling of the reverberation phase, especially as
 function of the parameters describing the PWN + SNR systems, like
he energetics of the pulsar or its spin-down time-scale, is necessary
o understand how well radiative models can deal with reverberation.

ith the advent of the new gamma-ray observatories, building
rustworthy models of the late-time spectral properties of PWNe
ecomes more and more pressing. The properties and morphology
f aged systems might then be very different to what is predicted by
 simple naive application of thin-shell models. The reverberation
hase thus deserves an appropriate physical investigation, and in this
aper we aim to pave the way to a more accurate parametrization,
ltimately, one we will use to impro v e e xisting radiativ e codes. 
In Bandiera et al. ( 2020 , Paper I hereafter), we have discussed

ome of these issues, showing how an o v ersimplified description of
he pressure profile in the SNR can affect its evolution. Here, we
resent both a detailed study of the PWN + SNR evolution, using
ore sophisticated 1D hydrodynamical codes, and revisit some of

he assumption generally used in the literature. We maintain large
art of the standard thin-shell assumptions (pure spherical symmetry,
he PWN as an homogeneous bubble, swept-up shell with negligible
hickness and internal energy) but we focus instead on an accurate
odeling of the outer pressure, at least till the time of the first PWN

ompression. 
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Before outlining the structure of the paper, let us clarify here one of
he main topics that will be discussed, which represents a change of
aradigm with respect to most of the treatments of the reverberation 
resented so far: 

(i) The evolution of the PWN + SNR system is strongly dependent 
n the conditions at the beginning of the reverberation phase, as it was
iscussed as well in Bandiera et al. ( 2020 , 2021 ), and for this reason
e emphasize that the pre-reverberation phase must be modelled 
ery accurately. 

(ii) The general choice for the pressure outside the PWN swept-up 
hell of a constant fraction of that derived at the SNR forward shock,
nd scaled according to the Sedov solution, is not justified because 
his only holds at much later times. 

(iii) Furthermore, any choice of an outer pressure which is 
ssumed to be independent of the presence of the shell is bound
o be wrong, because the interaction of the SNR with the mass shell
ccumulated around the PWN necessarily affects in turn the outer 
ressure evolution. 
(iv) A comparison with models assuming this standard recipe for 

he outer pressure, in the non-radiati ve limit, sho ws that they lead
o (even largely) overestimated CFs. This is a problem, since over- 
stimating the CF would lead to a different subsequent dynamical 
volution history of the PWN. 

This paper is organized as follows. In Section 2 , we define the
arameter plane used in the rest of this work to identify uniquely
ach PWN + SNR system and its evolution, locating the region 
opulated by most of the systems. In the Section 3 , we describe
he evolution of the PWN + SNR system before the onset of
e verberation, re vie wing and improving analytical models for the 
nitial phase of the interaction. In Section 4 , we then describe the
umerical scheme used for the simulations, discussing the superiority 
f Lagrangian models to reach the required spatial resolution, as well 
s the importance of carefully setting the initial conditions. Section 5 
s devoted to analyse the interaction of a massiv e e xpanding shell
ith the SNR. This is a good approximation of the swept-up shell

ccumulated at the PWN boundary, and responsible for mediating 
he interaction with the SNR. We analyse how the SNR behaves in
he presence of the shell. This allows us to describe with much higher
ccuracy than before the outer pressure acting on the shell. Then, the
ull evolution of the PWN + SNR system is described in Section 6 .
ere, we illustrate and discuss the results of numerical models for
ifferent energetics and pulsar spin-down time, we critically analyse 
he thin-shell assumption, and derive approximate formulae for the 
WN compression factor. In Section 7 , we discuss how to apply
 thin-shell approach after the onset of reverberation. Here, we 
resent a revised thin-shell model, shaped to agree more closely 
o the numerical evolution during reverberation. A comparison of 
ynoptic maps of the compression factor is presented in Section 8 .
ection 9 presents a simplified version of the thin-shell model, able 

o reproduce the evolution with reasonably good accuracy in the 
ase of small spin-down times. Our conclusions are finally drawn in 
ection 10 . 

 T H E  PWN  + SNR  PARAMETER  PLANE  

.1 Characteristic scales and the ( τ 0 / t ch )–( L 0 / L ch ) plane 

s a first step for the forthcoming discussion, we must define what
arameters are fundamental to describe the PWN + SNR evolution 
nd the properties of the reverberation phase. As already done in 
aper I and Bandiera et al. ( 2021 , Paper 0 hereafter), we will use
haracteristic scales for some dimensional quantities, along the lines 
f those originally introduced by Truelo v e & McKee ( 1999 ), namely:

 ch = M 

1 / 3 
ej ρ

−1 / 3 
0 , (2) 

 ch = E 

−1 / 2 
sn M 

5 / 6 
ej ρ

−1 / 3 
0 , (3) 

 ch = E 

1 / 2 
sn M 

−5 / 6 
ej ρ

1 / 3 
0 = E sn /t ch , (4) 

here ρ0 is the ambient medium mass density, M ej the mass of the
NR ejecta and E sn the supernova energy. The combined evolution of
 PWN + SNR system is roughly determined by two ratios: τ 0 / t ch and
 0 / L ch , where L 0 and τ 0 are, respectively, the pulsar initial spin-down

uminosity and age. This holds true not only in the free expansion
hase (before the onset of reverberation) but also along the entire
WN evolution: each PWN + SNR system is represented by a point

n the ( τ 0 / t ch ) − ( L 0 / L ch ) plane. Moving to a discussion scaled on
hese quantities reduces by 3 ( M ej , ρ0 , E sn ) the explicit parameters
f the problem. Ho we v er, there are other de grees of freedom, among
hich the braking index, the density distribution of the SNR ejecta
r the uniformity of the ISM, that would still make the problem more
omplex. 

.2 Properties of the SNe and synthetic pulsar population 

he region of the parameter plane where to concentrate our attention
epends on the properties assumed as characteristics of the pulsar 
lus the SNR populations. We have in particular considered SNRs 
o have uniformly distributed ejecta masses in the range M ej =
6 − 20] M � (Smartt 2009 ), and a standard supernova explosion
nergy of E sn = 10 51 erg . 

Following Badenes, Maoz & Draine ( 2010 ), we have consid-
red a flat power-law probability distribution of the ISM density, 
amely d P ( ρ0 ) / d ρ0 ∼ ρ0 

−1 , in the range ρ0 = [0 . 01 –10] m p cm 

−3 ,
ith m p � 1 . 67 × 10 −24 g (Berkhuijsen 1987 ; Magnier et al. 1997 ;
andiera & Petruk 2010 ; Long et al. 2010 ; Asvarov 2014 ). However,
e found that a slight variation of the mass and density ranges does
ot reflect in an evident modification of the final population. 
With the previous prescriptions the characteristic radius R ch never 

xceeds ∼ 40 pc , and it is usually much smaller than this. This
ustifies our assumption that, during reverberation, the SNR expands 
n a rather uniform ambient medium. Larger systems would be 
o extended that their surface brightness would make them almost 
ndetectable, while their reverberation phase, generally around 1–
 t ch , is delayed up to ∼ 100 kyr , an age compatible with some of the
ldest known runaway PWNe (Kargaltsev & P avlo v 2008 ; Kargaltsev 
t al. 2017 ). 

For synthesizing a representative pulsar population, we have as- 
umed that the initial spin-down periods have a Gaussian distribution, 
haracterized by a mean P 0 = 100 ms, a spread σP 0 = 80 ms,
nd truncated at 10 ms. This both differs from the distribution by
atters & Romani ( 2011 ) for the gamma-ray emitting pulsars (a

imilar one, less extended, was later found in Johnston et al. 2020 )
s well as from the well known one for radio pulsars by Faucher-
igu ̀ere & Kaspi ( 2006 ). Our choice is somewhat in the middle
etween the two, co v ering a large part of the gamma-ray population,
lus a significant one of the radio pulsars, limited to the region
here an associated PWN can be expected. Gamma-ray emitting 
ulsars seems in fact better representative of the young population of
ulsars powering PWNe, conversely to radio pulsars that are more 
hifted towards old and evolved systems. Therefore our choice is a
ood compromise not to emphasize e xcessiv ely the extremes of both
opulations. 
MNRAS 520, 2451–2472 (2023) 
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M

Figure 1. The distributions of pulsars in the log 10 ( τ 0 / t ch )–log 10 ( L 0 / L ch ) 
parameter plane, for some synthesized populations. For each distribution, 
the dashed curve shows the isolevel enclosing 50 per cent of the population, 
while the solid one surrounds the 98 per cent. The population following 
Faucher-Gigu ̀ere & Kaspi ( 2006 ) is shown in orange, while that following 
Watters & Romani ( 2011 ) is in magenta. For clarity, we do not plot here the 
population from Johnston et al. ( 2020 ), but it is roughly compatible with that 
of Watters & Romani ( 2011 ), apart that it is more compact. In green colour, 
we also show the population that we have devised, which is intermediate 
between the former tw o. The tw o blue stars mark the positions of the Crab 
nebula and of PSR J1834.9–0846. Finally, the dotted-dashed lines show the 
loci of constant pulsar to SNR energetics. 
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1 Note that in Gelfand et al. ( 2009 ), as well as in many subsequent papers refer- 
ring to that work, the equation for the mass conservation has been incorrectly 
written in a slightly different way, and this has led to underestimate the PWN 

size typically ∼ 20 per cent . In equation (29) of Gelfand et al. ( 2009 ) (namely, 
d M/ d t = 4 πR 

2 ρej d R/ d t) the mass increment is e v aluated as the product of 
ρej times the volume increment, which would be correct only if the ejecta were 
at rest. The correct formula reads d M/ d t = 4 πR 

2 ρej [ d R / d t − R /t ] . The 
problem is solved here by directly using the integral equation, equation ( 8 ). 
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We take pulsars magnetic fields at birth to follow a log-
ormal Gaussian distribution, with mean log 10 ( B 0 / 1 G ) = 12 . 3 and
log 10 B 0 

= 0 . 25, similar to what was assumed in Faucher-Gigu ̀ere &
aspi ( 2006 ) and more recently in Gull ́on et al. ( 2014 ). The braking

ndex has been fixed to n = 2.33, an intermediate value between
he canonical dipole one, n = 3, and that of PSR 0540-69, n � 2
Manchester & Peterson 1989 ); n = 2.33 also corresponds to the
ecular braking index of the Crab pulsar (Lyne et al. 2015 ; Horvath
019 ). For a complete discussion on the large range for the few
nown braking indices please refer to Parthasarathy et al. ( 2020 ). 
In Fig. 1 , we show how our population (in green color) locates in

he log 10 ( τ 0 / t ch )–log 10 ( L 0 / L ch ) parameter plane, and how it compares
ith other possible choices computed using pulsar populations

rom the literature (Watters & Romani 2011 in magenta, Faucher-
igu ̀ere & Kaspi 2006 in orange). Please notice that we have in all

ases used a braking index of n = 2.33. In Fig. 1 , we also give the
osition of two reference objects (with blue stars), already introduced
nd discussed in Paper I: the Crab nebula and J1834.9–0846. These
re a sort of extreme cases from the observational point of view, being
he one fed by a very powerful pulsar – the Crab – and the other,
ith spin-down power smaller by a factor of ∼50, representative of
 low energetic PWN. The two are roughly located on the outskirts
f our population of interest. Dotted–dashed lines represent constant
atios of PWN + SNR energetics L 0 τ 0 / E sn . We caution the reader
hat many of the parameters defining the PWN + SNR population are
oorly constrained; ho we ver, we belie ve that our choice allo ws us to
efine a realistic population, compatible with available observations.
NRAS 520, 2451–2472 (2023) 
 PWN  PRE-REVERBERATI ON  E VO L U T I O N  

his section describes the evolution of the PWN before the onset
f the reverberation phase, namely as long as it interacts with the
nshocked ejecta. Apart from possible cases of exotic pulsars, with
n energy comparable to or even larger than the supernova energy
tself, the PWN never reaches the outer ejecta steep envelope, and
his fact simplifies the modelling. Moreo v er in P aper 0, we hav e
nvestigated the effect of the variation of the parameters shaping
he ejecta density profile: the core, with power-la w inde x δ, and the
nv elope with inde x ω (see also equation B1 ). From the observational
oint of view, these two parameters are hardly constrained, while
hey are in general considered to vary in the ranges 0 � δ � 1 and
 � ω � 12 (Che v alier & Soker 1989 ; Matzner & McKee 1999 ;
ruelo v e & McKee 1999 ; Chevalier 2005 ; Kasen 2010 ; Bucciantini
t al. 2011 ; Miceli et al. 2013 ; Potter et al. 2014 ; Karamehmetoglu
t al. 2017 ; Kurf ̈urst, Pejcha & Krti ̌cka 2020 ; Me yer, Petro v & Pohl
020 ; Meyer et al. 2021 ). We found that no rele v ant dif ferences in
he evolution of the SNR characteristic curv es (rev erse shock RS,
ontact discontinuity CD, and forward shock FS) appear for the
ifferent profiles of the ejecta core with δ � 0.1, while the envelope
rofile for all ω � 9 is very well described by the asymptotic limit
 = ∞ . Here, we then specialize our analysis to the case of a density
istribution in the SNR ejecta with a flat core and an infinitely steep
nvelope: ρej ( t ) = A / t 3 , corresponding to the δ = 0 and ω = ∞ case
f the more general formulae presented in Appendix B . In the chosen
ase, the parameter A is given by A = 5 E sn / (2 π) [3 M ej / (10 E sn )] 5 / 2 .

During its early evolution ( t � τ 0 ) the PWN collects material from
he ejecta into a shell with thickness much smaller than the PWN
adius (Jun 1998 ). As already mentioned, this result is at the basis of
he thin-shell approximation, widely used in the literature to describe
he evolution both before and during rev erberation (e.g. Re ynolds &
he v alier 1984 ; Bucciantini et al. 2004a ; Gelfand et al. 2009 ; Mart ́ın
t al. 2016 ; Torres 2017 ). The equations for the PWN evolution in
he adiabatic regime and in thin-shell approximation are: 1 

d 

d t 

(
4 πP ( t ) R( t ) 4 

) = L ( t ) R( t ) , (5) 

d 

d t 

(
M( t ) 

d R( t ) 

d t 

)
= 4 πP ( t ) R( t ) 2 + 

d M( t ) 

d t 

R( t ) 

t 
. (6) 

e indicate with R ( t ) the radius of the shell (by definition, in this
pproximation equi v alent to that of the PWN), with M ( t ) the shell
ass, P ( t ) the total pressure at the inner shell boundary, and L ( t ) the

ulsar spin-down luminosity at time t . By introducing the quantity: 

 ( t) = 4 πP ( t) R( t) 4 , (7) 

he two equations abo v e can be simplified. One can also notice that
 ( t ) tends to an asymptotic value for t � τ 0 . 
For the flat density profile, the swept-up mass turns out to be: 

( t ) = 

4 πR( t ) 3 A 

3 
. (8) 
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he time evolution of the pulsar spin-down luminosity from the 
nitial values ( τ0 , L 0 ) is: 

 ( t) = L 0 

(
1 + 

t 

τ0 

)−α

, (9) 

here we have introduced the fading index α = ( n + 1)/( n − 1). As
iscussed in the previous section, here we fix n = 2.33, or equi v alently
= 2.5. 
In Appendix B we hav e deriv ed, for a generic bipower-law

ensity distribution of the unshocked ejecta, the first-order analytical 
pproximation of the early time ( t � τ 0 ) solution of equations ( 5 )–
 6 ). In the case of homogeneous ejecta that solution simplifies to: 

 (1) ( t) = 

(
125 

33 

L 0 t 
6 

4 πA 

)1 / 5 (
1 − 11 

245 
α

t 

τ0 

)

� 0 . 7868 

(
L 0 t 

6 

A 

)1 / 5 (
1 − 11 

245 
α

t 

τ0 

)
, (10) 

 (1) ( t) � 0 . 3576 

(
L 

6 
0 t 

11 

A 

)1 / 5 (
1 − 176 

245 
α

t 

τ0 

)
, (11) 

 (1) ( t) � 0 . 07428 

(
L 

2 
0 A 

3 

t 13 

)1 / 5 (
1 − 132 

245 
α

t 

τ0 

)
. (12) 

enerally only the 0th-order approximations are given, but we found 
hat the first-order expansion in t / τ 0 leads to a higher accuracy in the
escription of the early-time evolution, and should then be preferred 
o correctly set the initial conditions for numerical modelling. 
ncidentally, note that while the 0st-order terms are independent 
f α, the first-order terms are all linearly dependent on it. 
At later times, instead, it is not possible to find an analytical

olution and equations ( 5 )–( 6 ) must be solved numerically. The
symptotic formulae for later evolution ( t � τ 0 but still before 
everberation) are: 

 ( ∞ ) ( t) � 0 . 9522 V 0 t , (13) 

 ( ∞ ) ( t) � 1 . 1293 L 0 V 0 τ
2 
0 , (14) 

 ( ∞ ) ( t) � 0 . 10932 
A V 

2 
0 τ0 

t 4 
, (15) 

here V 0 = ( L 0 τ0 /A ) 1 / 5 . The quantity V 0 τ0 can be then expressed
n terms of characteristic scales as 

 0 τ0 � 1 . 9111 

(
L 0 τ0 

E sn 

)1 / 5 (
τ0 

t ch 

)
R ch . (16) 

rom the previous equations one may also estimate the value 
symptotically approached by the swept-up mass: 

 ∞ 

� 0 . 9902 

(
L 0 τ0 

E sn 

) 3 / 5 

M ej . (17) 

e hav e deriv ed a handy approximation for R ( t ), which allows one
o closely match both the early- and the late-asymptotic behaviours, 
s well as to reasonably describe the transition region: 

 appr ( t) = V 0 τ0 

[ 

1 + 

(
C 

5 / 6 
R, 0 

t 

τ0 

)−a 
] −6 / (5 a) 

[ 

1 + 

(
C R, ∞ 

t 

τ0 

)b 
] 1 /b 

. (18) 

he values of the four parameters depend on the value of the
ading index. In the case α = 2.5 the best-fitting values are: C R ,0 =
.7868, C R , ∞ 

= 0.9522, a = 0.7297, and b = 0.7194, ensuring at all
imes an accuracy better than 0.1 per cent. For other braking indices
ee Appendix D . From this, with an accuracy al w ays better than
.8 per cent, the expansion parameter reads: 

 = 

V ( t) t 

R( t) 

∣∣∣∣
appr 

= 

6 / 5 

1 + 

(
C 

5 / 6 
R, 0 t/τ0 

)a + 

1 

1 + 

(
C R, ∞ 

t/τ0 

)−b 
. (19) 

n an analogous way, we have approximated the quantity Q ( t ), with
n accuracy al w ays better than 0.8 per cent, as: 

 appr ( t) = L 0 τ0 V 0 τ0 

[ (
C 

5 / 11 
Q, 0 

t 

τ0 

)−a 

+ b 

(
t 

τ0 

)−c 

+C 

−5 a/ 11 
Q, ∞ 

] −11 / 5 a 

, (20) 

here C Q ,0 = 0.3576, C Q , ∞ 

= 1.1293, a = 1.4689, b = 1.6969, and
 = 0.5820. Note that the asymptotic value for Q ( t ) is finite and
olds: 

 ∞ 

= C Q, ∞ 

L 0 τ0 V 0 τ0 . (21) 

ompared with the analytical approximation in Bucciantini et al. 
 2004a ), the present one is far more accurate, especially at late times;
n the other hand, it is limited to the case α = 2.5. A comparison of
he abo v e approximation for R ( t ) with the fully numerical solutions
presented in Section 4 ) allows one to test the convergence of
he simulations magenta and to estimate the error introduced by 
ssuming a thin-shell (see Section 7 ). 

The time at which the reverberation begins, hereafter t beg,rev , can
e identified as the time at which the PWN and the RS first touch.
his time can be derived very precisely in the case of a thin-shell
pproximation for the swept-up shell, while in the real case of a finite
hickness the RS takes a small but finite time to propagate through
he shell. For the RS evolution, we use the general formula given by
aper 0, specialized to the present case of δ = 0, ω = ∞ , that is
xtremely accurate if compared with the numerical models (better 
han 0 . 005 R ch ) at all values t < 2 t ch , but shows a slightly worst
greement (up to 0 . 03 R ch ) close to the RS implosion. Since in this
ase it will be used to derive other quantities, we have preferred to
efine the parameters for a perfect consistence with our numerical 
odels, giving: 

 RS ( t) = 

12 . 49 (2 . 411 − t/t ch ) 0 . 6708 ( t/t ch ) 1 . 663 

1 + 17 . 47 t/t ch + 4 . 918 ( t/t ch ) 2 
R ch , (22) 

hat allows an accuracy in comparison to the Lagrangian model 
l w ays better than 0 . 002 R ch up to t = 2 . 411 t ch , the RS implosion
ime in the absence of a PWN for the chosen configuration of the
jecta. The quantity t beg,rev is in general a function of both L 0 / L ch 

nd τ 0 / t ch and its e v aluation requires a numerical deri v ation of the
ntersection between the curves for the PWN and RS evolution. 
nyway, one should notice that for τ 0 / t ch � 1, it is a function of
nly L 0 τ 0 / E sn while, for τ 0 / t ch � 1, it is a function of only L 0 / L ch . It
s also easy to show that several quantities at t beg,rev can be expressed
s functions of t beg,rev / t ch only. This is for instance the case of the RS
adius (and of the PWN as well), of the amount of swept-up mass,
f the velocity of the RS as well as of the matter downstream to the
S, and of its thermal pressure. 

 N U M E R I C A L  SCHEME  F O R  PWN  + SNR  

VO L U T I O N  

n order to follow the evolution of a PWN + SNR system from a few
ears after the SN explosion to the typical time of the reverberation,
round 1–2 t ch , meaning 10 3 –10 4 yr for most of the systems, we
ust allow a large dynamical range in terms of radii. On top of
MNRAS 520, 2451–2472 (2023) 
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his, the injection of a relativistic wind from the pulsar, and the
elated requirement to resolve the dynamics of the wind termination
hock and of the PWN, in the correct relativistic regime, makes such
imulations even more demanding. 

Using the PLUTO code (Mignone et al. 2007 ), we have verified that
 spatial resolution good enough to resolve the structure of the swept-
p shell, as well as the PWN CD with the shocked ejecta, is required
o correctly simulate, even in 1D, the dynamics of reverberation and
o reliably compute the maximum compression of the PWN (i.e. the
F). Unresolved shells lead to underestimate the CF even by a factor
, especially for those systems where the compression is strong. The
ssue is far less critical for systems harboring an energetic pulsar,
here the compression in the reverberation phase is mild (CF ∼ 2–
). 
Lagrangian schemes, following the evolution of fluid particles,

re instead optimal for this kind of problem, where the 1D geometry
revents dynamical mixing and preserves the identity of mass shells
n time. Moreo v er, in a Lagrangian scheme it is possible to model the
WN as an inner boundary condition and to evolve only the SNR, in

he non-relativistic regime. This allows one to efficiently sample the
arameter space of the PWN + SNR interaction in a reasonable time-
cale. In Paper 0, we have presented a Lagrangian 1D hydrodynamic
ode for the evolution of an SNR in the uniform ambient medium,
onsidering different models for the ejecta structure. For the present
roblem we have used the same code, modifying it to include the
WN inside the remnant. The details of our Lagrangian scheme,
s well as the comparison with analytical solutions for the SNR
volution, can be found in Paper 0 and are not repeated here. 

In the following, the inner PWN is modelled using two different
mplementations of our code. In the first case, we consider a massive
hin-shell in ballistic expansion from the centre and from the SN
xplosion time. Ballistic expansion ends when the shell is reached by
he RS, and then continues its evolution acted upon by the pressure
f the SNR only; this has been done by setting � m 1/2 , defined in
aper 0, equal to the mass of the thin-shell. As we will show in the
ollowing, this approach is mostly suited for PWNe with a small τ 0 ,
nd allows for a first analysis of the dynamical reaction of the SNR
o the presence of a central PWN, a very important ingredient to
uild-up semi-analytical thin-shell models that are more physically
rounded. In the second case, the PWN is modeled as a piston of
ariable pressure acting on the first Lagrangian shell. 

The pressure, as long as one neglects the energy losses due to
ynchrotron emission, inverse Compton scattering (ICS) radiation, or
article diffusion, is ruled by equation ( 5 ), and is explicitly computed
s 

 ( t ) = 

1 

4 πR 

4 ( t ) 

∫ t 

0 
L ( t ′ ) R( t ′ )d t ′ , (23) 

here the PWN radius R ( t ) is set equal to the radius of the first
nterface r 1/2 . 

We verified that the modifications we introduced in the Lagrangian
odel, with respect to its original structure of Paper 0, do not affect

he results of the SNR evolution in the high ω case; we found a
erfect coincidence with results presented in Paper 0, for the whole
NR region not yet causally affected by the interaction with the
WN. 
An important detail of the models is the setting of the initial

onditions. As for the initial time, we have found numerically good
esults already by setting t ini = 2 × 10 −3 t ch . In the ballistic shell case,
he initial radius and velocity of the shell have been simply obtained
y imposing the shell mass to be equal to the swept-up mass of the
jecta, and that the expansion time of the shell is equal to that of the
NRAS 520, 2451–2472 (2023) 
NR. Initialization in the piston case is more complex. The initial
adius of the piston has been e v aluated using the early-time analytical
xpansion for the PWN, while the initial pressure comes from the
nalytical approximation of equation ( 23 ). In the piston model we
hen do not introduce any thin-shell, since a shell with a small but
nite width is self-generating. Ho we ver, in this way a very small
ass deficiency is introduced, because before t ini the piston has not

ollected any mass. The effect of this choice is usually minor, but
or a more detailed analysis of the effects of the initial conditions
e refer to Section 7 , in which numerical data and semi-analytical

hin-shell models are compared. 

 A  MASSIVE  SHELL  I NTERAC TI NG  WI TH  

H E  SNR  

efore tackling the full problem of the interaction of a PWN with
he SNR shocked material, let us discuss here a relatively simpler
ne: the interaction of a thin, linearly expanding, massive shell with
he SNR. Let M shell be the shell mass, while for simplicity we take
ts expansion age to be equal to the SNR age. As we will better see
n the next sections, this problem is a close cousin of that of a PWN
ith a very small spin-down time at birth, in which case the entire
ulsar energy is converted in the formation of the expanding mass
hell in a small time, while the internal energy of the inner hot bubble
 ventually v anishes. 

Already by this simpler approach we can outline some of the main
roblems intrinsic to previous models of PWN reverberation: 

(1) The evolution during reverberation is strongly dependent on
he conditions at the beginning of this phase, and due to this the

odeling of the earlier phase must be very accurate; therefore the
ormulae introduced in our Section 3 , even if not too different from
revious ones, are relevant to correctly model the further evolution. 
(2) F or the abo v e reason, ev en if the trajectories of the charac-

eristic curves, as computed in Paper 0, appear rather similar to the
riginal Truelo v e & McKee ( 1999 ) ones (at least if we limit the
omparison to the case considered here with δ = 0 and ω = ∞ ), their
especti ve ef fects on the subsequent e volution dif fer considerably. 

(3) Furthermore, most of the models published so far use, for the
uter pressure, a scaling based on the Sedov solution. Instead, with
he help of numerical models, we will show that the use of a Sedov
olution for the outer pressure is not only unjustified, but also gives
rossly incorrect values. This because: (i) the Sedov solution cannot
e used to model early phases of the SNR e volution, e ven referring
o ejecta material; (ii) the interaction of the SNR with the mass shell
ccumulated around the PWN further modifies the outer pressure
volution, and it is essential to take also this into account. 

.1 Evolution of the shell, effective energetics 

he dynamical evolution of the SNR, even in the absence of any
nner interaction, is quite complex by itself. At very early phases it
pproaches a self-similar solution, when the RS still mo v es through
he envelope (Che v alier 1982 ), provided that the RS remains close
o the CD (Hamilton & Sarazin 1984 ). The asymptotic self-similar
egime, well-described by the Sedov solution (Sedov 1946 ) is then
nly approached at very late times. On the contrary, the intermediate
hase, starting from the time at which the RS is no longer closer to the
D and mo v es towards the centre of the e xplosion, the hydrodynamic
volution of the SNR structure becomes very complex, and requires
umerical models to be properly described. For instance, after the
S has reached the center, a reflected shock starts moving outwards,
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Figure 2. Time evolution of the shell size for models with different λE 

( = log 10 [( L 0 τ 0 ) EFF / E sn ]) values, as obtained from numerical simulations of 
the interaction between the shell and the SNR. The RS position is indicated 
by a blue solid line, while the SNR CD and FS by dashed lines, in purple and 
dark blue colours, respectively. The models for the shell are shown as solid 
orange lines, labelled with their respective values of λE . 
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nd further reflections on the various layers (like the CD and the
S) will follow. All this is implicitly assuming spherical symmetry; 
hile in a real 3D case the efficiency with which the reflected shock

s formed may be lower, but the evolution will be more structured. 
In the shell + SNR models discussed here, t beg,rev corresponds to 

he time at which the RS reaches the shell. The subsequent evolution
f the shell size will depend on how effective the pressure of the SNR
hocked medium will be, at the beginning to slow down its expansion, 
nd then to revert it into a contraction: in fact, the shell will al w ays
ev erse its motion, pro vided the original shell energy roughly does
ot exceed the SN energy itself. It is clear that for this evolution
nly the pressure right outside the shell matters. On the other hand,
n order to determine the pressure at the interface, models must
onsistently describe the evolution of the whole SNR. Also in this
ase, the described scenario assumes spherical symmetry. In a real 3D 

odel, even in the case of spherically symmetric initial conditions, 
nstabilities may appear at the interface to break the symmetry out. 
o we ver, these possible effects will not be considered in this work. 
With the set of characteristic units introduced abo v e, and fixing
 = ∞ , all models for the shell + SNR interaction form a one-
arameter family, depending on the ratio M shell / M ej , instead of L 0 

nd τ 0 . Ho we ver, in order to establish a closer connection to the
WN + SNR models that we will treat in the following, let us

ntroduce an ef fecti ve PWN energy, ( L 0 τ 0 ) EFF , such that a PWN
ith this energy, and an arbitrarily small 2 τ 0 , will eventually collect 

he same M shell from the unshocked ejecta. For this we have used
he asymptotic formula that relates the final shell mass and pulsar
nergetics (equation 17 ), to obtain: 

 L 0 τ0 ) EFF /E sn � 1 . 0166 ( M shell /M ej ) 
5 / 3 . (24) 

his is a considerable simplification with respect to the complete 
ase of the PWN + SNR interaction, where the family of solutions
as two independent parameters, L 0 and τ 0 . For all cases with non-
egligible τ 0 , one may find that ( L 0 τ 0 ) EFF is al w ays smaller than the
ctual L 0 τ 0 , even though usually by a small amount (see Section 7 ).
y defining the following effective energetic magnitude: 

E = log 10 [( L 0 τ0 ) EFF /E sn ] , (25) 

he models that we have computed span a wide range of λE , from
10 to −0.5. 
Fig. 2 gives an overall scenario of the evolution of the shell, for

 set of representative values of λE : one may notice that it expands
inearly, with a velocity dependent on the value of λE , until the shell
s reached by the RS; after then the shell expansion is reverted into
n implosion, with efficiency dependent on the energy parameter. 
t is also easy to see that increasing λE causes the reverberation to
egin earlier and end later. The evolution of CD and FS, represented
n the plot by dashed lines, looks almost independent of λE for lower
nergies like those present in the plot, but it also changes considerably 
n the case of more energetic models. 

.2 Pr essur e of the ejecta 

n several published thin-shell models for the PWN + SNR interac- 
ion, and in lack of a better prescription, see e.g. Gelfand et al. ( 2009 ),
ucciantini et al. ( 2011 ), Vorster et al. ( 2013 ), Mart ́ın et al. ( 2016 ),
 This is because we have already seen that the asymptotic swept-up mass 
equation 17 ) is approached only at times much larger than τ 0 and, in order to 
e as much general as possible in our description, this requirement is certainly 
atisfied considering very small τ 0 . 

w  

r
f

v  

t  
orres ( 2017 ), and Bandiera et al. ( 2020 ), the SNR pressure at the
nterface with the shell has been imposed to be a constant fraction of
hat at the FS, as e v aluated from the Sedov solution. This assumption
s not well moti v ated, for v arious reasons: the range of times at which
he shell + SNR interaction takes place is around t ch , and extends at

ost to a few t ch , namely it happens well before the Sedov regime
as been reached. Moreo v er, the shell interacts with the material in
he ejecta, while the profiles provided by the Sedov solution refer
o the shocked ambient medium. In addition, the dynamic thrust of
he shell on to the SNR material drives a further reflected shock, so
hat even a pressure derived from a correct model for a ‘pure’ SNR
ould not be valid here, since the pressure structure in the SNR itself

s modified by the interaction with the shell. For all these reasons we
ave preferred to compute numerically a large set of shell + SNR
odels, with the aim of investigating the dependence on λE of the

esults, of obtaining an interpolated model from them, and of using
his as a better proxy to estimate the dynamical action from the SNR.

Another common assumption in the aforementioned models is 
hat the SN ejecta continue to be swept-up by the shell even beyond
he beginning of the reverberation phase, provided that the expansion 
elocity of the shell is larger than that of the ejecta lying immediately
utside i.e. v ej < v. Also this approach is not justified. The shell of
wept-up material formed by a PWN during the pre-reverberation 
hase is thin for the coexistence of two conditions: (i) the swept-up
aterial (unshocked ejecta) is cold; (ii) the difference between the 

elocity of the shell and that of the outer material is small. As a
onsequence the entropy of the material inside the shell is small and,
eing the shell in pressure equilibrium with the surroundings, this 
mplies that its density is large. During reverberation, the conditions 
re completely different; the SNR material hitting the shell is already
ot (shocked material), and in addition its velocity relative to that
f the shell is high. Thus, in the absence of very efficient radiative
rocesses, there is no way by which this material can stick to the
hell, but it will more likely form a reflected shock. In the present
ork all these details are not simply ‘assumed’, but they directly

esult from the numerical models. A more quantitative discussion is 
ound in Section 6 . 

A first result comes from the comparison, for some representative 
alues of λE , between the SNR pressure that actually pushes against
he shell ( P outer ), and the pressure derived at the centre of the Sedov
MNRAS 520, 2451–2472 (2023) 
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M

Figure 3. Evolution of the outer pressure, scaled with: P Sedov from equa- 
tion ( 26 ) (upper panel); the pressure downstream of the RS at t beg,rev (bottom 

panel). Pressure profiles are shown in both cases for some representative 
values of λE , as obtained from numerical solutions. Differently from what 
was assumed in previous works, it is evident here that these quantities are 
both far from being constant in time. In addition, a secondary bump occurs in 
the two curves with the highest λE values: this is the sign of a reflected shock 
reaching the shell before its collapse. 
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Figure 4. Spatial variation of the pressure scaled with the pressure down- 
stream of the RS at t beg,rev and close to the shell surface, as obtained 
from the numerical data for the chosen case of λE = −1.5 (but a similar 
behaviour is shown by other models). Different curves (colors) represent the 
pressure profile at different times, starting very close to t beg,rev (for this model: 
t beg , rev = 0 . 694 t ch ) and at positions between R shell and R CD . The temporal 
variation of the pressure here is highlighted by the dotted–dashed line, and 
dots mark the position from where we extract the profile shown in Fig. 3 , 
bottom panel. The black dashed curve represents instead the pressure profile 
an instant before the beginning of reverberation. 
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olution, namely: 

 Sedov ( t) = 0 . 0489 

(
t 

t ch 

)−6 / 5 
ρ0 E sn 

M ej 
, (26) 

hich provides a good approximation even if compared to the
ressure scaled with the downstream pressure at the FS (see abo v e).
rom Fig. 3 (upper panel), it can be clearly seen that the ratio between

hese two pressures is far from being constant in time, and that the
rend of this ratio also strongly depends on λE . These scaled profiles
ll show a peak right at the beginning of reverberation, then a decrease
o much smaller values, typically one order of magnitude, and finally
 new strong increase, mostly due to the geometrical fact that the flow
s converging. According to the Guderley solution (Guderley 1942 ),
he outer pressure should increase like ( t implo − t ) −0.6232 ∝ R 

−0.9054 ,
here t implo is the time at which the shell implodes. With this trend
ear the implosion, a smooth approximation of the pressure near that
ritical time is possible if the pressure is multiplied by a power of
 shell close to 1 or larger. In the next section, we will consider it
ultiplied by 4 πR 

2 
shell , so that beyond making the treatment easier

t translates into a physically meaningful quantity, namely the force
ushing the shell on the outer side. The lower panel of Fig. 3 instead
ho ws the e volution of P outer ( t ) scaled with the pressure downstream
f the RS, computed at t beg,rev , given by 

 RS ( t beg , rev ) = 

2 

� + 1 
ρej ( t )[ ̇R shell ( t ) − Ṙ RS ( t)] 

2 , (27) 

here � is the adiabatic index (equal to 5/3 in this case). The
first) peak of each curv e giv es the initial pressure jump at the
NRAS 520, 2451–2472 (2023) 
eflected shock (of a moderate intensity), almost the same factor
f ∼ 5 − 6 P RS ( t beg , rev ) for all models. Each curve shows an initial
harp decrease of pressure, then followed by a rapid increase at the
oment the shell collapses. The reason for this early decrease can be

etter appreciated by looking at Fig. 4 , which displays the normalized
ressure profiles at different times close to t beg,rev , and at positions
anging between R shell and R CD , for the model λE = −1.5. One can
otice that the strength of the reflected shock is originally constant
ith time, while it possibly increases when it approaches the CD.
ue to the positive pressure gradient behind the reflected shock, the
ressure at the boundary with the shell (at each time highlighted
ith a filled circle), instead sharply decreases with time. Note how

he time-step between subsequent curves in the plot is quite small,
hich means that the pressure decrease at the shell boundary is quite

ast. 

.3 Acceleration and number of shocks reaching the shell 

et us introduce the acceleration induced by the outer pressure: 

 outer ( t) = 

4 πR 

2 
shell P outer 

M shell 
, (28) 

amely the ratio between the force e x erted from the outer pressure
nd the shell mass. This quantity is equal to zero for all times t
 t beg,rev , has the advantage of vanishing at t implo , and is closely

onnected to the time evolution of R shell ( t ), being its second deri v ati ve
n time. Let us now analyse in more detail the behaviour of a outer ( t )
 v er our wide range of λE values. As can be seen in Fig. 5 , one may
dentify different regimes, depending on the number of reflected
hocks impinging on the shell before it reaches the centre (shown
s jumps in a outer ). For λE < −2.45 no reflected shock reaches the
hell, so that a outer shows a smooth behaviour for all times between
 beg,rev and t implo . One reflected shock occurs in the range −2.45 <
E < −1.68, while also a second reflected shock hits the shell in

he range −1.68 < λE < −1.35. Around −1.35 also a third shock
ppears, this time preceded by a feature looking like a rarefaction
ave; also a fourth shock, appearing at λE higher than −1.13 shows
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Figure 5. Behavior of a outer ( t ) and R shell ( t ) for some representative λE values (see text for details). 
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 qualitatively similar pattern. At higher λE values the complexity of 
he pattern of reflected shocks increases dramatically . Incidentally , 
E = −2.20 is the transition value between the cases in which the
hell hits a still expanding RS, or an already contracting one. 
In Fig. 5 one may notice some trends: first, the strength of the
ump associated with a given shock is getting higher at higher λE ,
amely when the shock reaches earlier the shell. This can be easily
xplained: when a shock reaches the shell soon after t beg,rev the shell
MNRAS 520, 2451–2472 (2023) 
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Figure 6. Upper panel: Dependence of the implosion time on the quantity 
λE , directly related to the mass of the shell. As it is explained in the text, 
the complex trend shown in this figure is due to the combination of different 
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t 1st,sh , and t 2nd,sh on λE , as given by equation ( 29 )–( 31 ). 
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s still expanding, or slowly receding, so that the relative velocity
s higher and the dynamical effect stronger; on the opposite, at
ery late times the shell recession is more prominent, and then the
elativ e v elocity lower. Moreo v er, a jump in the pressure, namely
n the second time deri v ati ve of the shell radius, does not have
n immediate effect on its radial evolution. In particular, when the
umber of shock impacts becomes very large (say for λE � 0.9 and
bo v e), their cumulativ e effect on the evolution of R shell is not much
ifferent from that of a more regular pressure evolution. Therefore
he strongest effect of the individual shocks on the R shell evolution
s in a λE range around −1.0, when only a few major shocks are
nvolved. 

.4 Fittings for the beginning of reverberation and the arrival 
f shocks to the shell 

he following formulae give accurate fits to t beg,rev , as well as to the
rri v al times of the first two reflected shocks: 

 beg , rev ( λE ) � 2 . 4102 
1 − exp ( −0 . 1494 + 1 . 1606 λE ) 

1 + exp (1 . 6831 + 0 . 6805 λE ) 
t ch , (29) 

 1st, sh ( λE ) � t beg , rev ( λE ) + exp ( −4 . 8640 − 2 . 3026 λE ) t ch , (30) 

 2nd , sh ( λE ) � t beg , rev ( λE ) + exp ( −4 . 8023 − 3 . 5932 λE ) t ch . (31) 

he differences between the arrival times of the various shocks and
 beg, rev are well approximated as an exponential of the (logarith-
ic) quantity λE , which means that they are approximate power

aws of ( L 0 τ 0 ) EFF . These approximations have an accuracy with
espect to the Lagrangian models of about 0 . 01 t ch , and of course
hey are valid only for the range of λE in which the relative
hock is present. The time of the begining of reverberation and
he arri v al times of the first two reflected shocks are shown in
ig. 6 . 
As for t implo , since its value is affected by the pressure evolution

ssociated with the arri v al of the various reflected shocks, it shows
 v ery re gular behaviour only for λE < −2.45, while for higher
alues its behaviour is much more structured, as also shown in
ig. 6 . 

.5 Fittings for the shell radius 

t should be clear that the evolution of the shell is too complex to
e represented by a simple analytical solution, so that we search for
pproximate fitting formulae. In the following, we introduce some
nterpolating functions, whose structure does not intend to have any
pecific physical meaning, but only to provide reasonably accurate
nterpolations by limiting as much as possible the number of free
arameters. According to what we explained above, while we aim at
pproximating a outer , associated with the outer pressure, we do not
eally need to match its pattern in detail, a particularly complex task
specially in the presence of one or more reflected shocks. Instead, it
s more important to match the dynamical ‘effects’ of this pressure,
nd with the strategy described abo v e a smoothed v ersion of the
volution of a outer is effectively obtained. We have found that, for
ost λE values, excellent fits to the evolution of R shell can be obtained
ith a function whose second deri v ati ve is gi ven by the product of a

econd-order polynomial times a decreasing exponential, namely: 

 outer ( x) = (1 − ax + b x 2 ) e c−kx R ch 

t 2 
, (32) 
NRAS 520, 2451–2472 (2023) 

ch w  
here x = ( t − t beg, rev )/ t ch . The corresponding formula for R shell is
hen: 

R shell ( x) = t 2 ch 

∫ x 

0 
d x ′ 

∫ x ′ 

0 
d x ′′ a outer ( x 

′′ ) = 

e c 

k 2 

{[
1 − e −kx − kx 

] − a 

k 

[
2 (1 − e −kx ) − (1 + e −kx ) kx 

]
+ 

b 

k 2 

[
6 (1 − e −kx ) − 2 (1 + 2 e −kx ) kx − e −kx k 2 x 2 ) 

]}
R ch 

+ ( R beg , rev + V beg , rev t ch x) , (33) 

here the quantities R beg,rev and V beg,rev are not free parameters, but
re derived from the pre-reverberation evolution. The 4 parameters
 , b , c , and k are derived, for each value of λE , from a best fit to
he numerical evolution of R shell . For λE � −1.8 this functional form
llows fits with residuals al w ays less than 0.003; while worse fits are
btained for λE � −1.3, with residuals anyway not exceeding 0.03.
or this reason we have decided to adopt the same functional form
or all the λE considered. 

The trends of the best-fitting parameters are shown in Fig. 7 .
t is apparent that the trends are regular only when λE < −2.45
no reflected shock). Analytical approximations for the functional
ependence of the parameters o v er λE are given in Appendix C . The
ormulae that we have devised are quite complex, because we had to
dd extra components to the o v erall trend, in order to reproduce all
he features that appear in Fig. 7 . A high accuracy is required, and
ith our fits we have reached residuals with mean-squared deviations
 0.01, because the evolution of R shell is strongly dependent on the

alues of these parameters. In Appendix C , we also give a simpler fit
o a outer , valid for very low energy models ( λE < −4.5). In Section 7 ,
e will show how to apply these formulae to perform an approximate
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Figure 7. Dependence on λE of the parameters a , b , c , k , used for the fits. 
Since the scope of the figure is to show the appearance of different regimes 
with varying λE , we have preferred to condense the curves on the same plot, 
even if their vertical scale is different. The ranges of their vertical axes are 
then given in brackets in the legend. Different colours correspond to different 
parameters. The vertical dotted–dashed lines indicate the positions of the first, 
second, third, and fourth reflected shocks. 
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Figure 8. This figure displays the same region of the parameter plane as 
in Fig. 1 , but we the aim of showing, with black dots, the positions in 
the parameter plane of all the Lagrangian models we have run. The filled 
areas show the regions with 95 per cent of the elements for each synthesized 
population, the colors of which correspond to those in Fig. 1 . 

Figure 9. Evolution in time of the PWN radius for pulsars with τ 0 = 0.1 t ch , 
and different values of L 0 / L ch (given in the legend). In comparison with Fig. 1 , 
this plot represents models with log 10 ( L 0 / L ch ) varying within the green area 
and fixed log 10 ( τ 0 / t ch ) = −1. This was chosen as a representative case, being 
almost centred in the PWNe distribution. 

t  

a  

b  

t
b  

s  

b  

o

6

L  

f  

−

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/520/2/2451/6987688 by R
ed de Bibliotecas del C

SIC
 user on 18 O

ctober 2023
odelling of the PWN + SNR evolution, with our modified thin-shell 
pproach. 

 A  PWN  INTERAC TING  WITH  T H E  SNR  

.1 Dynamical evolution 

n this section, we first present the results of about one hundred
umerical simulations of the coupled evolution for a PWN + SNR
ystem, obtained using our Lagrangian code, and ranging from 

ery early phases ( t � τ 0 ) until rather late stages of the rever-
eration phase. The location of these models in the log 10 ( τ 0 / t ch ) –
og 10 ( L 0 / L ch ) parameter plane is shown in Fig. 8 . They are equally
paced in log 10 ( τ 0 / t ch ), in the range [ −2 . 0 , 0 . 25] with step size
f 0.25. The ranges of L 0 have been chosen to reasonably co v er
reas in the parameter plane with higher density of pulsars, using a
ompromise between distributions in the literature (see Section 2 ). 

The models assume the PWN radius, R pwn , as the inner boundary
f the Lagrangian grid. Initial conditions for the simulations are 
iven in Appendix B . In order to carefully resolve the structure of
he swept-up shell that forms during the evolution, and in particular 
o correctly model its dynamics during the reverberation phase, we 
ave subdivided the spatially uniform ejecta between R pwn and R snr in 
000 or more equally spaced shells. The resolution in the outer ISM
s less important, so we opted for shells spaced of about 0 . 1 ly . The
aximum size of the grid is chosen to prevent the FS from reaching

he grid boundary along all the calculation, al w ays lasting more than
 t ch . 
As a reference, in Fig. 9 we show the evolution in time of R pwn , for

0 / t ch = 0.1, and different values of L 0 / L ch . It is evident that, as L 0 / L ch 

ncreases, the first maximum of R pwn is reached at earlier times, even
hough after the beginning of the reverberation phase the massive 
hell continues expanding for a longer time; while after then the 
symptotic velocity of the PWN contraction is lower, also because 
ore mass has been collected in massive shell, and consequently the 

ime of the first PWN maximum compression is delayed. Then the 
ebula re-e xpands, e xperiencing a series of less sev ere e xpansions
nd compressions, as already found in van der Swaluw et al. ( 2001 )
nd Blondin et al. ( 2001 ). Note that in the lower-luminosity regime
he smallest size of the PWN is reached during the first compression;
s the luminosity of the pulsar rises, the evolution of the PWN radius
ecomes more complex, and the first compression might be no more
he strongest one. At higher energies the dynamics is complicated 
y the presence of several weak internal shocks at t beg,rev , when the
wept-up shell meets the RS, and that keep propagating and bouncing
etween the CD and the PWN radius, as already noticed in the case
f the shell + SNR interaction (see Section 5 ). 

.2 Compression factors 

et us now focus on the behaviour of the CF: the trend of this quantity,
or all our models, is shown in Fig. 10 . For low log 10 ( L 0 τ 0 / E sn ) �
2.5 one may derive an approximation function (with an average 
MNRAS 520, 2451–2472 (2023) 
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Figure 10. The upper panel gives log 10 CF as a function of L 0 / L ch , computed 
for all our models. Each line refers to a given value of τ 0 , starting from −2.00 
(top right) to 0.25 (bottom left), and each dot represents a single model. It is 
apparent that, for log 10 ( L 0 τ 0 / E sn ) � −2.5 the trend are almost linear. In the 
text we give an approximating function for this region, and the lower panel 
displays the residuals after subtracting this function. In the higher energy 
regime, the most noticeable displacements are: one small bump in the positive 
direction, at log 10 ( L 0 τ 0 / E sn ) ∼ −2.4 (actually, near to the value abo v e the 
first reflected shock reaches the PWN; and another, more prominent, in the 
ne gativ e direction around −1.6 (near the value abo v e which also a second 
reflected shock appears). 
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The grey dashed lines represent the extrapolation to log 10 ( τ 0 / t ch ) < −2.0, in 
steps of 0.25. 
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rror of about 1 per cent with respect to numerical results), linear in
og 10 ( L 0 τ 0 / E sn ): 

log 10 CF low = −0 . 6079 − 0 . 1986 

0 . 4117 + ( τ0 /t ch ) 
log 10 

(
τ0 

t ch 

)

−
(

0 . 5247 − 0 . 0294 log 10 

(
τ0 

t ch 

))
log 10 

(
L 0 τ0 

E sn 

)
. (34) 

n extension of this formula to higher energies can be done
y fitting the residuals shown in the lower panel of Fig. 10 . A
uitable expression consists in the sum of two Gaussian functions in
og 10 ( L 0 τ 0 / E sn ), whose magnitudes are only functions of τ 0 , namely: 

log 10 CF = log 10 CF low + f 1 ( τ0 ) exp 

( 

−6 . 4 (2 . 07 + log 10 

(
L 0 τ0 

E sn 

)2 
) 

−f 2 ( τ0 ) exp 

( 

−3 . 25 (1 . 77 + log 10 

(
L 0 τ0 

E sn 

)2 
) 

, (35) 

here: 

 1 ( τ0 ) = 1 . 724 + 0 . 558 log 10 

(
τ0 

t ch 

)
− log 10 

[ 
1 + 59 . 70 

(
τ0 

t ch 

)0 . 815 
] 
, 

 2 ( τ0 ) = 1 . 868 + 0 . 673 log 10 

(
τ0 

t ch 

)
− log 10 

[ 
1 + 94 . 41 

(
τ0 

t ch 

)1 . 063 
] 

. (36) 

ig. 11 shows the result of this approximation, compared to the
umerical values, obtained with our Lagrangian models. The fit is
 xcellent (av erage error below 3 per cent), and the extrapolation to
maller values of τ 0 , the most interesting ones because they are
ssociated to higher CF values, looks rather smooth. However, we
arn that such extrapolation is not physically grounded, so it is
ot clear how far it could be extended. One may only speculate
hat the low-energy trend of the CF, being so simple and regular,
hould reasonably extend to even lower energies than those actually
NRAS 520, 2451–2472 (2023) 
ested. On the other hand, cases with log 10 ( τ 0 / t ch ) < −2.0 are very
emanding from the numerical point of view since now, in order to
eep t ini � τ 0 , very small initial times, and then smaller time-steps
re required. This also means that this range is extremely sensitive
o the initial conditions, since almost the entire energetics is released
n the very first phase of evolution. 

In a general, qualitative sense, one may notice that the CF increases
hen decreasing the energetics of the pulsar, as well as when
ecreasing τ 0 , so that the most compressive cases are in the lower
eftmost side of Fig. 8 . To our purposes they represent the most
nteresting cases, especially in the perspective of a future analysis of
he effect of radiative losses on the PWN evolution. 

.3 A r efer ence model 

et us now investigate in more detail one of our Lagrangian
odels, with log 10 ( L 0 / L ch ) = −2.0634 and log 10 ( τ 0 / t ch ) = −1.0.
he quantitative results that are found here are then specific for this
ase, but none the less they are representative of aspects that are
ualitatively rather general in our models. 
First, let us discuss the assumption that the mass accretion on

he shell stops with the beginning of reverberation: this recipe was
ntroduced already by Reynolds & Che v alier ( 1984 ), but it has not
een used in most of the literature on the subject. During the pre-
everberation phase (and most effectively at earlier times t ∼ τ 0 )
he shell was collecting mass from the outer, unshocked ejecta (see
ection 3 ). As already mentioned in Section 5 , at that time a shell

s characterized by a lo w relati v e v elocity with respect to the cold,
nshocked ejecta; thus the entropy of the shocked medium is low, and
herefore the downstream material can be ef fecti vely compressed, i.e.
t can ef fecti vely stick to this shell. During reverberation, instead, that
hock is moving with a much higher relative velocity with respect to
he hot, already shocked ejecta; therefore, in this case the downstream

edium has a much higher entropy and cannot be easily compressed.
his point was also discussed in our Paper I. 
Such behaviour has been addressed more quantitatively in Fig. 12 .

he meaning of the individual profiles can be better appreciated
y having in mind that all the mass is external to the PWN (i.e.
 ( R pwn ( t )) = 0), and that regions with a steeper profile mean a

igher density there. In the upper panel, the radial profile of the
nclosed mass is plotted, for several times earlier than t beg,rev . The
adial coordinate is in units of R pwn ( t ), while the mass is in units of
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Figure 12. Time behaviour of the mass radial profile, for our reference 
model. The radial coordinate is scaled with the PWN radius, while the 
enclosed mass is scaled with the swept-up mass from the thin-shell model for 
the pre-reverberation evolution. Different colours are used for different times 
given in terms of ( t / t ch , t / t beg,rev ), and the arrows show in which direction the 
profile evolves with increasing time. For this figure we have used numerical 
data from a reference model log 10 ( L 0 / L ch ) = −2.0634, log 10 ( τ 0 / t ch ) = −1.0, 
but the results are qualitatively independent from which model parameters 
are used. 
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Figure 13. Upper panel: Time evolution of the inner (orange colour –
corresponding to the PWN) and outer (green colour) radius of the shell, 
as computed with our Lagrangian code, for our reference model. Two insets 
show the inner structure of the shell, near two specific times: t beg,rev (blue 
box), and the time of maximum compression (red box). The inner lines are 
curves of equal mass (arbitrarily chosen values). Bottom panel: time variation 
of the shell thickness with time. 
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he swept-up mass, computed as the mass of the ejecta that, in the
bsence of the PWN, would be enclosed in the sphere with radius
 pwn ( t ). These profiles, for a scaled radius ranging between 1 and
bout 1.02, are directly related to the density profile inside the shell,
nd the fact that they are almost superimposed means that the density
reserves its profile, apart from a slight decrease with time of the shell 
elative width. The sharp break in the profiles (reflecting a density 
ump) indicates the position of the shock at the outer boundary of
he shell; while the scaled mass slightly higher than unity means that
he real swept-up mass is that within the outer boundary of the shell,
ather than within R pwn ( t ). After t beg,rev (lower panel) the evolution
hanges completely: the mass within the shell, now scaled with the 
wept-up mass at t beg,rev , does not change with time, as it can be
nferred from the constancy of the vertical coordinate of the break; 
n the other hand, the relative width of the shell quickly increases
ith time, partly reflecting its physical broadening, and partly as a 

onsequence of a decreasing of its size. This figure then justifies
he assumption of a fixed shell mass during reverberation and, in 
ddition, it shows that, when the PWN has been compressed, the 
eeded conditions for treating the shell as a thin-shell may no longer
e valid. 
Fig. 13 shows, in addition to the general evolution of the shell, two

nsets displaying the evolution of the structure inside the shell near 
wo topical times: t beg,rev and the time at which the PWN experiences
t maximum compression. For t < t beg,rev the shell boundaries are very
lose each other, meaning that the thin-shell approximation is well 
atisfied. Afterwards, during the reverberation phase, the outer edge 
f the shell is defined by the mass collected before t beg,rev , and one
ay clearly see that the shell becomes thicker, and as the PWN starts

o contract the shell inflates progressively. Especially close to the 
aximum compression, the combination of a higher shell thickness 

nd a smaller shell size implies that a thin-shell approach is no longer
ustified. 

The hydrodynamic effects of a finite thickness can be outlined as
ollows. The impact with the RS first, and the push from the PWN at
 later phase, generate transmitted and reflected secondary shocks, so 
hat the shell does not fully behave as a rigid body (as clearly shown
n Fig. 13 ). In addition, the travelling of these secondary shocks
cross the shell contributes to convert part of the mechanical work
n the shell into internal energy, something that would not happen in
n infinitely thin shell. 

 A  REVISED  THI N-SHELL  M O D E L  

he Lagrangian models presented in the previous section allow us 
 detailed investigation of the dynamical behaviour of the swept-up 
hell. These results can be compared with those from a thin-shell
pproximation, both before and during the reverberation phase. In 
rinciple, the results of the numerical models are more accurate 
han the corresponding thin-shell approximation, and therefore can 
e used to test the level of accuracy of the thin-shell approach, in
ts various forms. On the other hand, a weakness of the numerical
odels derives from the need of setting a finite, and not exceedingly

mall, value for t ini (we have typically used t ini ∼ 0.03–0 . 04 τ0 ) and,
n addition, from the large computing time required to perform a
nely spaced co v erage in the parameter plane. 
The goal of our modified thin-shell model, rather than just repro-

ucing results from the Lagrangian simulations, is indeed to extend 
he range of predictions mainly in the two following directions: 
MNRAS 520, 2451–2472 (2023) 
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(i) Cases with very small τ 0 / t ch , where Lagrangian simulations are
ot efficient due to the requirement of very small initial times, and
ead to lower accurate results due to the extreme pressure contrast at
he two sides of the (now no longer infinitely thin) mass shell. 

(ii) Cases accounting for dynamical effects of radiative losses in
he PWN; an advantage of the thin-shell approach is to be enough
omputationally light to allow a treatment of synchrotron + inverse
ompton losses, of their effect to modify the energy distribution of

he relativistic particles and ultimately the pressure associated with
hese relativistic particles. Unfortunately, coupling 1D hydrodynamic
odels with a routine that evolves the particle energy distribution
ould be too heavy to be run in more than just very few cases. 

.1 Comparing numerical and semi-analytical results 

e have first compared numerical (i.e. Lagrangian) and semi-
nalytical (i.e. using equations 5 and 6 ) solutions in the pre-
ev erberation phase. We hav e then found that the ratios of correspond-
ng quantities, like R pwn ( t ) or Q pwn ( t ), converge rather soon but not
xactly to unity. Typically we have noticed mismatches ∼ 4 per cent
or R and ∼ 6 per cent for Q . This could either be due to the thin-
hell approximation, or to the choice of a finite t ini in the simulations.
ince running Lagrangian models of a PWN + SNR system with
n exceedingly small t ini value leads to problems both of computing
ime and of accuracy, we have then chosen the other way round,
y running for this comparison the thin-shell calculation with the
ame initial conditions as those used for the Lagrangian model (see
ppendix B ). In this way the results of the two approaches differ
y no more than 0 . 2 per cent , proving that the thin-shell approach
ives quite accurate results, but also that they are more sensitive than
xpected to the choice of the initial conditions, since a rather long
ime is required before memory of them is washed out completely. 

Even though the follo wing comparati ve analysis of our thin-
hell models with the Lagrangian ones has been performed using
ully compatible initial conditions, for future uses of our thin-shell
odel we recommend initial conditions compatible with the analytic

xpansions as given by equations ( B8 ) and ( B9 ). 
In Section 3 , we have shown that thin-shell models may allow an

ccurate description of the pre-re verberation e volution, then we can
se them to obtain the physical conditions at the beginning of the
everberation phase. To compute the evolution in the reverberation
hase, one needs first to e v aluate t beg, rev , as the time at which the
WN and the RS (given by equation 22 ) intercept. An easier and
till accurate way is to use the PWN radius as approximated by
quation ( 18 ). Then one has to e v aluate at t beg, rev the following
uantities: the shell radius R shell ( t beg, rev ), its velocity V shell ( t beg, rev ), its
ass M shell ( t beg, rev ), and finally the PWN pressure-related quantity
 pwn ( t beg, rev ). From M shell ( t beg, rev ) one can then derive λE , by using

quations ( 24 )–( 25 ), and then refer to the shell + SNR models
Section 5 ) to obtain an estimate of the outer pressure. Notice
o we ver that equation ( 29 ) is strictly valid only for the case of a
hell interacting with the SNR, while it only roughly approximates
he case of a PWN interacting with the SNR; the two are almost
qui v alent only in the case τ 0 � t ch . For the evolution beyond t beg, rev 

e will use the results of Section 5 to model the outer pressure from
he shocked SNR medium, with a much higher accuracy than done
efore. In this way it is possible to accurately reproduce the first
hase of reverberation, at least for all cases in which τ 0 � t ch , until
he PWN pressure becomes important again, and the PWN completes
ts first compression. 

The underlying idea is that the massive shell behaves like
 ‘buffer’: right after t beg,rev the outer pressure has to cope
NRAS 520, 2451–2472 (2023) 
ainly with the inertia of the expanding shell, while the inner
ush from the PWN has weakened consistently (at times larger
han τ 0 , during the pre-reverberation phase, the PWN pressure
ecreases approximately ∝ t −4 ). Only after the outer pressure
as succeeded halting the shell expansion and reverting it to a
ompression, the inner pressure starts to increase again, until it
ventually dominates the bouncing-back phase. During this last
hase the PWN pressure increases enough to counteract the in-
rtia of the now imploding shell, while the effect of the outer
ressure has become negligible. This evolution could be out-
ined, in terms of a thin-shell approach, through the following
quations: 

d Q 

d t 
= L ( t ) R( t ) , (37) 

d 2 R( t) 

d t 2 
= 

Q ( t) 

M shell R 

2 ( t) 
− a outer ( t − t beg , rev ) . (38) 

he latter equation describes the evolution of the shell momentum,
here typically the inner and outer forces, respectively, Q / R 

2 and
 shell a outer , are ef fecti ve at dif ferent times. Even if in its first phase

he PWN pressure is negligible, one must keep trace of the evolution
f the quantity Q ( t ) (equation 37 ), because its value will then rule
he PWN pressure around the time of maximum compression. An
nderlying assumption in equation ( 38 ) is that the shell mass keeps
onstant during this phase, which in the previous section we have
ound to be a tenable expectation. Of course, this ultimately relies
n how the shell boundaries are defined; but, as already shown in
ection 5 , one cannot assume at the same time that the shell mass
oes not change and that the outside SNR behaves dynamically
naffected by the presence of this shell. In the present treatment,
fter e v aluating the corresponding λE , we approximate the outer
ressure P outer by using the formulae derived in Section 5 , and
 xplicitly giv en in Appendix C . During this phase, apart from the
act that the shell has a small but finite width, the system resembles
he case shell + SNR investigated in Section 5 , and this will be
he case as long as the internal pressure, from the PWN, will slow
own and revert the converging motion of the shell. Only from
hat time on the actual SNR pressure will become significantly
igher than how modelled here, because the later shell expansion
ill drive another compression wave/reflected shock into the SNR
aterial, increasing P outer even more. This further evolution is

o we v er be yond our scope, also because our primary objective is
o derive the CF, thus we just need to follow, with a reasonable
ccuracy, the evolution till a time slightly larger that that of the first
aximum compression of the PWN. A major difference between the
agrangian models and our thin-shell model is that by construction

t cannot reproduce oscillations following the first one. On the other
and, thin-shell models using an outer pressure scaled with the Sedov
olution may show oscillations, but in a quantitatively unreliable
ay. 
At a higher level of accuracy there are some additional differences

etween the shell + SNR and the PWN + SNR problem. The most
ele v ant one is that the swept-up mass from the PWN shell reaches
ts asymptotic value only at very late times. As a consequence the
uantity ( L 0 τ 0 ) EFF , deriving from equation ( 17 ), is a function of
he mass the shell has reached at the beginning of reverberation:
his generally depends both on L 0 and τ 0 , and it al w ays holds that
 L 0 τ 0 ) EFF < L 0 τ 0 , while ( L 0 τ 0 ) EFF � L 0 τ 0 only for τ 0 � 1. Another
ifference is that, even if at t � τ 0 the shell expands linearly with
ime, at earlier times its expansion w as accelerated: this mak es the
xpansion age of the shell to be al w ays smaller than the SNR age,
ven if this difference vanishes very rapidly for small τ 0 . The final
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Figure 14. Variation of the PWN radius with time. The two plots illustrate how sensitive the evolution of the PWN is, during reverberation, to the profiles at 
t beg,rev . A very small variation of only ±1 per cent in the RS radius (left) or in the PWN one (right) produces a strong difference in the PWN evolution later on. 
This mostly affects the time at which the minimum radius is reached, but it also changes to some extent the PWN radius at maximum compression. 
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ifference, of course, is that the shell thickness is not infinitesimal. 
iven all this, we have found sufficient to apply the correction for

 L 0 τ 0 ) EFF to get a rather accurate approximation, at least for not too
arge values of τ 0 . For larger τ 0 the approximation is less accurate, 
ut in the view that it is anyway much better than other recipes used in
he past, we have decided to adopt it for all of our thin-shell models.

Fig. 14 gives an idea of how sensitive the PWN evolution 
s to the initial conditions at t beg,rev . In fact even a variation of
ust ±1 per cent in the RS or in the PWN radius at t < t beg,rev 

eflects in a clear difference in the evolution of the PWN during
everberation. This implies a different duration of the reverber- 
tion as well as a different level of compression, and justifies
ur need to impro v e as much as possible the analysis of the
arly evolution, in order to carefully get the initial conditions for
he reverberation phase, and then to reliably reproduce this later 
hase. 

.2 Effecti v e mass in the shell 

he other issue, as discussed in reference to Fig. 13 , is the implica-
ions of neglecting the shell thickness. The more rele v ant point is at
he maximum of compression, because at that time the ‘thin-shell’ 
s no longer thin, but has an width even larger than its average radial
oordinate. The finite thickness leads, at t ∼ t beg,rev , to a slightly more
fficient deceleration than if the shell mass was infinitesimally thin. 
e can alternatively describe this effect by introducing an ‘effective 
ass’ for the shell, which is slightly smaller than its actual mass: we

an then find that, for small values of τ 0 , an ef fecti ve mass lo wer
y just ∼ 5 per cent than the actual mass is adequate to correctly 
eproduce the phase in which the original shell expansion is reverted 
o contraction. Instead, in order to mimic the evolution near the 
aximum compression, the needed ef fecti ve mass during that phase 
ust be considerably smaller than the actual one, especially for those 

ases with large compression. This is a different way to express the
ame concept: especially near the time of maximum compression the 
hell of swept-up mass may behave very different from a thin-shell.
n addition, we can see that (at least for small values of τ 0 , where
ur original assumptions are better satisfied, and where a stronger 
ompression is expected) the PWN pressure turns out to be more 
f fecti ve to stop the compression than predicted by the thin-shell
odels. As a consequence, in general one finds that the thin-layer 
odels tend to o v erestimate this compression. We study this in detail

ext. 
 ESTIMATING  T H E  COMPRESSI ON  FAC TO R  

s already mentioned, our main goal here is to estimate the
agnitude of the CF, depending on the model parameters, to do

t with a reasonable accuracy, and over a parameters region wide
nough to co v er all physically reasonable cases. Keep in mind that no
adiative losses are herein considered. The covered area is the union
f the regions gathering the 98 per cent of cases, for the synthesized
opulations from Faucher-Gigu ̀ere & Kaspi ( 2006 ), from Watters &
omani ( 2011 ), as well as from our choice (see Section 2 ). 

.1 Variations in the compression factor due to the adopted 

pproach 

he main results of this work are synthesized in Fig. 15 , in which
ne can compare the maps of log 10 CF as obtained with four different
pproaches: 

(A) thin-shell with P outer = P Sedov (i.e. the pressure derived at the
enter of the Sedov solution); 

(B) thin-shell with P outer = 0 . 306 (3 / 4 ρ0 V 

2 
FS ), where V FS is the

elocity computed at the SNR FS using the trajectory given in our
aper 0; 
(C) thin-shell using our prescription for P outer (i.e. using equa- 

ions 28 –33 and Appendix C ); 
(D) from the Lagrangian models (with extrapolation, using equa- 

ions 34 and 35 ). 

In panel D for clarity we have hatched the region outside the
rea sampled by numerical data. It is apparent that using the central
ressure from the Sedov solution (panel A) the CF may reach
xtremely large values ( > 10 5 in the leftmost allowed region). Rather
imilar results are also obtained considering the pressure computed 
rom the trajectory of the FS (panel B). With our prescription for the
uter pressure (panel C) the CF values decrease even more, reaching
arge values ( ∼10 5 ) at the same location of previous cases. As a
omparison the CF from numerical simulations reaches, in the same 
ocation of the parameter plane, values up to ∼4 × 10 3 . We believe
hat, in this region of extreme compression, the CF values should be
omewhere in between the last two cases, possibly ∼10 4 . 

To better outline how the predictions of the various thin-shell 
odels behave, the last two panels (E and F) show (again in

ogarithmic scale) the ratio between the CF from panel A and B,
espectively, against the analytic approximation of the data (panel 
MNRAS 520, 2451–2472 (2023) 
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M

Figure 15. Maps of log 10 CF in the parameter space, respectively, using a thin-shell model with P outer = P Sedov (panel A); with P outer � 0 . 23 ρ0 V 

2 
FS (panel B); 

using our prescription for P outer (panel C); or with using our interpolating formula to our Lagrangian models (panel D). Black contours mark the position of the 
different populations described in Fig. 1 (ours in solid). Numerical values of log 10 CF can be inferred in each panel by the respective vertical color bar (note that 
the scale is different for different plots). The bottom-row panels show the log 10 CF deviations with respect to the results of the numerical simulations, both for 
P outer = P Sedov (Panel E), and for our prescription for P outer (Panel F). The ratio of the two maps is given in logarithmic scale and also in these cases numerical 
values can be derived from the vertical color bar. The inset are the histogram of the logarithmic ratios e v aluated at the points of our Lagrangian models (they 
show a lower spread than the associated image because the former one refers to a smaller region). 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/520/2/2451/6987688 by R
ed de Bibliotecas del C

SIC
 user on 18 O

ctober 2023
NRAS 520, 2451–2472 (2023) 

art/stad134_f15.eps


Re verber ation of PWNe – II 2467 

Figure 16. Histogram of the decimal logarithm of the CF ratio between 
thin-shell model and Lagrangian models, using: our prescription for P outer 

(left, in green colour, which peaks around CF/CF lagr ∼ 1, showing good 
agreement with the numerical models); the standard prescription making use 
of a scaling with the Sedov solution (right, in blue considering P outer = 

P Sedov , in red P outer � 0 . 23 ρ0 V 

2 
FS ). The intermediate case, in yellow, has 

been obtained considering P outer = 0 . 3 P Sedov for illustrative reasons. 
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). From Panel E, we may see how an external P Sedov al w ays leads
o o v erestimate the CF, only mildly for the highest energy cases, but
 v er two orders of magnitude for the lowest energy ones. From Panel
, instead, one may notice that o v er most of the allowed region the
F is approximated within about a factor 4, while only in the most
xtreme cases the predicted CF exceeds by an order of magnitude 
he extrapolation of our fit to the Lagrangian models. Both panel E
nd F also contain an inset with the histogram of the logarithmic
atios, e v aluated at the points of our Lagrangian models, and directly
sing the numerical data (the fact that each histogram shows a lower
pread than the associated image is because the former one refers to
 smaller region). The same information is also shown Fig. 16 . From
his figure it is apparent how, on this sample, our prescription does
ot produce any sensible bias (average −0.06 and standard deviation 
.14 in the logarithmic scale) in comparison with the numerical 
esults, while the scalings with the Sedov solution lead to consistent 
 v erestimates (with a shift of 1.1–1.3 in logarithmic scale). 

 A  SIMPLIFIED  THIN-SHELL  M O D E L  

 simplified thin-shell approach can be devised, in the case of small
alues of τ 0 and consequently large CF, if the only purpose is to
stimate the minimum radius of the first PWN compression. Here 
e exploit the idea that when the original massive shell expansion 

s reverted into contraction, the SNR outer pressure is by far the
ominant one. The PWN pressure plays a role in stopping the shell
ontraction, and reverting it again in an expansion, only when the 
hell is near to its final implosion, and when the outer pressure is
o longer ef fecti ve. In this case, we do not even need to know in
etail how the SNR push evolves with time, but only what is the final
mplosion velocity of the shell, and this information can be derived 
irectly from our numerical models. 
It can be shown that, when a shell with an implosion velocity

 implo , interacting solely with the PWN, is decelerated by the PWN
ressure, the implosion reverts to expansion at a radius: 

 min ( L 0 τ0 , τ0 ) = 

2 Q beg , rev ( L 0 τ0 , τ0 ) 

M beg , rev ( L 0 τ0 , τ0 ) V implo (( L 0 τ0 ) EFF ) 2 
, (39) 
here M beg,rev and Q beg,rev are the shell mass and the quantity Q ,
 v aluated at the beginning of the reverberation phase. This formula
an be easily understood by taking its similarity to the case of a mass
oving, in 1D, subject to a repulsive electric field: when the mass

pproaches the center, its kinetic energy ( M V 

2 / 2) is converted into
otential energy (in this case Q / R ), and the minimum distance is
stimated as the point at which the mass is at rest. 

Once the time t beg, rev is computed, by imposing R RS ( t beg,rev ) =
 pwn ( t beg,rev ), then M beg,rev and Q beg,rev can be easily derived, using

he formulae we have given in Section 3 . V implo is a function of the
f fecti ve v alue of L 0 τ 0 , because it is derived by interpolating between
ur shell + SNR models; and we have also derived an approximating
ormula for the maximum radius, in the shell + SNR case (both
ormulae are given in Section C , in a similar way to other quantities,
iscussed in Section 5 ). In the limit of very small τ 0 , the quantities
 beg, rev and Q beg, rev can be approximated by their asymptotic values, 
 ∞ 

and Q ∞ 

(as from equations 17 and 21 ), while ( L 0 τ 0 ) EFF is well
pproximated by L 0 τ 0 . Therefore under this limit in which Q ∞ 

( L 0 τ 0 ,
0 ) is linearly proportional to τ 0 , the quantity R min / τ 0 is a function
f ( L 0 τ 0 ) only. 
The method described abo v e is an alternative, simpler way to

 v aluate R min , and using an interpolation for R max , to estimate also
he CF. The accuracy is ho we ver lo wer, typically about 30 per cent,
ompared with a full calculation of the thin-shell model, essentially 
ecause this simplified approach neglects further contributions to 
he quantity Q ( t ) during the reverberation phase; but it is anyway
nteresting to better understand how R min is determined, and how it
oughly scales with the model parameters. 

0  C O N C L U S I O N S  

he evolution of a PWN + SNR system is in general a complex
roblem. Due to this, the community have adopted simplified 
pproaches in which spherically symmetric models have been used, 
here the PWN is approximated by a one-zone description, the shell
f swept-up material is approximated by a thin-shell model and the
volution of the pressure in the outer SNR by scaling with the Sedov
olution: all of this with slightly different fla v ors from paper to paper.

We have tried to reduce this set of assumptions, particularly putting 
ttention to the treatment of thin-shell features and to the evolution
f the outer pressure. Still it could be argued that spherical symmetry
s not a valid assumption in probably any case, either because the
xplosion and/or the ambient medium are strongly anisotropic; or 
ecause even slight original anisotropies are enhanced during a 
trong compression phase; or because even in the case of a large-
cale symmetry dynamical instabilities may break the assumption 
f laminar flow. It is however true that the assumption of spherical
reatment is what allows one to even try of approaching the problem
ith a mixture of semi-analytical methods, and to extract valuable 
hysical information which we hope is general in character. 
Even keeping in mind the aforementioned limitations of spheri- 

ally symmetric models, in this work we have presented a thorough,
nd self-consistent analysis of this simplified case, giving a number 
f prescriptions that could be followed also in future modeling, 
iscussing the weak aspects as well as warning against misleading 
pproximations. In addition, both in the main text and in the
ppendices we have provided formulae that allow one to construct a

elatively simple and accurate approximation to the PWN evolution 
n the pre-reverberation phase, as well as to have an approximation
o the outer pressure e x erted by the SNR, under a wide range of
onditions. 

To summarize, the main lessons from this work are: 
MNRAS 520, 2451–2472 (2023) 
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(i) The thin-shell approximation is very accurate to model the
volution of the PWN in the pre-reverberation phase, namely before
t encounters the SNR RS shock, provided that one does not need to
nv estigate e xplicitly the inner structure of the swept-up shell. 

(ii) The situation changes considerably during the reverberation
hase, because the thin-shell may be no longer a good approximation.
his is partially due to the shocked SNR material impinging on the
hell during this phase that does not stick to it, as well as to the
assage of secondary shocks through the shell that may heat it up
nd cause it to inflate. And finally, mostly because when the radius
f the shell is compressed considerably, the ratio between the shell
hickness and the nebula radius may easily be no longer small. 

(iii) A thin-shell approximation during this phase may still be
sed, but one must be aware that it will tend to underestimate the shell
ize at the time of maximum compression, and then to significantly
 v erestimate the compression factor, especially in those cases subject
o a strong compression. 

(iv) The SNR pressure at the interface with the shell must depend
n the properties of the shell itself (which can be identified with its
ass). The idea of an SNR pressure independent of its interaction
ith the shell is conceptually wrong. 
(v) The usage of a Sedov model for scaling the outer pressure,

ot only is unjustified, but may lead to very unreliable results. We
ave shown that one cannot use a pressure derived from the Sedov
olution, since it is valid only at much later times, when most of the
NR mass consists of ambient medium, rather than of ejecta. The
edov model does not apply to an SNR when it still is essentially
ade of stellar ejecta; moreo v er the SNR here is interacting with

he PWN, and therefore the structure of its pressure will change
epending on how strong this interaction is. 
(vi) A still approximated case, but much more accurate than the

edov assumption, is that derived from numerical solutions of the
nteraction of a massiv e e xpanding shell with an SNR. These models
orm a one-parameter family of solutions, which depends only on
he mass of the shell (in units of the mass of the SNR ejecta). This
pproximation is well moti v ated for all cases with τ 0 smaller than
he characteristic time of the SNR evolution ( t ch ), because most of
he information about the early PWN evolution is condensed at later
imes in the shell mass. A comparison between the pressure evolution
or some of these models and the Sedov case is sufficient to get an
dea of how bad the Sedov assumption may be. 

(vii) To further complicate the modelling of the PWN evolution
uring reverberation is the fact that it is very sensitive to various
etails: not only the value of the outer pressure, but also the pre-
e verberation e volution. 

(viii) Apart for the cases with large τ 0 values, of less importance
ere because they do not involve a high compression of the PWN, in
ll other cases the massive shell has the role of a ‘buffer’, an interface
etween the PWN and SNR dynamical pressure forces: first the PWN
ressure accelerate the shell; then the SNR pressure acts to revert the
xpansion of the shell size into compression, and during this phase
he PWN dynamical effect is negligible; after then the SNR pressure
ill become unimportant, and the dynamics of the shell at the time of

ts maximum compression will be ruled by the interaction between
he PWN pressure and the inertia of the converging shell. 

This work is part of a more extended project. The aim is to
nderstand nebula reverberation, as it is critical not only to be able
o analyse in depth the PWN/SNR/ISM connection but for evolving
hese systems beyond a few thousand years, when they are mostly
bserved with instrumentation at different frequencies. One of our
arlier works (Bandiera et al. 2021 ) dealt with providing highly
NRAS 520, 2451–2472 (2023) 
ccurate approximations for the evolution of the main structural fea-
ures of supernova remnants, such as RS, FS, and CD. We compared
ur results with previously adopted approximations, showing that
xisting simplified prescriptions can easily lead to large errors. We
lso provided highly accurate approximations for the initial phase
f evolution as well. In Bandiera et al. ( 2020 ) we investigated how
ifferent prescriptions for various parameters, like the properties of
he supernova ejecta, of the inner pulsar, as well of the ambient

edium, shift the starting time of the re verberation phase, ho w this
ffects the amount of the compression, and how much of this can
e ascribable to the radiation processes. We still kept several of
he approximations we dealt with here, but it was then clear that
t was crucial to find a good representation of the pressure of the
jecta, remarking that after the RS and the PWN collide, radiative
odels assuming their existence as separate entities are necessarily

naccurate. We realized in particular that the assumption of the
ounding SNR to be in the relaxed Sedov state must be handled
ith care, since the dynamics of the swept-up shell appears in fact

o be very sensitive to the ejecta profiles. This is what we intended
o co v er in this work. 

We expect that the next steps will consist in joining our kno w-ho w
bout numerical and semi-analytical models for computing models
hat will account for the inner structure of the swept-up shell and at
he same time will impro v e the initial conditions, in order to properly
reat also cases with small τ 0 , and finally adding the dynamical effects
f the (synchrotron) radiation losses inside the PWN. Radiation
osses near the time of maximum compression are expected to behave
ike a sort of threshold effect. For this reason, a factor of a few in
he compression factor, when radiation effects are not included, may
ead to very different behaviours when radiation is included in the

odelling. When radiation starts to be ef fecti ve, it may lead to a
ort of avalanche effect, by decreasing the PWN pressure, therefore
nhancing compression and increasing the magnetic strength, and in
urn further increasing the radiation losses. 

Despite essentially all of the intricacies of the dynamical aspects
f the reverberation phase we studied here are simply ignored in
he literature when reverberation is acknowledged –not the common
ase either –, it is usual to find modeling and predictions (from single
WNe to population studies) for PWNe of tens of thousand of years.
s a final conclusion, then, we state that in our opinion, without
aving a consistent model for the reverberation phase – properly
ncluding all dynamical aspects together with radiation – predictions
or middle-age PWNe beyond reverberation are most likely mean-
ngless. On the contrary, proper PWNe radiation modeling has yet to
ass few thousands years. Our future works will be devoted to that. 
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PPENDI X  A :  TIME  E VO L U T I O N  O F  

RESSURE  A N D  DENSITY  PROFILES  F O R  

OME  SELECTED  CASES  

he pressure (as well as density) structure inside the SNR, namely
hat in between the PWN shell and the FS, can be quite complex
s shown in Fig. A1 , where we present profiles for some selected
odels of shell + SNR systems since the onset of reverberation. It

s hard to capture such complexity with simplified recipes. To clarify
his point, let us consider here how different choices for the outer
ressure ( P outer ), impact the evolution of of the shell + SNR and
WN + SNR dynamics. 
Here, we show a comparison between three different approaches 

o approximate the outer pressure to the shell: 

(1) An outer pressure estimated using results from the Sedov 
odel: (a) either taking exactly the Sedov solution for the central

ressure (as used to compute the yellow curves, in Figs A2 –A3 ); (b)
r using the e xpansion la w for the FS radius to compute the pressure
ownstream of the FS, and the Sedov profile to guess its value at
he position of the shell (case not plotted, but similar to the previous
ne). 
(2) The pressure immediately beyond the RS (see equation 27 , 

ashed lines), assuming that no PWN is present (Paper 0). This
ption clearly underestimates the outer pressure in the first part of
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M

Figure A1. This figure is intended to give a global view of the time evolution of the pressure and density profiles for two specific shell + SNR models ( λE = 

−3.0 and −1.75). For each model, the leftmost panel shows the radial evolution of some characteristic curves: the shell, in blue; the RS, in orange; the CD, in 
green; and the FS, in red. The mid panels give the pressure profiles; the rightmost panels the density ones; while the temperature profiles can be derived as the 
ratio of the former two. All these quantities are scaled with their respective characteristic units. The times at which these profiles are drawn are represented in 
the leftmost panels as dotted–dashed vertical lines, with the same colour code as that used in the panels at their respective sides. 

Figure A2. In this figure, we show the evolution of the PWN (solid line, 
in blue) or shell (dotted line, in black) up to the first compression during 
reverberation, for the model λE = −1.75. For the PWN we have used 
log 10 ( τ 0 / t ch ) = −1.0, while the outer pressure is given by the formulas 
in Appendix C . The dotted–dashed line corresponds to the thin-shell model 
with PWN + SNR computed considering for the outer pressure P Sedov from 

equation ( 26 ). Dashed lines indeed refer to the case with the outer pressure 
extrapolated from that at the RS (see equation 27 ). In the box on the right 
side of the image, we report the CF as computed from the different models. 

t  

t  

m  

R  

p  

a  

Figure A3. Same as in Fig. A2 , but for the model λE = −3.0. Again we 
have used for the PWN log 10 ( τ 0 / t ch ) = −1.0. Colours and line stiles have the 
same meanings as in the previous figure. 
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he reverberation phase, because it neglects the extra pressure due
o the presence of a reflected shock. On the other hand, this recipe

ust be arbitrarily modified before the time (2 . 411 t ch ) at which the
S reaches the centre of the SNR. In order to a v oid an un-physical
ressure divergence, we opted to define a maximum time of validity
nd then to maintain the pressure constant in the following evolution.
NRAS 520, 2451–2472 (2023) 
igs A2 and A3 show the effect of using a maximum time of validity
qual to t implo − 0.3 t ch (green curves) and t implo − 0.03 t ch (red curves).

(3) The pressure profile obtained in this work using equa-
ions ( 28 )–( 33 ) and the method described in the following Ap-
endix C (solid line); 

If we compare (see Figs A2 and A3 ) the shell evolution during the
e verberation phase, follo wing the dif ferent prescriptions outlined
bo v e, it becomes clear that both choice 1 and 2 grossly miscalculate
he e volution, e ven with respect to the already simplified shell + SNR
odel (black curve), which in the lower energy mode is almost

oincident with the PWN + SNR model up to slightly before the first
ompression phase, and that in the higher energy case still provides
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 better estimate for the early reverberation phase. This is even more
vident if one compares the CFs. 

PPENDIX  B:  V E RY  E A R LY  PWN  E VO L U T I O N  

n the main text, we have introduced a new treatment for modelling
he PWN evolution under the thin-shell approximation, in the case of
 flat density profile for the unshocked ejecta. In this Appendix, we
resent analytical results for very early times ( t � τ 0 ) in the more
eneral case of power-law density profiles of the unshocked ejecta, 
oth in the core (with index δ) and in the envelope (with index ω),
amely: 

ej ( r, t) = 

{
A ( v t /r) δ/t 3 −δ, if r < v t t , 

A ( v t /r) ω t ω−3 , if r ≥ v t t . 
(B1) 

n this more general case, the parameters A and v t are linked to the
upernova energy E sn and to the total mass of the ejecta M ej by the
elations (see Paper 0): 

 t = 

√ 

2 (5 − δ) ( ω − 5) 

(3 − δ) ( ω − 3) 

E sn 

M ej 
, A = 

(5 − δ) ( ω − 5) 

2 π ( ω − δ) 

E sn 

v 5 t 

. (B2) 

he case investigated in the main text corresponds to δ = 0 and ω =
 , and for this special case formulas B2 simplify to: 

 t = 

√ 

10 

3 

E sn 

M ej 
; A = 

3 

4 π

M ej 

v 3 t 
= 

5 

2 π

E sn 

v 5 t 

, (B3) 

here v t is now the supernova boundary velocity, and the density of
he ejecta is described by ρej = A / t 3 . 

In the general case, at times so early that it is safe to assume
 constant pulsar output L 0 , equations ( 5 ) and ( 6 ) can be solved
nalytically giving: 

 (0) ( t) = 

[
(3 − δ) (5 − δ) 3 

(9 − 2 δ) (11 − 2 δ) 

L 0 t 
6 −δ

4 πA v δt 

]1 / (5 −δ) 

, (B4) 

 (0) ( t) = 

5 − δ

11 − 2 δ
L 0 R (0) ( t) t , (B5) 

 (0) ( t) = 

5 − δ

4 π (11 − 2 δ) 

L 0 t 

R (0) ( t) 3 
. (B6) 

ote that this 0th-order solution is equi v alent to that found in
ucciantini et al. ( 2004b , equation 10). The case of homogeneous
jecta can be also rewritten in a more convenient formulation using
he two expressions for A given in equation ( B3 ), namely: 

 (0) ( t) � 0 . 8235 

(
L 0 t 

E sn 

)1 / 5 

v t t � 1 . 5036 E 

3 / 10 
sn M 

−1 / 2 
ej L 

1 / 5 
0 t 6 / 5 . (B7) 

lso note that, in the former relation, the coefficient is slightly smaller 
han that (0.839) given by van der Swaluw et al. ( 2001 ). This because
ere we assume that all the fluid into the shell participates of the shell
elocity, while in van der Swaluw et al. ( 2001 ) the authors assume that
he fluid maintains the velocity reached at the shock, finding then an
verage fluid velocity of 1 . 15 R( t ) /t , instead of the 1 . 2 R( t) /t of our
ase. A self-similar hydrodynamic calculation, following Jun ( 1998 ), 
ives an average flow velocity in the shell equal to 1 . 195 R( t ) /t ,
here R ( t ) is the PWN boundary, a value much closer to the one we

ound. Then our approximation allows for a more accurate estimate 
f R ( t ), and therefore we shall adopt it in this work. 
Let us now account for the time evolution of L ( t ), by applying

 power series expansion in t , and then by truncating it to the
rst order. The evolution of L ( t ), given in the general case by
quation ( 9 ), is now: L ( t ) � L 0 (1 − αt / τ 0 ), and in this case the
st-order approximation of the early PWN evolution is described by 
he formulae: 

 (1) ( t) = R (0) ( t) 

(
1 − (11 − 2 δ) 

(5 − δ)(49 − 9 δ) 
α

t 

τ0 

)
, (B8) 

 (1) ( t) = Q (0) ( t) 

(
1 − (11 − 2 δ)(16 − 3 δ) 

(5 − δ)(49 − 9 δ) 
α

t 

τ0 

)
, (B9) 

 (1) ( t) = P (0) ( t) 

(
1 − 3(44 − 19 δ + 2 δ2 ) 

(5 − δ)(69 − 9 δ) 
α

t 

τ0 

)
. (B10) 

n the Lagrangian models, for mere numerical reasons, we have 
dopted slightly different initial conditions, by taking a hole with 
ize R ( t ini ) in the ejecta distribution, and approximating the PWN at
hat time by assuming a linear expansion, namely: 

 PWN ( t ini ) = 

L 0 τ
2 
0 (1 + t ini /τ0 ) 1 −α

( α − 1)( α − 2) t ini 

[
1 −

(
1 + ( α − 1) 

t ini 

τ0 

)]
. (B11) 

As better explained in the main text, with these initial conditions
he very early evolution of the PWN is not strictly correct, but it
onverges rather rapidly to the true one. Anyway, in order to allow an
ccurate comparison between Lagrangian and thin-shell models, in 
ection 7 we have decided to use consistently these initial conditions
lso for the latter ones. 

PPENDI X  C :  F O R M U L A E  F O R  T H E  O U T E R  

RESSURE,  M A X I M U M  RADIUS,  A N D  

MPLOSI ON  VELOCI TY  

n Section 5 , we presented the strategy we have used to extract from
ur numerical outputs a formula that reasonably approximates the 
ynamical push from the outer SNR on a massive shell, namely
 outer . Before discussing the formulae, let us remind here a few

acts: since P outer diverges when the shell implodes, we have decided
o use instead the quantity 4 πR 

2 P outer , namely the outer force; or
ven better the acceleration a outer , by dividing this force by the shell
ass, which keeps constant during this phase. Our goal in the fits

as not been to model in detail the evolution of the pressure, i.e.
f the acceleration, which especially in the case of higher mass
and conversely higher kinetic energy) stored in the shell show very
omplex behaviours, also affected by the arrival of one or more
eflected shocks. In the deri v ation of our fit parameters ( a , b , c , and
 , as shown in equation 32 ) we have instead tried to approximate as
ell as possible the evolution of the shell radius. 
The results are graphically shown in Fig. 7 , while here below we

ive some formulae that approximate these 4 parameters: 

( λE ) = −1 . 590 − 2 . 474 λE − 0 . 141 λ2 
E + e −16 . 138 −3 . 462 λE 

− 0 . 0088 e −56 . 87( λE + 2 . 503) 2 + 1 . 359 e −30 . 14( λE + 1 . 928) 2 

− 0 . 864 e −128 . 4( λE + 1 . 769) 2 + 0 . 843 e −27 . 28( λE + 1 . 384) 2 

+ 2 . 630 e −29 . 75( λE + 1 . 057) 2 − 1 . 589 e −177 . 4( λE + 0 . 946) 2 

+ 1 . 764 e −3 . 621( λE + 0 . 514) 2 ; (C1) 

( λE ) = −4 . 191 − 7 . 363 λE − 3 . 204 λ2 
E − 0 . 722 λ3 

E 

+ e −4 . 462 λE −19 . 300 − 0 . 269 e −112 . 8( λE + 2 . 234) 2 

+ 3 . 666 e −39 . 04( λE + 1 . 963) 2 + 3 . 655 e −75 . 18( λE + 1 . 847) 2 

− 1 . 787 e −143 . 0( λE + 1 . 756) 2 − 3 . 642 e −2 . 253( λE + 1 . 313) 2 

− 0 . 181 e −127 . 5( λE + 1 . 289) 2 + 2 . 563 e −69 . 89( λE + 1 . 038) 2 

− 2 . 333 e −166 . 0( λE + 0 . 953) 2 + 5 . 352 e −2 . 160( λE + 0 . 937) 2 

− 1 . 963 e −12 . 09( λE + 0 . 769) 2 ; (C2) 
MNRAS 520, 2451–2472 (2023) 
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( λE ) = −1 . 146 + 0 . 156 λE − 0 . 195 λ2 
E + e 0 . 798 −0 . 294 λE 

− 0 . 015 e −410 . 8( λE + 2 . 264) 2 + 0 . 244 e −28 . 23( λE + 1 . 910) 2 

+ 0 . 167 e −42 . 51( λE + 1 . 469) 2 + 0 . 599 e −16 . 63( λE + 1 . 045) 2 

− 0 . 408 e −177 . 3( λE + 0 . 936) 2 + 0 . 206 e −52 . 05( λE + 0 . 609) 2 

+ 0 . 592 e −100 . 8( λE + 0 . 377) 2 ; (C3) 

( λE ) = 0 . 586 − 0 . 582 λE − 0 . 129 λ2 
E + e −0 . 302 −0 . 592 λE 

− 0 . 362 e −102 . 7( λE + 2 . 235) 2 + 2 . 780 e −19 . 101( λE + 1 . 803) 2 

− 1 . 503 e −102 . 4( λE + 1 . 683) 2 − 0 . 867 e −9 . 655( λE + 1 . 555) 2 

+ 1 . 149 e −54 . 465( λE + 1 . 031) 2 − 1 . 049 e −191 . 5( λE + 0 . 933) 2 . (C4) 

nly for very small energies ( λE < −4.5), we have adopted a simpler
xpression for a outer , by using a pure exponential, a outer ( x ) = exp ( c low 

k low x ), with: 

 low ( λE ) = 1 . 025 + (0 . 08807 + 0 . 01065 λE ) e 
−0 . 755 λE ; (C5) 

 low ( λE ) = 3 . 149 + (0 . 1680 + 0 . 0168 λE ) e 
−0 . 950 λE . (C6) 

or our simplified thin-shell model, as from Section 9 , we need
nstead the interpolations of the maximum size ( R max ) and of
he asymptotic velocity of implosion ( V implo ). Here are analytical
nterpolations for these two quantities: 

 max ( λE ) = 0 . 8650 − 0 . 0313 λE − 0 . 0448 λ2 
E − 0 . 0038 λ3 

E 

− 0 . 051 e −1771 . (10 . λE −0 . 0398) 2 − 0 . 050 e −0 . 866(1 . 434 + λE ) 2 

− 0 . 024 e −56 . 31(1 . 310 + λE ) 2 − 0 . 019 e −146 . 8(0 . 883 + λE ) 2 ; (C7) 

 implo ( λE ) = −0 . 078 − 0 . 1883 λE + 0 . 00059 λ2 
E + e −1 . 259 + 1 . 232 λE 

+ 0 . 0326 e −21 . 86(2 . 217 + λE ) 2 − 0 . 0926 e −7 . 747(1 . 568 + λE ) 2 ) 

+ 0 . 0434 e −48 . 38(1 . 286 + λE ) 2 + 0 . 080 e −0 . 3360(1 . 241 + λE ) 2 

− 0 . 053 e −57 . 43(0 . 939 + λE ) 2 + 0 . 048 e −124 . 0(0 . 918 + λE ) 2 . (C8) 

PPENDIX  D :  PWN  E VO L U T I O N  F O R  

IFFERENT  B R A K I N G  I N D I C E S  

hile in this paper for the PWN ev olution, we ha ve considered only
he case with braking index n = 2.33, corresponding to a fading index

= 2.5, in this Appendix we present analytical formulae that are
xcellent approximations over a wider range. For simplicity, we will
onsider here only the case of homogeneous ejecta ( δ = 0). As for the
NRAS 520, 2451–2472 (2023) 
igure D1. Comparati ve e volution of the PWN radius for dif ferent v alues
f the braking index n , divided by the corresponding solution for n = 3
magnetic dipole model). 

unctional form of the analytical approximation for R pwn ( t ), we have
ound that equation ( 18 ) performs very well, and then we have used
t. This formula has 4 parameters one of which, C R , 0 , is independent
f value of the braking index and can be determined analytically as
 0.7868 (see equation 10 ). As for the other 3 parameters, we have

un thin-shell numerical models with a finely spacing in n , and then
e have performed a polynomial fit on them. For n in the range

1 . 8 , 4 . 1], which includes both our case and that of the pure dipole
raking, we have obtained accurate interpolations of the parameters
y using third-degree polynomials: 

 R, ∞ 

( n ) � 0 . 30139 + 0 . 46268 n − 0 . 099087 n 2 

+ 0 . 008715 n 3 , (D1) 

( n ) � 0 . 89882 − 0 . 00365 n − 0 . 045432 n 2 + 0 . 006836 n 3 , (D2) 

( n ) � 0 . 78755 + 0 . 08107 n − 0 . 068173 n 2 + 0 . 008969 n 3 . (D3) 

ith these formulae the maximum deviation from the numerical
rofiles for R pwn ( t ) k eeps al w ays � 1 per cent in the considered range
 � 0 . 1 per cent if one considers [2 . 3 , 3 . 3]). Fig. D1 shows the time
volution of the PWN size for different values of the breaking index,
caled with the case n = 3. One may notice that the differences are
ather minor, amounting to just a few per cent. 
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