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Abstract

Scatter corrections are commonly applied to refine near-infrared (NIR) spectra.

The aim of this study is to assess the impact of measurement errors when using

ordinary least squares (OLS) for multiplicative scatter correction (MSC). Any

measurement errors attached to the set-mean spectrum may attenuate the OLS

slope and that in turn will affect the estimate of the intercept and the adjustment

of the spectra when using MSC methods to mitigate scattering. A corrected least

squares slope may be used instead to prevent this problem, although the impact

of this approach on the final outcome will depend on the relative size of the

measurement errors in the individual spectra and the set-mean spectrum. The

errors-in-variables or type II regression model (also known as Deming regres-

sion) and its special cases, major axis (MA) and reduced major axis (RMA), are

discussed and illustrated. The extent of OLS slope bias or attenuation is demon-

strated as is the resulting MSC spectral distortion. Further modification to the

MSC transformation method is also suggested. The influence of scattering cor-

rection (by MSC, standard normal variate (SNV) and detrending) and of using

the maximum likelihood estimate of the slope for MSC on the prediction of

chemical composition of Lucerne herbage from NIR spectra was assessed. The

predictive performance was slightly improved by the use of scattering correc-

tions with fairly minor differences among methods. Nonetheless, it seems well

worth considering the use of type II regression models for assessing MSC appli-

cation aiming at improving the goodness of prediction from NIR spectra.
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1 | INTRODUCTION

Near-infrared (NIR) spectroscopy is a rapid, non-destructive, robust, and accurate method with multiple applications in
the fields of agronomy and food and feed sciences to assess chemical, physical, mechanical and anatomical properties
of food and feed materials, such as grains and grain products, fruit and vegetables, edible oils, animal protein (meat,
fishery or dairy products) and others.1–3 NIR spectroscopy has been also used to evaluate soil properties in precision
agriculture.4,5 This methodology has been used mostly to determine proximate chemical composition of agricultural
products.

Each NIR spectrum is comprised of two reflection components, namely diffuse and specular. The diffuse reflec-
tion is the result of characteristic absorptions once radiation has penetrated into the particles of the sample, and thus
depends on the biological nature and chemical composition of the substrate.6 NIR spectra are normally plotted on
the logarithmic (base e) scale as loge(1/R), where R is the diffuse reflectance. However, the observed spectrum is also
related to the physical characteristics of the sample,7,8 because the incident radiation will interact with attributes
such as particle size and shape, porosity, moisture, sample compaction and packing density, affecting the measured
reflectance plots. The consequences of these effects are that NIR spectra often exhibit baseline shifts and that NIR
calibration sets will entail some degree of multicollinearity.9,10 Aiming at decreasing the impact of the baseline shifts
and mitigating the effects of multicollinearity, spectral pre-treatments or transformations are commonly applied prior
to calibration modelling.11–13 The most extensively used spectral pre-treatments are multiplicative scatter (or signal)
correction (MSC),8 standard normal variate (SNV)14 and detrending to remove the linear and quadratic trends of
each spectrum.14 Spectral scales will be specific to the transformations applied,10 either alone or in combination with
derivatives and/or smoothing.

The SNV correction is applied by scaling each mean-centred spectrum

ySNV,i ¼
yi� yið Þ
σi

where yi is any observed value within the individual i-th spectrum, yi and σi are the average and the standard deviation,
respectively, of the values in the sample spectrum to be corrected and ySNV,i is the SNV corrected value.14,15 Thus, only
the values included in each spectrum are used for the SNV correction. Each corrected spectrum has zero mean and var-
iance equal to one, and is independent of both original linear scale and sample set characteristics.

To the contrary, MSC requires a reference spectrum, ideally free of any scattering.8 The underlying principle of
MSC is usually presented as

yij ¼ yoijþδij ¼ yoijþ αiþβ0iy
o
ijþ εij

� �
¼ αiþ 1þβ0i

� �
yoijþ εij ¼ αiþβiy

o
ijþ εij

where, yij is the measured signal for sample i at wavelength j, yoij is the ‘true’ (reference) signal, δij is the deviation of yij
from yoij, αi is the random offset noise for sample i, βi is the random multiplicative noise for sample i, and εij is the resid-
ual noise, normally assumed to be random and independent. The goal of MSC is to estimate αi and βi through a regres-
sion process and subsequently correct the signal to mitigate their effect. As the ‘true’ signal is unknown, the set-mean
spectrum (ym) has been most commonly used as the reference for MSC. The relationship between the individual (yi)
and the set-mean (ym) spectra is necessarily linear, because both have a similar shape over the NIR wavelength range.

When applying MSC to a set of n spectra, it is necessary to estimate the slope (bβi) between the i-th spectrum (yi) and
set-mean spectrum (ym). Regression coefficients (intercept αi and slope βi) for application of MSC are usually estimated
by ordinary least squares (OLS) by fitting the linear function

yi ¼ αiþβiymþ εi

where

bαi ¼ yi�bβiym
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This regression defines fitted or smoothed values of the individual spectrum as predicted by the set-mean spectrum and
as a result some of the small spectral fluctuations are removed. The MSC corrected spectrum (yMSC,i) is then calculated as8,9

yMSC,i ¼ yi�bαið Þ=bβi ð1Þ
or, substituting for bαi

yMSC,i ¼ yi� yið Þ=bβiþ ym ð2Þ

Here, yi� yið Þ represents a self-centred NIR spectrum, 1=bβi a scattering reduction factor (or multiplicative constant)
and the set mean average (ym) is the common offset.10 Effectively, an estimate of the set-mean spectrum (yMSC,i) is
obtained using self-centred individual spectrum signals. The MSC calculation uses inverse interpolation to derive
corrected spectra considering that the factor yi�bαið Þ=bβi is a ratio of dependent normal variables and follows a Fieller–
Hinkley distribution.16,17 The inverse interpolation step in the MSC procedure gives ‘smoothed’ set-mean spectrum esti-
mates, which again are net of small spectral variations.

Dhanoa et al.9 showed that MSC and SNV spectra are linearly related as

yMSC,i ¼ ySNV,i
σm
ri,m

þ ym

In this equation, the ordinate intercept equals ym and the slope equals σm=ri,m, where σm is the standard deviation
of the set-mean spectrum and ri,m the correlation coefficient between the i-th and the set-mean spectrum (expected to
be close to their upper limit of 1 in most cases). Noticeably, ym and σm are unique to the set of spectra used for
the MSC.

Two refinements to the MSC pre-treatment have been proposed, namely (a) extended multiplicative signal correc-
tion to eliminate largely uncontrolled path length or scattering effects18 and (b) signal interference subtraction to
remove some known spectral interferences. Pedersen et al.19 derived a reverse procedure, an MSC-like spectral transfor-
mation with extended inverted signal correction (ISC). In its simplest form, ISC involves regression of the set-mean
spectrum on the individual spectrum, that is

ym ¼ αISC,iþβISC,i yiþ εi

with

bαISC,i ¼ ym�bβISC,iyi
After substitution and simplifying

yISC,i ¼ yi� yið ÞbβISC,iþ ym

In this calculation, there may be distributional consequences because there is a product of dependent normal vari-
ables.20 The scatter reduction factor is bβISC,i,21 with

r2i,m ¼bβMSC,i�bβISC,i
The difference between MSC and ISC when OLS is applied in each case will be

yMSC,i� yISC,i ¼ yi� yið Þbσmbσi
1� r2i,m
ri,m

� �
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By applying OLS, the x-variable (ym in the MSC and yi in the ISC) is assumed to be free from any measurement
error.22 This assumption is unlikely to hold for both scatter corrections, and disregarding measurement errors in either
ym or yi may lead to attenuation of the slope estimate23,24 with possible consequences for the MSC or ISC corrected
spectra. The potential influence of measurement errors associated with the set-mean or with the individual sample
spectra needs to be recognised and an appropriate type II regression model, also called ‘errors-in-variables’ (EIV,
errors-in-both-variables) or measurement error model,23 used to estimate any of the slopes (bβMSC,i or bβISC,i) required for
scatter correction. There is a range of type II regression models and the choice of the most appropriate in each case will
depend on the ratio of measurement error variances of the y- and x-variables.25,26 These models have wider application
when relationships between random variables are to be established.27,28 The objectives of this study are to examine the
use of type II regression models (maximum likelihood and the specific cases of major axis [MA] and reduced major axis
[RMA]) in the scatter correction of NIR spectral data, and to assess their impact on the slope estimate in MSC and on
the development of calibration equations.

2 | TYPE II REGRESSION MODELS

The maximum likelihood (ML) estimate of the slope for the orthogonal regression (bβMLÞ is calculated as

bβML ¼
bσ2y � λMLbσ2x þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibσ2y �λMLbσ2x� �2
þ4λMLbσ2xy

r
2bσxy ð3Þ

where bσ2x and bσ2y are the sample variances of x and y, respectively, bσxy is the sample covariance of x and y, and λML is the
ratio of the total error variances of y and x, that is

λML ¼bσ2ε=bσ2δ
where bσ2ε is the estimator of the error variance of a single y-value and bσ2δ is the estimator of the error variance of a single
x-value, with the assumption that both bσ2ε and bσ2δ are constant over the range of the data.28,29 An alternative form of
Equation 3 is Deming's formula30,31

bβML ¼Uþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2þλML

p

where

U ¼bσ2y � λMLbσ2x
2bσxy

In the context of NIR analysis and MSC application, Equation 3 has MA and RMA as two special solutions.23,25,32

Assuming justifiably that bσ2ε and bσ2δ are equal (i.e., λML equals 1), the MA regression model may be adopted, so that

bβMA ¼
bσ2y �bσ2x þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibσ2y �bσ2x� �2
þ4bσ2xy

r
2bσxy

where bβMA is the slope of the MA regression. Similarly, RMA (or ‘y on x’ and ‘x on y’ or geometric mean functional
relationship) regression model may be appropriate when bσ2ε and bσ2δ are assumed to be proportional to bσ2y and bσ2x respec-
tively, giving
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λML ¼bσ2y=bσ2x
and thus from Equation 3, the slope for RMA regression (bβRMA) is estimated as

bβRMA ¼ sgn bσxy� ��bσybσx
If the data scales are the same for x and y then MA and RMA have the property, unlike OLS, that the slope of y¼

f xð Þ is the reciprocal of the slope of x¼ f yð Þ. As a result, the RMA slope is the geometric mean of the ‘y-on-x’ and ‘x-
on-y’ regression slopes

bβRMA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβyjx=bβxjyq

When applied to MSC and ISC procedures, this means that

bβRMA,i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβMSC,i=bβISC,iq

2.1 | Methodology for type II regression analysis

The method called functional relationship estimation by maximum likelihood (FREML) was applied to estimate the
best fit linear relationships between two variables where both variables have significant uncertainties.33 ML type II
regression with separate λML values (not constant) at each wavelength was fitted using the Excel FREML add-in devel-
oped by the Analytical Methods Committee (AMC) of the Royal Society of Chemistry (free download from https://
www.rsc.org/globalassets/03-membership-community/connect-with-others/through-interests/divisions/analytical-
division/amc/software/amc_freml_tcm18-26353.zip) from the algorithms described by Ripley and Thompson34 and
AMC.33 For other type II regression methods (MA or RMA) the procedure RLFUNCTIONAL35,36 of the GENSTAT
package37 was used.

3 | IMPACT OF REGRESSION MODELS ON NIR SPECTRA

NIR operational procedures in the laboratory include scanning a set of samples to obtain the spectrum for each sample.
It may be good laboratory practice to scan the same set of samples several times (on different days) to measure the vari-
ability imparted by the NIR spectrophotometer operating in a specific environment (such as ambient conditions,
e.g., temperature) each day the samples are scanned. This does not include other components of variation such as parti-
cle size, particle orientation, path length, moisture, packing density, etc., which will influence the measurement errors.
With a set of samples freshly packed and re-packed, a number of scans can be taken for each sample, so that the varia-
tion at each wavelength can be examined and a suitable estimate of λML can be calculated from that error variance in
NIR spectra. Then, the ML corrected slope (bβML) can be estimated. Assumptions about bσ2ε and bσ2δ can be confirmed to
test the suitability of the special cases of MA or RMA.

For this purpose, eight randomly selected grass samples were used (Data Set 1). Samples had been taken from eight
different grazing plots sown with mixtures of three fodder grass varieties (namely DART, EPIC and MAGIC). The sam-
ples were collected at the third Spring cut, freeze-dried and ground (1 mm sieve). Each sample was scanned (FOSS
NIRSystems 6500, FOSS UK Ltd., Warrington, UK) on three consecutive days. Each day, the samples were repacked to
capture most of the factors that contribute to the measurement errors. Each time a given sample was scanned will be
referred to as a run, with some inevitable variability among runs. The resultant spectra comprised two segments, specif-
ically the 400–1,098 nm and 1,100–2,498 nm spectral ranges. From repeated scans of such a set of samples the reproduc-
ibility of NIR spectra was assessed. Sample mean spectra are illustrated in Figure 1.

Within each spectral range (either 400-1,100 nm or 1,100 - 2,498 nm), run-to-run standard deviation or variance
(bσ2run,j) at each wavelength of the j-th sample spectrum (one of the eight samples scanned, j= 1 … 8) was calculated. The
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baseline of the NIR spectra is generally nonlinear. For example, the baseline across the 1,100-2,498 nm region showed
an increasing and positively curving trend. The trends in standard deviation reflect the pattern in the baseline
(Figure 2). For any NIR system it is desirable to know the size of measurement errors or uncertainty in the spectra of
various types of substrates. The main reason for differential measurement errors is due to variable interactions between
incident energy from the spectrophotometer and the attributes of the test material. If these interactions are substantial,
then the measurement error variance for a set-mean spectrum may be different from the error variance of the individ-
ual samples even when the sample set substrates are homogeneous. Taking baseline shifts into account by expressing
standard deviation relative to the sample mean (i.e., as coefficient of variation in %) gives a clearer indication of how
variability changes across the wavelength range (Figure 3).

Approximate reproducibility (bσR)38,39 is generally taken as 1:5bσrun,j leading to an expanded uncertainty estimate of
2

ffiffiffi
2

p bσR. Median expanded uncertainty values calculated for the eight sample spectra and expressed as a percentage of
the respective wavelength-specific sample spectrum mean ranged from 3.4 to 15.5% for the 400-1,098 nm range and
from 3.6 to 13.2% for the 1,100-2,498 nm range. Clearly the run-to-run variance component can be quite large
and laboratory-to-laboratory variance is likely to be at least similar if not greater. As good practice, any calibration pre-
diction model should include these components of variance.

Replacing the OLS regression coefficients in Equation 1 with estimates from type II regression, for example ML,
gives the MSC corrected spectra as

yMSC,i ¼ yi�bαML,ið Þ=bβML,i

In order to calculate these type II regression coefficients, the first step is to obtain a value for λML.
28 On the one

hand, run-to-run variance (which includes repacking process variance components) for the eight samples was calcu-
lated and assumed to represent the measurement errors for each individual spectrum. On the other hand, the run-
to-run means and variances for the eight spectra were used to calculate the variance of the combined set mean (bσ2run,m)
using meta-analysis.40,41 With estimates of measurement errors for each of the eight mean spectra and their combined
set mean, the ratio

λML ¼bσ2run,j=bσ2run,m
can be calculated (Figure 4).

FIGURE 1 Mean near infrared spectra for eight dried and ground grass samples.
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With this limited data set, λML tended to be positively skewed both within and across spectra. Median λML values for
individual samples ranged from 0.0516 to 0.8249 with median 0.1290 for the 400 - 1,098 nm region, and from 0.1092 to
1.2108 with median 0.2139 for the 1,100 - 2,498 nm region. ML was used to apply MSC correction to each of the eight
sample mean spectra using the Excel FREML add-in.33 Relative to OLS, slope bias was evident for ML calculated using
the median λML for each sample. With the ML solution slope estimates increased by 0.0048 to 0.0839% for the
400-1,098 nm range and by 0.0005 to 0.0228% for the 1,100-2,498 nm range. These differences may seem trivial but the
rotational effect of the ML regression coefficients is enough to cause some degree of spectral distortion. The conse-
quences of failing to take measurement errors in the x-variable into account by simply using OLS rather than ML to

FIGURE 2 Wavelength-specific standard deviation associated with the eight mean sample spectra (bσrun,j) and the combined set mean

spectrum (bσrun,m; bold) of Data Set 1 within the (A) 400-1,048 nm and (B) 1,100-2,498 nm regions.
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calculate MSC spectra are illustrated in Figure 5. The switch-point is due to slope attenuation effect on the fitted regres-
sion lines. When the slope estimates for MSC obtained by either OLS or type II regression methods were compared
across the 24 spectra of Data Set 1 (using a paired t-test), it was observed that the difference between both methods was
statistically significant (p < 0.001), although the magnitude of the slope attenuation accounted for 0.03%. Nevertheless,
any slope attenuation bias will result in overestimated y-intercept and downward spectral rotation of the fitted line over
the relevant wavelengths. Reduction of slope bias will reduce spectral rotational errors.

Ideally λML should be constant or can be assumed constant over the wavelength range for either MA or ML to be
applied. If the assumption of equal variance (i.e., λML equals 1) required for application of MA is not met, the ML

FIGURE 3 Wavelength specific coefficient of variation for the eight mean sample spectra and combined set mean spectrum (bold) of

Data Set 1 across the (A) 400-1,098 nm and (B) 1,100-2,498 nm regions.
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solution has to be used. However, the assumption that λML equals 1 may be reasonable in the context of NIR, especially
when dealing with data from the same instrument in a single laboratory and each time a set of samples is scanned.

Within each single day (run), calculation of

λML ¼bσ2ε=bσ2δ
is rather difficult since an individual scan of a sample (on each day) do not provide estimates of measurement errors.
The estimate of the variance of the set-mean spectrum on each day is among-sample-scan variance and not the

FIGURE 4 Wavelength specific λML estimates for the eight mean spectra of Data Set 1 within the (A) 400-1,098 nm and

(B) 1,100-2,498 nm regions.
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measurement variance. In the absence of measurement error variance, application of MSC within each day using type
II regression to estimate the slope is only possible through MA with the assumption of equal measurement variances
(i.e., λML equals 1) or RMA with the assumption that the measurement variances are proportional to sample variances
in yi and ym.

Depending on the relative size of the correlation, MSC with OLS will differ from MSC with MA, with RMA and with
ML regression models. Spectral scans from homogeneous sample sets, such as Data Set 1, will give regression parame-
ters quite similar for OLS, MA and ML regression, because the spectra are strongly correlated.

FIGURE 5 Spectral distortion associated with ordinary least squares slope bias relative to maximum likelihood regression using the

median λ for each sample, (A) 400-1,098 nm and (B) 1,100-2,498 nm.
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In addition to incorporation of type II regression into the MSC transformation, further pre-treatments should be
considered. In the NIR calibration the common offset (ym) simply shifts the MSC spectra baseline from zero to the aver-
age of the set-mean spectrum level and therefore imparts enhanced set-mean dependency in each of the MSC spectra.
Omitting the common offset such that

yMSC,i ¼ yi� yið Þ=bβML,i

will reduce the set-mean dependency to that acquired through the set-mean standard deviation, which is implicit to the
estimate of slope considering that

bβi ¼ ri,m bσi=bσmð Þ

Another option is to retain the regression-smoothed individual sample spectrum. By applying Equation (1), the indi-
vidual sample spectrum is smoothed and certain spectral features are lost. Following this step an estimate of the set-
mean spectrum is calculated using the smoothed individual sample spectra (Equation 2). Finally, MSC-spectra can be
detrended by removing the curvilinear baseline using the quadratic function10,42 to highlight the remaining spectral fea-
tures (Figure 6). More recently a spectral ratio method has been proposed for scattering correction.7

4 | EXTENT OF SLOPE ATTENUATION

The extent of slope attenuation can be illustrated more clearly with the less homogeneous Data Set 2, which comprised
NIR spectra over the region of 1,100-2,498 nm from four coarse samples (average particle size 400 μm; samples 1-4) and
two finely powdered samples (average particle size 50 μm; samples 5 and 6) of crystalline sucrose scanned on a PSCo
Model 6250 monochromator.14 The divergence of the spectra associated with the sample form and particle size were
evident. Thus, the powdered and more densely packed form showed decreased absorbances compared with the crystal-
line sucrose. MSC was applied to the individual sucrose spectra taking the set-mean spectrum as the reference. The

FIGURE 6 Spectra derived from Data Set 1 after multiplicative scatter correction (MSC) and de-trending (DT).
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regression parameters for MSC pre-treatment were estimated by using either OLS or MA regression models. Linear
regression by OLS was fitted using the GENSTAT package37 whereas the GENSTAT procedure RLFUNCTIONAL35,36

was used for MA regression. Without repeated scans, λML could not be estimated for this data set. Thus, to correct the
OLS slope estimates for the application of MSC, MA estimates had to be used as the spectral scales are identical for both
y- and x-variables. Relative increases in slope estimates from MA compared with OLS, i.e., bβMA,i�bβOLS,ih i

=bβOLS,i, ranged
from 0.020 to 0.257% (Table 1) with differences in regression parameters dependent upon the size of correlation. Pow-
dered samples (5 and 6) showed to be slightly less correlated with the set mean than crystalline samples. For these two
spectra there was a greater change in regression parameter estimates. As a result, the correlation coefficient between
the relative increase in slope and ri,m for the values in Data Set 2 was –0.949. Any substrate sample set will have a range
of correlations which in turn will affect the OLS regression parameters for the application of MSC correction and create
some distortions among the MSC-corrected spectra, as illustrated above. The MA and RMA type II regression models
are useful only when rx,y is significant, which is generally true for NIR spectra.

Differences between OLS and type II (errors-in-both-variables) regression methods in the slope estimate were also
examined using simulated data with greater errors than in the observed spectra already evaluated. Three spectra from
Data Set 3 (Lucerne herbage samples, see full description below) were used. In a first approach some bias was added to
each spectrum over all the wavelengths (from 400 to 2,500 nm). The extent of the bias was random (within the range
recorded across the 54 samples included in the data set) and it was either positive or negative, resulting in three simu-
lated spectra over and other three under each observed NIR spectrum, for a total of 18 simulated spectra. The mean-
spectrum across these simulated spectra was used as the reference to simulate a MSC by regressing each individual
spectrum against the mean-spectrum. The slope of each linear regression was estimated by OLS or type II (MA or
RMA) methods. MA and RMA resulted in similar slope estimates (average bβMA was 1.0034 (range 0.8766-1.1776) and
average bβRMA 1.0033 (range 0.8775-1.1765)). However, both type II methods provided slope estimates significantly
greater (p<0.05) than that obtained with OLS (average bβOLS was 1.0000 [range 0.8710-1.1700]). This trend was observed
for all the simulated spectra, showing that slope estimates were, on average, underestimated by 0.33% with OLS com-
pared with type II regression methods. To explore if this underestimation could be enlarged if spectral noise was ampli-
fied, a second set of simulated spectra was derived by adding bias (randomly in magnitude and sign -positive or
negative-) to each value (wavelength) of each spectrum. This resulted in simulated spectra showing a similar trend to
the parent (observed) spectrum from which they were derived but with a ragged or saw-toothed profile around that
trend. Five simulated spectra were obtained from each of the three original (real) spectra. Again, MA and RMA resulted
in similar slope estimates (average bβMA was 1.0573 (range 0.9294-1.1687) and average bβRMA 1.0546 (range
0.9336-1.1598)). It was confirmed that slope estimates with both type II methods were significantly greater (p<0.001)
than those obtained with OLS (average bβOLS was 1.0009 [range 0.8768-1.1023]), but in this case the difference accounted
for 5.63% (increase of bβMA vs. bβOLS) and 5.36% (increase of bβRMA vs. bβOLS). This analysis shows that OLS can result in a
substantial slope attenuation (compared with type II methods) that is amplified as the spectral noise is increased. Note
that the pair-wise correlations between individual and mean simulated smoothed spectra ranged from 0.9926 and
0.9999, whereas for the set with simulated ragged spectra, the range was between 0.9354 and 0.9559.

TABLE 1 Correlations (ri,m) of individual sucrose spectra (Data Set 2) with the set-mean spectrum and regression parameter estimates

(intercept bα and slope bβ) for multiplicative scatter correction (MSC) pre-treatment under ordinary least squares (OLS) and major axis (MA)

models.

Sample ri,m

OLS MA

bαOLS,i
bβOLS,i bαMA,i

bβMA,i

1 0.9992 0.0199 1.3122 0.0190 1.3135

2 0.9998 0.0126 1.2585 0.0124 1.2588

3 0.9998 –0.0220 1.2170 –0.0222 1.2173

4 0.9990 0.0323 1.2681 0.0313 1.2696

5 0.9922 –0.0260 0.4407 –0.0268 0.4418

6 0.9937 –0.0168 0.5036 –0.0176 0.5049
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5 | IMPACT OF REGRESSION MODELS ON CALIBRATION AND
VALIDATION

For assessing the application of scattering correction pre-treatments to NIR spectra, spectral and reference (chemical
composition) data of animal feeds were used, a field where NIR technology has been extensively applied.43–46 To evalu-
ate the impact of using type II regression models when applying MSC to spectral data on the development of calibration
equations, NIR spectra from 54 Lucerne (cv. Timbale) herbage samples were used (Data Set 3) from a study to investi-
gate the effects of cultivation date and method on the establishment of Lucerne in the UK. Thus, the samples were
harvested from 1st and 2nd cuts of 27 plots sown either by conventional re-seeding or by direct drilling and either with
or without a pre-cultivation herbicide. The 54 samples were freeze-dried and ground (1-mm screen). Chemical composi-
tion of each sample was determined by standard analytical methods. Total nitrogen (N) and water-soluble carbohy-
drates (WSC) were determined as described by Merry et al.,47 whereas the analysis of neutral detergent fibre (NDF) was
as described by Van Soest et al.48 Chemical composition of the Lucerne herbage samples comprising Data Set 3 is
summarised in Table 2. Aside, the samples were scanned on a NIRSystems Model 6500 spectrophotometer in the wave-
length region between 1,100-2,498 nm at 2 nm intervals. Scanning was repeated in three separate runs (each sample
was re-packed and scanned on three consecutive days) to provide an estimate of variance at each wavelength. Calibra-
tions were derived to estimate chemical composition (total N, WSC and NDF on dry matter basis) from NIR spectra.
Prior to calibration, the spectra were corrected by applying one of the pre-treatments described above. Individual spec-
trum scale equalising correction was used to derive SNV and detrended NIR spectra. These were considered as the ref-
erence corrected spectra free from regression model induced effects. Additionally, spectra were corrected by either
original MSC or ISC, using OLS36,37 linear regression. Finally, spectra were corrected by MSC but fitting the type II ML
regression method with separate λML values using the Excel FREML add-in.33 The mPLS algorithm in dedicated
WINISI, Version 4.6.8 (Infrasoft International, State College, PA) was used for the NIR calibrations by multiple linear
regression methods and internal cross validation with all 54 samples. Mathematical treatments implemented in the soft-
ware and used for the calibration were: order of derivative function = 2, gap (length in nm) in data points over which
the derivative is calculated = 6, number of data points (segment length) used in first smoothing = 4, and number of
data points in the second smoothing = 1. In principle, all the 54 samples were used for calibration although those iden-
tified as outliers were excluded. The prediction performance in each case was assessed using calibration quality indices
provided by the WINISI software: standard error of calibration (SEC), proportion of variance accounted for by the
model (R2), standard error of cross validation (SECV) and coefficient of determination in cross validation (denoted by
the expression “1–VR”).

A subsequent calibration was performed by splitting the whole set (54 samples) into a calibration set of 40 samples
and a validation set of 14 samples, to assess the influence of MSC (using type II regression) on external validation. As
shown in Table 2, compositional data of the calibration set after splitting (40 samples) were similar to those of the
whole set (54 samples). Calibration was obtained in this case using principal component regression (PCR) analysis

TABLE 2 Chemical composition (% on dry matter basis) from Data Set 3 (Lucerne herbage samples).

Mean Standard deviation Median Min Max

Nitrogen

Whole seta 2.965 0.6827 3.14 1.43 3.98

Calibration setb 2.895 0.7223 3.13 1.43 3.98

Water soluble carbohydrates

Whole seta 12.08 6.221 9.79 6.08 29.42

Calibration setb 13.08 6.748 9.94 6.75 29.42

Neutral detergent fibre

Whole seta 40.98 4.052 40.69 34.63 51.25

Calibration setb 41.57 4.272 41.69 34.63 51.25

aWhole set = 54 samples of Lucerne herbage;
bCalibration set after splitting = 40 samples of Lucerne herbage.
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(GENSTAT RIDGE procedure49) to prevent or reduce multicollinearity, a dominant feature of NIR spectral wavelengths
that affects calibration modelling by multiple regression. Also, calibration was performed using partial least squares
(PLS) regression (GENSTAT PLS procedure50). Calibrations using PCR or PLS were similar, with high concordance
coefficients51 between both methods (0.988, 0.977 and 0.969 for N, WSC and NDF data, respectively). However, as the
reproducibility of measured (reference) data was slightly improved with PCR compared with PLS regression (concor-
dance coefficients -PCR vs. PLS- of 0.994 vs. 0.981 for total N; 0.959 vs. 0.933 for WSC and 0.929 vs. 0.889 for NDF),
PCR calibrations were retained for further analyses. The relationship between NIR and reference method values was
used to assess calibration (SEC, R2 and SECV using the calibration set) and validation (R2 and standard error of predic-
tion [SEP] with the 14 samples of the validation set). Additionally, the prediction performance was evaluated on the val-
idation set using statistics52 such as mean square prediction error (MSPE) and its partition into bias, slope and random
components,53 Lin's concordance correlation (CC) coefficient51,53 and modelling efficiency (ME). This latter statistic
was calculated as54

ME¼ 1�
P

ref i�nirið Þ2P
ref i�avgð Þ2

where ref i are the reference method values, niri the values estimated from NIR spectra and avg the average for the
validation set.

Calibration performance observed with the whole Data Set 3 (54 samples) is summarised in Table 3. The number of
terms in the calibration equations was six for N and WSC and five for NDF, and the number of identified and excluded
outliers was three for N and only one for WSC and NDF. In all cases, NIR spectra showed a remarkable potential to pre-
dict chemical composition of Lucerne estimating mean, minimum and maximum N, WSC and NDF similar to the

TABLE 3 Comparison of calibration statistics (whole Data Set 3: 54 samples) derived from standard normal variate and de-trended near

infrared spectra and those derived from spectra after modified multiplicative scatter correction by three different approaches.

Itema Pre-treatmentb Mean Min Max SECc R2 SECVc 1–VR

N Original spectra 2.98 1.43 3.98 0.067 0.990 0.095 0.980

SNV & detrend 2.98 1.43 3.84 0.044 0.996 0.072 0.988

MSC-OLS 2.98 1.43 3.84 0.044 0.996 0.072 0.988

ISC-OLS 2.98 1.43 3.84 0.043 0.996 0.072 0.988

MSC-ML 2.98 1.43 3.84 0.043 0.996 0.072 0.988

WSC Original spectra 11.6 6.08 27.1 0.428 0.994 0.774 0.981

SNV & detrend 11.9 6.08 29.4 0.422 0.995 0.705 0.987

MSC-OLS 11.9 6.08 29.4 0.421 0.995 0.705 0.987

ISC-OLS 11.9 6.08 29.4 0.423 0.995 0.704 0.987

MSC-ML 11.9 6.08 29.4 0.424 0.995 0.705 0.986

NDF Original spectra 41.0 34.6 51.2 1.597 0.845 1.734 0.813

SNV & detrend 40.9 34.6 51.2 1.186 0.916 1.580 0.847

MSC-OLS 40.9 34.6 51.2 1.188 0.915 1.585 0.846

ISC-OLS 40.9 34.6 51.2 1.187 0.915 1.586 0.846

MSC-ML 40.9 34.6 51.2 1.189 0.915 1.586 0.846

aItem (all in % of dry matter): N = nitrogen; WSC = water soluble carbohydrates; NDF = neutral detergent fibre.
bSpectral pre-treatment: SNV & detrend = standard normal variate and detrending; MSC-OLS = multiplicative scatter correction with ordinary least squares
regression; ISC-OLS = inverted signal correction with ordinary least squares regression; MSC-ML = multiplicative scatter correction with maximum likelihood
(Deming) regression (non-constant λML).
cGoodness of fit: SEC = standard error of calibration; R2 = proportion of variance accounted for by the model; SECV = standard error of cross validation; 1–
VR = coefficient of determination in cross validation.
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reference values (Table 2), with relatively small errors of calibration and cross-validation and high coefficients of deter-
mination. Calibration performance was improved when any pre-treatment was applied, as calibration errors were
reduced, and coefficients of determination increased. However, there were no differences among the different
pre-treatments in the calibration performance, all of them resulting in almost identical predicted values and statistics of
goodness-of-fit.

Using external validation (splitting the whole Data Set 3 into a calibration and a validation sub-set) revealed
some differences among pre-treatments (Tables 4 and 5). In this case, calibration performance was slightly improved
by pre-treatments with N and NDF data, but not with WSC data. ISC correction did not affect the calibration
observed with the original spectra. Calibration for N data was improved with SNV-detrend and MSC pre-treatments,
for NDF only with MSC. Applying a type II regression model (MSC-ML) reduced SECV (cross validation) for N and
NDF compared with the same correction (MSC) using OLS. Goodness-of-tatistics (Table 5) and observed (reference)
vs. predicted (NIR estimates) plots (Figure 7) showed a good predictive performance of NIR spectra to estimate N
and WSC content in Lucerne. In the case of N, the goodness-of-prediction was improved with SNV-detrend and
MSC pre-treatments (reduced SEP and increased R2), but this improvement was not observed for WSC. As for NDF,
validation showed a poor predictive performance. These results were confirmed when MSPE and concordance ana-
lyses were applied to observed and predicted values in the validation subset for the comparison of models. For
NDF, concordance between observed and predicted values was not high (< 0.5, Figure 7), but it was improved
applying SNV-detrend or MSC pre-treatments compared with the use of original spectra (Table 5). This can be
attributed to a reduced overall bias considering the lesser percentage of this component in total MSPE. In the case
of WSC, a substantial deviation from isopleth of the slope relating observed with predicted values was detected, and
scatter correction did not improve concordance or reduce MSPE. The prediction of N from NIR spectra was note-
worthy, with high concordance (CC > 0.925) and small MSPE, overall bias and deviation of slope from isopleth. The
prediction of N content was slightly improved with SNV-detrend and MSC pre-treatments compared with that

TABLE 4 Comparison of calibration and validation statistics (split Data Set 3) derived from standard normal variate and de-trended

near infrared spectra and those derived from spectra after modified multiplicative scatter correction by three different approaches.

Calibration (n = 40)c Validation (n = 14)c

Itema Pre-treatmentb SEC R2 SECV Mean Min Max SEP R2

N Original spectra 0.210 0.956 0.459 3.28 2.10 3.78 0.154 0.885

SNV & detrend 0.181 0.967 0.403 3.27 2.14 3.81 0.136 0.906

MSC-OLS 0.180 0.968 0.406 3.26 2.13 3.82 0.139 0.907

ISC-OLS 0.210 0.956 0.459 3.28 2.15 3.83 0.154 0.885

MSC-ML 0.182 0.967 0.401 3.26 2.14 3.79 0.141 0.904

WSC Original spectra 0.378 0.857 3.59 9.14 4.51 18.24 0.772 0.941

SNV & detrend 0.378 0.857 3.46 9.45 3.38 18.51 1.177 0.863

MSC-OLS 0.379 0.856 3.39 9.54 3.73 18.43 1.151 0.869

ISC-OLS 0.378 0.857 3.59 9.03 4.40 18.13 0.772 0.941

MSC-ML 0.378 0.857 3.55 9.51 3.20 18.64 1.154 0.869

NDF Original spectra 0.479 0.771 2.42 40.1 37.2 45.3 2.66 0.182

SNV & detrend 0.478 0.772 2.49 39.7 37.2 44.4 2.62 0.207

MSC-OLS 0.468 0.781 2.60 39.6 36.9 44.5 2.65 0.191

ISC-OLS 0.479 0.771 2.42 40.1 37.2 45.3 2.66 0.182

MSC-ML 0.486 0.764 2.30 39.6 37.3 44.3 2.58 0.234

aItem (all in % of dry matter): N = nitrogen; WSC = water soluble carbohydrates; NDF = neutral detergent fibre.
bSpectral pre-treatment: SNV & detrend = standard normal variate and detrending; MSC-OLS = multiplicative scatter correction with ordinary least squares
regression; ISC-OLS = inverted signal correction with ordinary least squares regression; MSC-ML = multiplicative scatter correction with maximum likelihood
(Deming) regression (non-constant λML).
cGoodness of fit: SEC = standard error of calibration; R2 = proportion of variance accounted for by the model; SECV = standard error of cross validation;

SEP = standard error of prediction.
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observed with the original spectra. Concordance was improved when ML was used to apply MSC compared with
OLS. Our results show that there is not a unique solution valid for all situations. The chemical fraction under study
had a critical influence on the outcome, with more consistent results when a more defined chemical component
(N) was examined, in comparison with less homogeneous fractions (WSC or NDF). Greater sample sizes of the cali-
bration and validation sets would be required to examine the effects of scatter correction approaches on the predic-
tion of these fractions. The use of spectral scatter correction pre-treatments has been evaluated with subtle and
variable results depending on the data set used and the variable under assessment.21,42,55,56 MSC is applied on a set
of several spectra for a given sample (with unique chemical composition) obtained to account for the different
sources of variability (within sample) that can affect the NIR spectroscopy. The assumed distribution of residuals ε
(reasonably expected to be independent) and the trade-offs between model shortcomings and utility are generally
favourable in the case of NIR spectroscopy, and make MSC an effective tool for the correction of multiplicative off-
set noise. Garrido-Varo et al.42 concluded that SNV and detrending of NIR spectra contributed to better discrimina-
tion between agrifood products. Fern�andez-Cabanas et al.56 observed that spectra pre-treatments allow for detecting
soil contamination in vegetal samples. Helland et al.21 reported a multiple comparison of several pre-treatments and
observed that they were all closely related, with subtle differences among them, so that in practice the use of one or
another did not have a relevant implication. Jiao et al.57 concluded that there is not much to be gained in using
scattering correction, and the size of such improvement would be determined by the sample heterogeneity. Scatter-
ing correction should be part of an ensemble pre-processing strategy to select the combination of baseline and scat-
tering corrections, smoothing and scaling procedures that prove most suitable in each case.58,59 In this context, it
seems well worth considering the use of type II regression models for assessing the application of MSC aiming at
improving the goodness of prediction from NIR spectra.

TABLE 5 Comparison of prediction performance (validation sub-set from Data Set 3: 14 samples) derived from standard normal variate

and de-trended near infrared spectra and those derived from spectra after modified multiplicative scatter correction by three different

approaches.

Itema Pre-treatmentb MSPEc Bias Slope Random CCc MEc

N Original spectra 4.63 7.46 1.44 91.1 0.930 0.874

SNV & detrend 4.16 6.11 1.69 92.2 0.945 0.898

MSC-OLS 4.09 4.64 0.76 94.6 0.930 0.901

ISC-OLS 4.68 9.58 1.41 89.0 0.929 0.871

MSC-ML 4.17 4.35 2.36 93.3 0.944 0.897

WSC Original spectra 10.8 0.89 47.4 51.7 0.953 0.886

SNV & detrend 17.8 2.31 53.7 44.0 0.889 0.689

MSC-OLS 16.8 3.93 48.7 47.4 0.898 0.724

ISC-OLS 10.9 3.94 45.8 50.3 0.952 0.883

MSC-ML 18.0 2.85 56.0 41.1 0.888 0.681

NDF Original spectra 6.82 9.60 5.83 84.6 0.370 0.033

SNV & detrend 6.37 2.28 3.59 94.1 0.404 0.157

MSC-OLS 6.47 1.42 5.34 93.2 0.396 0.132

ISC-OLS 6.85 10.33 5.78 83.9 0.367 0.025

MSC-ML 6.19 1.69 2.10 96.2 0.427 0.203

aItem (all in % of dry matter): N = nitrogen; WSC = water soluble carbohydrates; NDF = neutral detergent fibre.
bSpectral pre-treatment: SNV & detrend = standard normal variate and detrending; MSC-OLS = multiplicative scatter correction with ordinary least squares

regression; ISC-OLS = inverted signal correction with ordinary least squares regression; MSC-ML = multiplicative scatter correction with maximum likelihood
(Deming) regression (non-constant λML).
cGoodness of fit: MSPE = mean square prediction error, with partition into bias, slope and random (as % of the MSPE); CC = Lin's concordance correlation
coefficient; ME = model efficiency.
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FIGURE 7 Observed vs. predicted scatter plots (for the validation set) resulting from the prediction of chemical composition

(N = nitrogen; WSC = water soluble carbohydrates; NDF = neutral detergent fibre) from near-infrared spectroscopy.
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6 | CONCLUDING REMARKS

It is good practice to identify appropriate methodology and most of the sources of measurement errors associated with
any data. Repeatability, reproducibility, and other variance components are required to estimate expanded uncertainty
associated with results from analytical laboratories. Regression models that account for errors in both y- and x-variables
might have to be considered with respect to the application of MSC transformation, because this correction involves
relationships between random variables. Regression in the case of simple MSC is necessarily linear. For multi-linear
and nonlinear situations parallel methodologies may be found.

Knowledge of the various variance components is opportune in identifying appropriate regression models. Best
practice will be to analyse samples from a validation set with replication, preferably scanned several times (different
days or after repacking) to capture reproducibility variation. Relatively high correlation between the set-mean spectrum
and the individual spectra ensures relatively small attenuation in the estimate of OLS slope. The MA approach can be a
useful choice to correct slope estimates (and hence estimates of the intercept) for MSC application, particularly in the
absence of repeated scans. The correction may have implications for calibration modelling and can also be relevant
when predictions from a validation set are to be compared with their corresponding laboratory or reference values. The
use of scattering correction and type II regression models for MSC might have limited impact on the goodness of predic-
tion from NIR spectra, but their use case by case is warranted to test what extent prediction of reference values can be
improved. These methods can be easily included as an extra option in dedicated NIR software.
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