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Abstract: The diversity of eukaryotic and prokaryotic communities has been assessed by 
morphological and genetic approaches, which are used to characterize the microbiota 
in different environments. Here, planktonic prokaryotic and eukaryotic communities 
of the Araguaia River, located in the Central region of Brazil, were analyzed based on 
metabarcoding analysis of rRNA genes to evaluate the diversity of these groups in 
tropical floodplain lakes. Also, we tested their spatial concordance throughout the 
Araguaia river. Water samples were collected from 8 floodplain lakes in Araguaia River. 
The 16S and 18S rRNA genes were amplified and sequenced using Illumina MiSeq. For 
eukaryotes, 34,242 merged reads were obtained and 225 distinct OTUs were delineated, 
of which 106 OTUs were taxonomically classified. For prokaryotes, 26,426 sequences 
were obtained and 351 OTUs were detected. Of them, 231 were classified in at least 
one taxonomic category. The most representative eukaryotes belonged to Ciliophora, 
Chlorophyta and Charophyta. The prokaryotic phylum with the most OTUs classified 
were Proteobacteria, Actinobacteria and Bacteroidetes. The lakes did not show spatial 
concordance when comparing the similarity between their microbiota. The knowledge 
of freshwater biodiversity using DNA sequencing for important rivers, such as Araguaia 
River, can improve microbiota inventories of tropical biodiversity hotspots. 

Key words: Araguaia river, aquatic community, environmental DNA, freshwater, genetic 
biodiversity.

INTRODUCTION
Freshwater environments have a high 
biodiversity, with a large number of endemic 
species; however, these environments are among 
the most threatened on the planet (Dudgeon 
et al. 2006, Strayer & Dudgeon 2010, Irvine et 
al. 2016). The main impacts may include habitat 
degradation, water pollution, structural changes 
with altered flow, insertion of exotic species as 
well as overexploitation of these environments 
and interactions between these different factors 
(Dudgeon et al. 2006). Thus, the identification 

of complete biodiversity of freshwater tropical 
communities may be a powerful resource for 
ecology and conservation of these regions. 

In Brazil, the Araguaia River is located in 
Tocantins-Araguaia basin, and represent one 
of the most important drainage channels in 
Central region of Brazil (Valente et al. 2013). 
It extends all the way crossing the Cerrado, 
the second major Brazilian Ecosystem, and is 
considered a hotspot of biodiversity (Myers et 
al. 2000). Along the Araguaia River, there are 
important changes on ecosystems and land 
usage. Recently, some studies have explored 
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the microbiota of freshwater ecosystems, 
including tropical environment, through genetic 
approaches (Arroyo et al. 2018, Cahoon et al. 
2018, Li et al. 2018, Santos-Júnior et al. 2020). 
However, for the Araguaia River, few studies have 
used this strategy to investigate the microbiota 
composition (e.g. Tessler et al. 2017, Lentendu 
et al. 2019, Machado et al. 2019), and do not 
consider the prokaryotic and eukaryotic fraction 
of the microbion community simultaneously 
(see Tessler et al. 2017 for bacteria and Lentendu 
et al. 2019 and Machado et al. 2019 for protists).

Bacteria and microeukaryotes play an 
important role in aquatic ecosystems, acting 
on biogeochemical cycles and establishing 
interactions with different levels of the food 
web (Cotner & Biddanda 2002). Furthermore, 
microbiota composition may indicate the 
conditions of the environment, as the trophic 
state or also the presence of disturbance factors 
(Baird & Hajibabaei 2012, Dowle et al. 2016, 
Monteagudo & Moreno 2016, Röhl et al. 2017). It 
is known that the diversity of microorganisms 
on earth is very high, however, it has not yet 
been possible to reach a consensus on this 
exact value (Dunlap 2001), including, the aquatic 
microbiota. Thus, the metabarcoding approach 
appears to be faster and more informative than 
morphology-based methods to assess species 
richness in natural communities, as well as 
more accurate, providing increased taxonomic 
resolution (Baird & Hajibabaei 2012, Bradford et 
al. 2013, Stein et al. 2014).

In metabarcoding approach, environmental 
DNA (eDNA) from whole communities is 
extracted from samples such as water and soil. 
Hypervariable subregions of the 16S and 18S 
ribosomal RNA (rRNA) genes are sequenced 
using high-throughput sequencing technologies 
(Coissac et al. 2012, Yang et al. 2016) and used to 
identify and classify prokaryotic and eukaryotic 
organisms, respectively, to determine taxonomic 

units in different ecosystems (Nam et al. 2012, 
Fouts et al. 2012, Baldwin et al. 2013, Klindworth 
et al. 2013, Hadziavdic et al. 2014, Yang et al. 
2016, Nia et al. 2017). Metabarcoding studies in 
freshwater aquatic ecosystems can be used to 
evidence changes in microbiota communities as 
well as to correlate the presence of prokaryotes 
and eukaryotes in specific sites or time (Bock et 
al. 2018). 

Herein the diversity of eukaryotic and 
prokaryotic microbiota of important floodplains 
lakes in Central Brazil was described based on 
metabarcoding analysis of rRNA genes. Also, 
the spatial concordance of the lakes using 
two metabarcoding analysis (16S and 18S 
rRNA genes) was analyzed. New information 
was generated to characterize the diversity of 
organisms of this important Brazilian freshwater 
system that complemented the information 
produced by traditional taxonomic studies in 
this region. In addition, this study contributes 
to a better understanding of the composition of 
aquatic microbiota in the tropics. 

Abbreviations
eDNA – environmental DNA
rRNA – Ribosomal RNA
bp – base pairs
OTU – operational taxonomic unit
PCA – Principal Componet Analysis
UPGMA - Unweighted Pair Group Method using 
Arithmetic Averages
rDNA – ribosomal genes

MATERIALS AND METHODS
Study area
We investigated 8 floodplain lakes (13° 26’ 2.79”S 
to 11° 47’ 15’’ S and 50° 43’ 38.3988’’ W to 50° 
32’ 3.4008’’ W), located along of the middle 
course of Araguaia River (Lakes 1 – 7) and one 
of its tributaries (Mortes river, Lake 8) during 
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the high-water season in January 2012 (Figure 1). 
These lakes are shallow, oligotrophic and with 
warm waters (see details in Machado et al. (2015) 
and Marcionilio et al. (2016)).  Most lakes are 
still surrounded by Cerrado native vegetation 
(Machado et al. 2016). 

Samples
In each lake, we measured limnological 
parameters of water, including the temperature, 
transparence, turbidity, oxygen saturation, 
dissolved oxygen, pH, depth, conductivity 
and total dissolved solids. The estimative 
of chlorophyll-a, total nitrogen and total 
phosphorus were performed according to 
Golterman et al. (1978) and Zagatto et al. (1981). 
For each lake, we also estimated the surrounding 
land cover (pasture, agriculture, native Cerrado 
vegetation), and morphometrics parameters 
as area and width. The full description of the 
methods for morphometrics and land cover 
data has been described previously in Machado 
et al. (2016) and Marcionilio et al. (2016). 

Water samples for eukaryotic communities 
were obtained by filtration of 500 liters of water 
through a plankton net (68 μm mesh aperture) 
using a vacuum pump. The sampling was 
performed in the central region of each lake, 
that is, in the same region where the parameters 
of water were evaluated. Thus, we obtained an 
individualized sampling for each floodplain lake, 
independent of each other. The concentrated 
sample resulting from this first filtration (250 
mL water) was filtered on a Millipore cellulose 
filters (3.0 μm pore size), considering the 
separate samples for each of the eight lakes. 
For prokaryotic communities, 500 mL of water 
were collected directly in each lake and filtering 
performed separately for samples from each 
lake, firstly,  using a Millipore cellulose filter (3.0 
μm pore size) and then further filtered using a 
Millipore cellulose filter of 0.22 μm pore size, 
which was used for evaluation of the prokaryotic 
communities. The filters for prokaryotic and 
eukaryotic microbiota were stored in liquid 

Figure 1. Sampled 
locations. Lakes sampled 
along the Araguaia River 
floodplain, Brazil. 
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nitrogen at -80 ° C separately each other and 
separately between the eight lakes.

eDNA preparation and Taxonomic assignment 
Genomic DNA was extracted from filters using 
PowerWater DNA Isolation kit (Mo Bio) from each 
site collected. For eukaryotes, the V4 region from 
18S ribosomal DNA region was amplified by PCR 
using the universal primers TAReukFWD1 and 
TAReukREV3 (Stoeck et al. 2010) modified with 
complementary sequences containing Illumina 
Adapters (Illumina). For prokaryotes, the 16S 
ribosomal DNA was amplified using BAC341F 
and BAC785R (based on Klindworth et al. 2013) 
also with complementary sequences Illumina 
Adapters (Illumina). The PCRs amplifications 
followed the reaction published in Machado et 
al. (2019) and were done in triplicates for each 
sample site. The PCR samples were pooled 
and amplicons were used to prepare the NGS 
libraries as described also in Machado et al. 
(2019). Amplicons libraries were pooled and 
sequenced using MiSeq Reagent Kit v3 (600 
cycles) on MiSeq platform (Illumina) installed 
at the Genetics and Biodiversity Laboratory, 
Federal University of Goiás, state of Goiás, Brazil.

The quality of the sequences was evaluated 
by FastQC software (Andrews 2010) and they were 
trimmed using Trimmomatic (Bolger et al. 2014).  
Bases with phred < 20 were excluded as well 
as reads smaller than 100 base pairs (bp). The 
Illumina adapters were also removed. We used 
clustering methods to infer broader biological 
diversity in Araguaia River. We also applied 
rarefaction on our data to minimize inferences of 
method bias (see below). The OTU prediction was 
performed with UPARSE pipeline (Edgar 2013) for 
eukaryotes and prokaryotes, separately. Thus, 
the paired-end reads of each sample were first 
assembled (merged) and OTUs were delineated 
at 97% similarity. Taxonomic annotation was 
performed by Blasting representative OTU 

sequences against the database Silva 132 
(https://www.arb-silva.de/ access in November 
2019) using a percentage of identity > 97%. 
Statistical analyzes were performed with the 
BioEstat program version 4.0. For the consecutive 
analysis of the OTU diversity, we removed the 
ones that were classified as Metazoa, Plants and 
non-planktonic organisms. 

The sequences were deposited in the 
GenBank database (https://submit.ncbi.nlm.
nih.gov/) under the access number SUB7351368 
for Eukaryotes and SUB7351387/SUB7435447  for 
Prokaryotes.  (Bioproject Accession PRJNA629519  
and BioSample Accession SAMN14777710 - 
SAMN14777717 for Eukaryotes  SAMN14777757 - 
SAMN14777764 for Prokaryotes).

Data analysis
We use a principal component analysis (PCA) 
seeking to compare the floodplain lakes in 
relation to their environmental conditions. In 
PCA, the limnological data were standardized 
by the z score method and the land cover data 
by arcsines of their square roots ×180/ π. The 
PCA was performed using the “prcomp” function 
of vegan package (Oksanen et al. 2017), in R 
Platform (R Core Team 2020).

Species accumulation curve was used to 
estimate whether the sampling was sufficient 
for Eukaryotic and Prokaryotic communities (see 
details in Ugland et al. 2003). A subsampling 
rarefaction was used to correct the bias that 
can be generated by comparing samples with 
different sizes. The rarefaction was conducted 
through a random subsampling, in which the 
sample size was represented by the lowest 
number of sequences recovered in floodplain 
lakes, that is 2,208 reads for prokaryotes and 
1,649 reads for eukaryotes (Hurlbert 1971). 

We used Pearson correlations to assess the 
relationship between the number of reads and 
merged sequences; and the number of merged 
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sequences and the total number of predicted 
OTUs for both prokaryotes and eukaryotes 
microbiota. Cluster analyses was performed 
to investigate the similarity between sampled 
point based on the occurrence of OTUs from 
different microbiotas (16S and 18S rDNA). The 
matrices were generated based on Jaccard index 
and the dendrogram was created by UPGMA 
method (Unweighted Pair Group Method using 
Arithmetic Averages (Legendre & Legendre 2012). 
The dendrograms generated for the eukaryotic 
and prokaryotic microbiota were visually 
compared using the “tanglegram” function, from 
the dendextend package (Galili 2015), in the R 
platform (R Core Team 2020).

The Mantel test was used to investigate the 
spatial concordance between the occurrence 
matrices of 16S and 18S rDNA microbiota, 
based in Jaccard distance. The Mantel test 
varies between -1 (negative concordance), to 1 
(perfect positive concordance). Zero indicates 
no concordance among matrices. The Mantel 
test was performed using the “mantel” function 
with the Vegan package (Oksanen et al. 2017), in 
R Platform (R Core Team 2020). 

RESULTS
For the environmental analysis, the first and 
second axis of the PCA explained 67% of the 
variation in environmental data. The floodplain 
lakes sampled in this study are environmentally 
heterogeneous, mainly in relation to the 
limnological parameters, and were grouped into 
two groups according to their environmental 
conditions (Figure 2). Lakes 1 to 4 were positively 
associated with turbidity, native vegetation, and 
negatively associated with dissolved oxygen, 
saturated oxygen, nitrogen and total phosphorus, 
pH, area and width. Lakes 5 to 8 were positively 
associated with temperature, transparency, 
conductivity, and negatively associated with 

agriculture, pasture, total dissolved solids, depth 
and chlorophyll-a.

In order to assess the Eukaryotic biodiversity, 
from the sequenced samples, it was detected 
760,148 raw reads and 509,639 reads after quality 
control from all collected sites. From them, the 
total merged sequences were 34,242 with mean 
of 383 bp (Table I). We did not find a correlation 
between the number of reads (after quality 
cuts) and the number of sequences merged (r 
= 0.19 and p < 0.65). The numbers of reads and 
merged sequences varied along the collected 
sites (Supplementary Material - Figure S1a, b). 
From all merged sequences, it was possible to 
detect 225 distinct OTUs. No significant Pearson 
correlation was observed between the number 
of merged sequences and the total number of 
predicted OTUs (r = 0.32 and p = 0.43). Site L2 and 

Figure 2. Environmental PCA analysis. Principal 
component analysis for environmental data measured 
in eight floodplain lakes in the middle Araguaia 
River. COND, conductivity; DO, dissolved oxygen; 
pH, potential of hydrogen; TEMP, temperature; 
TURB, turbidity; TDS, total dissolved solids; TRP, 
transparency; OS, oxygen saturation; DP, depth; 
TP, total phosphorus; TN, total nitrogen; CHL.A, 
chlorophyll-a; LA, lake area; LW, lake width; NV, native 
vegetation; GRA, grassland; AGR, agriculture.
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L8 showed the lesser and the greatest amount of 
OTUs, respectively (Figure S1c). After rarefaction, 
the total number of OTUs was reduced to 206. 
Among these, 106 OTUs were taxonomically 
classified when compared to database.

In all sampled sites, some phyla were 
more diverse concerning the numbers of 
OTUs taxonomically classified (Figure 3). 
The most frequent Eukaryotic phylum was 
Ciliophora (26 OTUs), followed by Chlorophyta 
(19 OTUs) and Charophyta (15 OTUs), while 
groups as Centrohelida, Chytridiomycota and 
Chanoflagellida presenting only one OTU 
each. Inside the kingdom Fungi, the phylum 
Cryptomycota was the most diverse (three 
OTUs), followed by Ascomycota (two OTUs) and 
Chytridiomycota (one OTU). For Chromalveolata 
group, Ciliophora was the phylum with more 
different OTUs (26 units), followed by Ochrophyta 
(14 units).

The prokaryotic community detected from 
the genetic analysis had 2,131,925 raw reads that 
were filtered to 1,273,990 reads for all collected 
sites. The reads were merged into a total of 26,426 
sequences with a mean size of 403 bp that were 
used to predict the OTUs (Table I). No significant 
correlation was found between the number of 
reads after quality control and the number of 

sequences merged (r = 0.47 and p = 0.23). The 
numbers of reads and merged sequences varied 
along the collected sites (Figure S2a, b). 

Using all merged sequences, it was possible 
to identify 351 OTUs. No significative correlation 
was observed between the number of sequences 
merged and the total number of predicted 
OTUs (r = 0.36 and p = 0.37). The sites L3 and L8 
presented the major and the minor numbers of 
different OTUs, respectively (Figure S2c). After 
rarefaction, the number of prokaryotic OTUs 
reduced to 344, and when compared to database, 
231 OTUs were at least classified in one taxonomic 
category. Three prokaryotic phyla had the most 
OTUs identified: Proteobacteria, Actinobacteria 
and Bacteroidetes (Figure 4). Planctomycetes 
was only presented in lakes L3 and L4, while 
representatives of Armatimonadetes was only 
seen in lakes L1, L3 and L4.

The rarefaction curves for both prokaryotes 
(Figure S3a) and eukaryotes (Figure S3b) indicate 
that the diversity of the microbiota was not fully 
covered in some of the sampled lakes. However, 
the accumulation curve for prokaryotes has 
reached a plateau (Figure S4a), indicating 
that the gamma diversity for this portion of 

Table I. Comparation of eukaryotic and prokaryotic 
communities on Araguaia River based on 
metabarcoding analysis of rRNA genes data obtained 
at Miseq platform and subsequent bioinformatic 
analyses.

Eukaryotic Prokaryotic

Total raw reads 760,148 2,131,925 

Total filtered reads 509,639 1,273,990 

Merged sequences 34,242 26,426 

Medium size of 
sequences (bp) 383 bp 403 bp

Total rarefied OTUs 206 344

OTUs taxonomic 
classified 106 231 Figure 3. Frequency of Eukaryotes. Frequency of 

eukaryotic OTUs according to the taxonomic group in 
each sample point. NC = Not Classified.
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the microbiota has been fully covered in the 
region. For eukaryotes, the rising pattern of 
accumulation curve (Figure S4b), suggests that 
part of the diversity still needs to be sampled. It 
was possible to observe that the arrangements 
recovered on both dendrograms did not 
show the same pattern for the most sampled 
points, although points 2, 4 and 7 showed the 
same patterns for prokaryotes and eukaryotes 
(Figure 5). No spatial concordance was found 
between Prokaryotic and Eukaryotic microbiota 
communities, which was indicated also by 
Mantel test (r = 0.02, p = 0.39). These results 
demonstrate that, for a better understanding of 
microbiota biodiversity in freshwater ecosystem, 
it is necessary to analyze both metabarcoding 
taxonomic groups.  

DISCUSSION
In the present study, we identified and classified 
a high number of eukaryotic and prokaryotic 
units dispersed in eight lakes environmentally 

heterogenous along the of Araguaia River, based 
on metabarcoding techniques. In addition, 
the analyses of the 16S rDNA and 18S rDNA 
microbiotas did not show spatial concordance. 
In other words, one community cannot 
predict the spatial arrangement of the other 
community in this freshwater environment. The 
species accumulation curve indicated that the 
prokaryotic diversity was well sampled while 
the accumulation curve for the eukaryotic 
microbiota was near of the asymptote. Thus, the 
biodiversity analysis and spatial concordance 
were not affected by incomplete inventories, 
since new samples would not increase the 
number of OTUs for both groups.

When assessing the biodiversity of 
freshwater community through metabarcoding 
approaches it is not always possible to identify 
at the species level. Nonetheless, often the 
identification at a higher taxonomic level is 
sufficient (Coissac et al. 2012) for a biodiversity 
and community study. In addition, the coupling 
of traditional and metabarcoding approaches 
for OTU identification, allows the evaluation of 
aquatic biodiversity and increases information 
for the management and conservation of aquatic 
environments. In a taxonomic study previously 
conducted in Araguaia lakes, 115 phytoplanktonic 
and 159 zooplanktonic species were found using 
morphological approaches (see Machado et al. 
2015). Herein, although the number of sampled 
lakes is smaller, it was possible to recovered 
similar results for the most sampled higher taxa 
identified morphologically by Machado et al. 
(2015). 

The taxonomic prediction of OTUs is totally 
dependent on the existence of comprehensive 
and reliable taxonomic reference data for each 
barcoding gene (Thomsen & Willerslev 2015, 
Grzebyka et al. 2017). Here, 51% of eukaryotic OTUs 
and 67% of prokaryote OTUs were identifiable to 
at least in one taxonomic category. The existence 

Figure 4. Frequency of Prokaryotes. Frequency of 
prokaryotic OTUs according to the taxonomic groupin 
each sample point. NC = Not Classified.
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of a high number of eukaryotes and prokaryotes 
not studied in freshwater ecosystems can 
explain the large proportion of OTUs detected 
in Araguaia river water that did not correspond 
closely with reference sequences in the SILVA 
database. This highlights the need for more 
inventories in this region, so that it is possible 
to better understand the biodiversity of these 
ecosystems.

The census presented here is one of the 
first to use metabarcoding to characterize part 
of the biological diversity existing from several 
sites of the Araguaia river (but see Tessler 
et al. (2017) for prokaryotes and Machado 
et al. (2019) and Lentendu et al. (2019) for 
microeukaryotes). For prokaryotic diversity, 
five phyla found to be present in freshwater in 
Brazilian floodplains by Tessler et al. (2017) were 
also identified here, which were: Proteobacteria, 
Actinobacteria, Bacteriodetes, Verrucomicrobia 
and Cyanobacteria. For microeukaryotes, we 
found 11 taxonomic groups, among the 23 
observed by Machado et al. (2019) for the 
Araguaia River floodplain, and five phyla 
similar to those found by Lentendu et al. (2019) 
in the same region, although six taxonomic 
groups observed in our study are different. The 
presence of similar groups between studies 
indicates a concordance in the results and, also, 

that different sampling techniques (filter pore 
size, amount of filtered water) may represent 
the biodiversity existing in the region. In this 
context, our study adds information about 
planktonic communities in this underexplored 
region, using a metabarcoding approach.

Among prokaryotic organisms, some 
species of Cyanobacteria are known for their 
toxic potential, while many other bacteria can 
act as pathogens in plants, humans or other 
animals. In our study, we observed a low 
proportion of Cyanobacteria in relation to the 
other groups (only 12 OTUs), indicating that 
the issue of cyanobacterial toxicity may not be 
as pronounced for this region. Another factor 
that can contribute to the low abundance of 
Cyanobacteria are the high levels of turbidity 
found in the sampled lakes (mean = 36 NTU; ± 
coefficient of variation = 109%) and other lakes 
in the middle Araguaia river during the rainy 
season (e.g. Machado et al. 2015, Marcionilio 
et al. 2016). Furthermore, we also observed 
the presence of some taxa capable of causing 
diseases in humans such as Ricktissiales (14 
OTUs; Schrallhammer et al. 2013), Moraxeleaceae 
(5 OTUs; Teixeira & Merquior 2014), or in plants, 
such as Acidovorax (1 OTU; Alves et al. 2010). 
However, all these have been observed at low 
frequencies. 

Figure 5.  
Dissimilarity 
analysis. 
Dissimilarity 
analysis for 
prokaryotic 
and eukaryotic 
microbiota 
between the 
floodplain lakes 
(L) of the Araguaia 
river.
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The absence of concordance between 
prokaryotes and microeukaryotes on the same 
points demonstrate the importance of using 
different genes to detect the whole organisms 
and, further ahead, be used for biomonitoring 
a freshwater ecosystem. In this sense, they can 
be useful tools in the sustainable management 
of aquatic environments (Bradford et al. 2013, 
Oulas et al. 2015). Despite the separation of the 
lakes in terms of their environmental conditions 
in PCA analysis, at the sampled points there 
is still no strong environmental gradient. This 
separation was probably due to the geographic 
location of the lakes, which produce small 
gradients in the limnological variables, due to 
the natural variation of these parameters along 
the middle stretch of the river. In fact, lakes 1 to 
4 are between the city of Luiz Alves and Aruanã, 
while points 5 to 7 are in opposite direction of 
the river, in the region of the Bananal Island. 
Thus, the absence of spatial concordance among 
the communities can be explained by the fact 
that eukaryotes and prokaryotes have distinct 
environmental requirements, even coexisting on 
a gradient with little environmental variability. 

In general, our study characterized 
eukaryotic and prokaryotic microbiota in 
floodplains of the Araguaia River, adding new 
information for the knowledge of biodiversity in 
this region and complementing the information 
obtained through inventories based on 
morphological identification. We found that the 
sampled section is still in good condition, with 
the absence of potentially toxic taxa. Thus, these 
results contribute to the knowledge of aquatic 
biodiversity in the tropical region, still little 
studied.
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