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Abstract. Polarization of the cosmic microwave background (CMB) can probe new parity-
violating physics such as cosmic birefringence (CB), which requires exquisite control over
instrumental systematics. The non-idealities of the half-wave plate (HWP) represent a source
of systematics when used as a polarization modulator. We study their impact on the CMB
angular power spectra, which is partially degenerate with CB and miscalibration of the
polarization angle. We use full-sky beam convolution simulations including HWP to generate
mock noiseless time-ordered data, process them through a bin averaging map-maker, and
calculate the power spectra including TB and EB correlations. We also derive analytical
formulae which accurately model the observed spectra. For our choice of HWP parameters,
the HWP-induced angle amounts to a few degrees, which could be misinterpreted as CB.
Accurate knowledge of the HWP is required to mitigate this. Our simulation and analytical
formulae will be useful for deriving requirements for the accuracy of HWP calibration.
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1 Introduction

Temperature anisotropies in the cosmic microwave background (CMB) are an invaluable
source of cosmological information [1–3]. Polarization anisotropies also contain a great wealth
of complementary information [4–12], which has yet to be fully explored. A promising
opportunity driving the development of a major experimental effort, involving both ground-
based observatories (Simons Observatory [13], South Pole Observatory [14] and CMB Stage-
4 [15]) and space missions (LiteBIRD [16] and PICO [17]), is to probe cosmic inflation [18–20].
Inflationary models predict the existence of a stochastic background of gravitational waves [21,
22] which would leave a distinctive B-mode signature on the CMB polarization [23–26].

The CMB polarization can also probe new parity-violating physics [27]. For example, in
the presence of a time-dependent parity-violating pseudoscalar field, the linear polarization
plane of CMB photons would rotate while they travel towards us [28–30]. Because of its
similarity with photon propagation through a birefringent material, this phenomenon is referred
to as cosmic birefringence (CB). The so-called CB angle, β, denotes the overall rotation
angle from last scattering to present times. Although the effect of β on the observed CMB
angular power spectra is degenerate with an instrumental miscalibration of the polarization
angle [31–34], the methodology proposed in [35–37], which relies on the polarized Galactic
foreground emission to determine miscalibration angles, allowed to infer β = 0.35± 0.14◦ at
68% C.L. [38] from nearly full-sky Planck polarization data [39]. Subsequent works [40–42]
reported more precise measurements for β. The statistical significance of β is expected to
improve with the next generation of CMB experiments, given the high precision at which
they aim to calibrate the absolute position angle of linear polarization. This will make it
unnecessary to rely on the Galactic foreground to calibrate angles and measure β [27], hence
avoiding the potential complications highlighted in [43].

The unprecedented sensitivity goals of future surveys, aiming to detect faint primordial
B modes, can only be achieved if systematics are kept under control. To this end, a promising
strategy is to employ a rotating half-wave plate (HWP) as a polarization modulator. As
shown by the previous analyses [44–51], a rotating HWP can both mitigate the 1/f noise
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component [44] and reduce a potential temperature-to-polarization (I → P ) leakage due to
the pair differencing of orthogonal detectors [52, 53]. Because of these advantages, HWPs are
used in the design of some next-generation experiments, including LiteBIRD [16]. However,
non-idealities in realistic HWPs induce additional systematics which should be well understood
in order for future experiments to meet their sensitivity requirements. This necessity motivated
a number of recent works, from descriptions of HWP non-idealities [46, 54–56] and their
impact on measured angular power spectra [57] to mitigation strategies [58–61].

In this paper we study how HWP non-idealities can affect the estimated CMB angular
power spectra if overlooked in the map-making step. We employ a modified version of the
publicly available beam convolution code beamconv1 [62, 63] and simulate two sets of noiseless
time-ordered data (TOD). The two simulations make different assumptions on the HWP
behavior. In the first case the HWP is assumed to be ideal, while non-idealities are included
in the second case. We then process the two TOD sets with a map-maker assuming the ideal
HWP and compare the output power spectra. We also derive a set of analytic expressions
for the estimated angular power spectra as functions of the input spectra and the elements
of the HWP Mueller matrix. These formulae accurately model the output power spectra.
Finally, we show that neglecting the non-idealities in the map-maker affects the observed
spectra in a way that is partially degenerate with the CB and instrumental miscalibration of
the polarization angle. This effect is evident in the simulations and the analytical formulae.

The rest of this paper is organized as follows. In section 2 we present a simple data
model for the signal measured by a single detector; generalize it to a larger focal plane and
a longer observation time; and introduce the bin averaging map-making method employed
in the paper to convert the TOD to maps. In section 3 we discuss the instrument specifics
we have implemented in the simulation and show the output angular power spectra. The
interpretation of the result is the topic of section 4, where we derive some analytical formulae
modeling it with good precision. In section 5 we show how the effect of the HWP non-idealities
is partially degenerate with an instrumental miscalibration of the polarization angle, and
can therefore be misinterpreted as CB. We quantify the HWP-induced miscalibration angle,
which amounts to a few degrees for our choice of the HWP parameters. Conclusions and
outlook are presented in section 6.

2 Mathematical framework: data model and map-maker

Data model for a single detector. Polarized radiation can be described by the Stokes
I, Q, U and V parameters or, more compactly, by a Stokes vector, S ≡ (I,Q, U, V ). In this
paper we use the “CMB convention” for the sign of Stokes U [64] and define the Stokes
parameters in right-handed coordinates with the z axis taken in the direction of the observer’s
line of sight (telescope boresight). The Stokes vector is transformed as S → S′ = RϕS by
rotating the coordinates by an angle ϕ, where

Rϕ=


1 0 0 0
0 cos 2ϕ sin 2ϕ 0
0 − sin 2ϕ cos 2ϕ 0
0 0 0 1

 . (2.1)

1https://github.com/AdriJD/beamconv.

– 2 –

https://github.com/AdriJD/beamconv


J
C
A
P
0
3
(
2
0
2
3
)
0
3
4

x

y

xsky

ysky

ψ

sky coords.

x

y xhwp

yhwp
φ

HWP coords.

x

y

xdet

ydet

ξ

detector coords.

Figure 1. The S vector is defined in sky coordinates, forming an angle ψ with the telescope ones (left
panel). The HWP optical axis and the detector’s sensitive direction are rotated with respect to the
telescope coordinates by angles φ and ξ, respectively (center and right panels). The angles are defined
in right-handed coordinates with the z axis taken in the direction of the telescope boresight.

Defining the position angle of the plane of linear polarization, θ, by Q± iU = Pe±2iθ with
P =

√
Q2 + U2 and 2θ = arctan(U/Q), the rotation of coordinates shifts the position angle

as θ → θ′ = θ − ϕ.
The action of any polarization-altering device on S can be encoded in a Mueller matrix

M, so that the outgoing Stokes vector reads S′ = MS [65]. In our case of interest, S
represents the incoming CMB radiation andM the Mueller matrix of a telescope that employs
a rotating HWP as a polarization modulator, i.e.

S′ =MdetRξ−φMhwpRφ+ψS , (2.2)

where Rϕ is given in eq. (2.1). The meaning of each angle appearing in eq. (2.2) is clarified
in figure 1. For example, Rφ+ψ rotates the sky coordinates by an angle ψ to the telescope
coordinates (the left panel) and further rotates by φ to the HWP coordinates (the middle
panel). Here, Mdet and Mhwp are the Mueller matrices of a detector along xdet and of a
general HWP:

Mdet = 1
2


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

, Mhwp =


mii miq miu miv
mqi mqq mqu mqv
mui muq muu muv
mvi mvq mvu mvv

. (2.3)

We can then model the signal d measured by one detector as

d = aTMdetRξ−φMhwpRφ+ψS + n , with aT =
(
1 0 0 0

)
, (2.4)

where n represents an additional noise term.

Modeling the TOD. In a realistic CMB experiment, ndet detectors collect data by scanning
the sky for an extended period of time, resulting in nobs observations for each detector. All
together, these ndet × nobs measurements constitute the TOD. We represent the TOD as a
vector d given by

d = Am + n , (2.5)

where m denotes the {I,Q, U, V } pixelized sky maps, A the response matrix, and n the noise
component. Eq. (2.5) generalizes eq. (2.4) to larger nobs and ndet.

– 3 –
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Bin averaging map-maker. To extract physical information from the TOD, we convert
them to the map domain via some map-making procedure. A simple method often employed
in the CMB analysis is the bin averaging [66], that estimates the sky map as

m̂ =
(
ÂT Â

)−1
ÂTd , (2.6)

where Â is the response matrix assumed by the map-maker. As long as the beam is ax-
isymmetric and purely co-polarized, and the correlated component of the noise, such as
1/f , is negligible, the bin averaging can, in principle, recover the input {I,Q, U, V } maps.
Whether the reconstructed maps actually reproduce the sky signal or not depends on how
well the instrument specifics are encoded in the map-maker or, in other words, how close
Â is to A. When Â = A and n is uncorrelated in time, m̂ is the optimal (unbiased and
minimum-variance) estimator of m.

3 Simulation setup and output

We generate statistically isotropic random Gaussian {I,Q, U} CMB maps with HEALPix2 [67]
resolution of nside = 512 (high enough to avoid aliasing effects) by feeding the best-fit 2018
Planck power spectra [3] to the synfast function of healpy3 (the Python implementation of
HEALPix). We choose to neglect V here, since the circularly polarized component of CMB is
expected to be negligible.4

The observation of the input maps is simulated by a modified version of the publicly
available library beamconv. This choice is motivated by beamconv’s ability to simulate TOD
with realistic HWPs, scanning strategies and beams, which makes it a promising framework
to develop simulations for, among others, LiteBIRD-like experiments. The changes we have
implemented to the library all aim to better tailor the simulations to LiteBIRD-like specifics.
In particular:

Scanning strategy We implement a LiteBIRD-like scanning strategy by mimicking the
relevant functionalities of pyScan.5 The values of the telescope boresight and precession
angles, together with their rotation parameters, are specified in table 1. We simulate
one year of observations to cover the full sky (see figure 2).

Instrument We work with 160 detectors from the 140 GHz channel of LiteBIRD’s Medium
Frequency Telescope (MFT) and read the relevant parameters from [16]: the HWP rota-
tion rate, the full-width-at-half-maximum (FWHM) of the (Gaussian and co-polarized)
beam, the instrument sampling frequency and the detectors’ pointing offsets. See table 1
for their numerical values.

HWP Mueller matrix The Mueller matrix elements for the MFT’s HWP at 140 GHz are
taken from [57], up to a coordinate change from International Astronomical Union (IAU)

2http://healpix.sf.net.
3https://github.com/healpy/healpy.
4In the standard cosmological model, no circular polarization can be produced at last scattering. A number

of models that could source V have been proposed (see for instance [68–76]), but none of them predicts a
strong signal, making V ≡ 0 a good first approximation.

5https://github.com/tmatsumu/LB_SYSPL_v4.2.
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Scanning strategy parameters

Precession angle 45◦

Boresight angle 50◦

Precession period 192.348 min
Spin rate 0.05 rpm
B

Instrument properties

Number of detectors 160
MFT frequency channel 140 GHz
Sampling frequency 19 Hz
HWP rotation rate 39 rpm
Beam FWHM 30.8 arcmin

Table 1. Simulation parameters used in this work. All values are taken from [16], except for the
number of detectors and the central frequency, which we choose arbitrarily.

1 700

yone-month simulationy

1 2000

one-year simulation

Figure 2. Simulated boresight hit maps for one-month (left) and one-year (right) observations. The
two panels share the same logarithmic color map, although the range shown is truncated for the
one-month case. Unobserved pixels appear gray.

to CMB standards that flips the sign of the miu, mqu, mui and muq elements:

Mhwp =

 9.80× 10−1 1.81× 10−2 −9.81× 10−3

1.81× 10−2 9.71× 10−1 −1.21× 10−1

−9.81× 10−3 −1.21× 10−1 −8.40× 10−1

 . (3.1)

This is the HWP Mueller matrix we assume when including non-idealities.6 Since the
elements ofMhwp are frequency-dependent, choosing a different frequency would result
in slightly different output spectra.

We run two simulations for one-year observations. Noise is not included in either simulation
to isolate the effect of HWP non-idealities in the signal; thus, using a different ndet is almost
free from consequences and our results do not change using fewer detectors. In the first
simulation we assume the ideal HWP by settingMhwp =Mideal ≡ diag(1, 1,−1), while we
account for non-idealities in the second one. We convert both TODs to {I,Q, U} maps by the
bin averaging map-maker (see eq. (2.6)) whose response matrix Â assumes the ideal HWP
described byMideal. We then calculate two sets of full-sky angular power spectra using the
anafast function of healpy. We denote the first (second) set of output spectra with CXY`,ideal
(CXY`,hwp), where X,Y = {T,E,B}. The rescaled DXY

`,ideal ≡ `(` + 1)CXY`,ideal/2π and DXY
`,hwp

6Doing so, we neglect the dependence of the HWP properties on the angle of incidence. The consequences
of such approximation have not been tested yet.
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Figure 3. Comparison of the input angular power spectra DXY
`,in (light gray) with the ones computed

from the outputs of the TOD simulations with ideal (DXY
`,ideal, in dark gray) and non-ideal HWP (DXY

`,hwp,
in orange). The inputs are hard to see, since they almost perfectly overlap with the DXY

`,ideal, while the
DXY

`,hwp show clear deviations from the inputs. For clarity, we also show the simple moving average
over 7 multipoles of DXY

`,in (lighter teal) and DXY
`,ideal (darker teal, dashed): DXY

`,avg ≡ 1
7
∑`+3

`′=`−3 D
XY
`′ .

The beam transfer function is not deconvolved.

spectra are plotted in figure 3, together with the input spectra multiplied by the Gaussian
beam transfer functions, DXY

`,in . The simple map-maker recovers the input spectra with average
deviations less than 0.1% in the plotted range when processing the TOD generated with
Mideal, while important discrepancies arise for the non-ideal case.

We do not account for photometric calibration, although it represents a crucial step in
any CMB analysis pipeline. Gain calibration, if perfect, would ensure intensity to be recovered
exactly, hence compensating the lack of power in DTT

` visible in figure 3. The discrepancies
in DTE

` and DTB
` would also be reduced, although not removed. The discussion and results

presented in the following would however not change, reason why we omit the step.
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4 Analytical estimate of the output spectra

To understand the simulation results, we derive approximate analytical formulae for the
angular power spectra affected by HWP non-idealities. Since we are neglecting any circularly
polarized component, the Stokes vector is given by S = (I,Q, U). To obtain analytical
formulae we apply the bin averaging map-maker of eq. (2.6) to a minimal TOD consisting
of the signals measured by four detectors with different polarization sensitivity directions7

(with 0◦, 90◦, 45◦ and 135◦ offsets) observing the same sky pixel. By expressing the signals
observed by each of the four detectors as functions of the input Stokes parameters according
to eq. (2.4), we obtain

Î = miiIin + (miqQin +miuUin) cos(2α) + (miqUin −miuQin) sin(2α) , (4.1a)

Q̂ = 1
2
{

(mqq −muu)Qin + (mqu +muq)Uin + 2mqiIin cos(2α) + 2muiIin sin(2α)

+
[
(mqq +muu)Qin + (mqu −muq)Uin

]
cos(4α)

+
[
−(mqu −muq)Qin + (mqq +muu)Uin

]
sin(4α)

}
, (4.1b)

Û = 1
2
{

(mqq −muu)Uin − (mqu +muq)Qin − 2muiIin cos(2α) + 2mqiIin sin(2α)

+
[
−(mqq +muu)Uin + (mqu −muq)Qin

]
cos(4α)

+
[
(mqu −muq)Uin + (mqq +muu)Qin

]
sin(4α)

}
, (4.1c)

where mss′ (s, s′ = i,q,u) are the elements of non-idealMhwp and α denotes the sum of the
HWP’s (φ) and the telescope’s (ψ) angles:8 α ≡ φ + ψ. The quantities with the subscript
“in” on the right hand side denote the sky signals, whereas Ŝ = (Î , Q̂, Û) on the left hand
side are maps recovered by the map-maker. These formulae are applicable to our case as
long as eq. (2.4) accurately models the TOD simulated by beamconv, which is the case for an
axisymmetric and purely co-polarized beam.

Eqs. (4.1) model Ŝp reconstructed from four observations of the pixel p, one for each
detector. If each of those 4 detectors were to observe that same pixel np times, the change in
eqs. (4.1) would amount to substituting

cos(nα)→ 1
np

tnp∑
t=t1

cos(nαt) , sin(nα)→ 1
np

tnp∑
t=t1

sin(nαt) , (4.2)

for n = {2, 4}. If p is observed with a uniform enough sample of αt values and np is large
enough, these terms can be neglected, resulting in

Ŝ '

 miiIin
[(mqq −muu)Qin + (mqu +muq)Uin]/2
[(mqq −muu)Uin − (mqu +muq)Qin]/2

 . (4.3)

7This is the minimal configuration that can reconstruct linearly polarized radiation.
8For the simple 4-detector configuration we are considering, the response matrix can be expressed as

A = BRξ−φMhwpRφ+ψ, where B accounts for the different ξ angles of the four detectors and happens to
satisfy BTB = diag(1, 1/2, 1/2). As for the map-maker response matrix, Â = BRξ−φMidealRφ+ψ. All BRξ−φ
terms cancel out in eq. (2.6) and we are left with Ŝ = RTφ+ψMidealMhwpRφ+ψSin. The discrepancies between
Ŝ and Sin can therefore only depend on φ+ ψ.

– 7 –



J
C
A
P
0
3
(
2
0
2
3
)
0
3
4

We expect this to be a good approximation, given the presence of a rapidly spinning HWP
and the good coverage of the simulation (see figure 2).

By expanding eq. (4.3) in spherical harmonics, we write the corresponding angular power
spectra as a mixing of the input ones weighted by combinations of the non-ideal HWP’s
Mueller matrix elements:

ĈTT` 'm2
iiC

TT
`,in, (4.4a)

ĈEE` ' (mqq−muu)2

4 CEE`,in + (mqu+muq)2

4 CBB`,in + (mqq−muu)(mqu+muq)
2 CEB`,in , (4.4b)

ĈBB` ' (mqq−muu)2

4 CBB`,in + (mqu+muq)2

4 CEE`,in−
(mqq−muu)(mqu+muq)

2 CEB`,in , (4.4c)

ĈTE` ' mii(mqq−muu)
2 CTE`,in +mii(mqu+muq)

2 CTB`,in , (4.4d)

ĈEB` ' (mqq−muu)2−(mqu+muq)2

4 CEB`,in−
(mqq−muu)(mqu+muq)

4 (CEE`,in−CBB`,in ), (4.4e)

ĈTB` ' mii(mqq−muu)
2 CTB`,in−

mii(mqu+muq)
2 CTE`,in . (4.4f)

These analytical formulae explain quite well the non-ideal output spectra CXY`,hwp (see figure 4).
They are especially accurate on large scales, ` . 500, where average deviations between CXY`,hwp
and Ĉ` are less than 0.1%. Larger deviations on smaller scales are due to the approximate
nature of eq. (4.3). Cosine and sine terms do not average out exactly, resulting in pixel-by-pixel
fluctuations on smaller scales.

5 Impact on cosmic birefringence

Next generation CMB experiments are expected to measure the CMB polarization with
unprecedented sensitivity and improve the constraints on the CB angle, β, recently obtained
from the Planck data [38, 40–42]. Here we discuss how HWP non-idealities can impact such
constraints in the particular case of a LiteBIRD-like mission discussed so far.

First, we recall that the sign of β reported in the literature is also chosen to follow the
CMB convention and a positive β corresponds to a clockwise rotation on the sky [27]. The
isotropic CB angle, β, and a miscalibration of the instrument polarization angle, ∆α, affect
the observed spectra identically, since both rotate the observed Stokes parameters in the same
way. The observed spectra then satisfy the equations [77, 78]

CEB`,obs = tan(4θ)
2

(
CEE`,obs − CBB`,obs

)
, CTB`,obs = tan(2θ)CTE`,obs , (5.1)

where θ represents rotation in the position angle of the plane of linear polarization including
β, ∆α, or their sum. Not accounting for the HWP non-idealities in the map-maker step is
degenerate with θ, as it is evident from both our simulations and the analytical formulae
given in eq. (4.4). We will refer to this additional rotation of the polarization plane as the
HWP-induced miscalibration.

HWP-induced miscalibration from the simulated output spectra. We separately
fit the simulated CEB`,hwp and CTB`,hwp for the angles θEB and θTB, respectively, using the
least-squares method with variance given by

Var
(
CXY`,hwp

)
= 1

2`+ 1
[
CXX`,hwpC

Y Y
`,hwp +

(
CXY`,hwp

)2]
, (5.2)
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Figure 4. Comparison of the spectra computed from the output of the TOD simulation with non-ideal
HWP, DXY

`,hwp (dark orange), with the D̂XY
` from the analytical formulae given in eqs. (4.4) (light

orange). The non-ideal outputs are hard to see, since they almost perfectly overlap with the analytical
curves. For clarity, we also show the simple moving average over 7 multipoles of DXY

`,hwp (dark red) and
D̂XY

` (light red, dashed): DXY
`,avg ≡ 1

7
∑`+3

`′=`−3 D
XY
`′ . The beam transfer function is not deconvolved.

for XY = {EB, TB}, respectively. The best-fit values, θEB = 3.800◦ ± 0.007◦ and θTB =
3.79◦ ± 0.02◦, are compatible with each other in agreement with eqs. (5.1). The observed and
best-fit spectra are plotted in figure 5 and are in good agreement.

HWP-induced miscalibration from the analytical formulae. Using the fact that
both CEB`in and CTB`in simply fluctuate around zero, eqs. (4.4) can be rearranged to express
ĈEB` and ĈTB` similarly to the CXY`,obs of eqs. (5.1):

ĈEB` ' tan(4θ̂)
2

(
ĈEE` − ĈBB`

)
, ĈTB` ' tan(2θ̂)ĈTE` , (5.3)

where
θ̂ = −1

2 arctan
(
mqu +muq
mqq −muu

)
' 3.8◦ , (5.4)

in agreement with the best-fit values reported above.
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Figure 5. Comparison of DEB
`,hwp and DT B

`,hwp computed from the outputs of the TOD simulation
with non-ideal HWP (dark orange) with the best-fit estimates of tan(4θEB)(DEE

`,hwp −DBB
`,hwp)/2 and

tan(2θT B)DT E
`,hwp, respectively.

If we were to relax all the underlying assumptions at once, we could not write θ̂ this com-
pactly. However, controlled generalizations do not necessarily spoil the simplicity of the analyt-
ical formulae. For instance, accounting for the frequency dependence of both the HWP Mueller
matrix elements and the CMB signal, θ̂ can be expressed as (see appendix A for the derivation):

θ̂ = −1
2 arctan

(∫ dν SCMB(ν) [mqu +muq] (ν)∫
dν SCMB(ν) [mqq −muu] (ν)

)
, (5.5)

where SCMB(ν) denotes the CMB spectral energy distribution (SED).
Another assumption that can be relaxed without spoiling the simplicity of the analytical

formulae is the absence of miscalibration angles in the map-maker. When the telescope, HWP,
and detector angles are not exactly known, ψ = ψ̂ + δψ, φ = φ̂+ δφ, and ξ = ξ̂ + δξ, where
the hat denotes the values assumed by the map-maker. As long as we neglect the frequency
dependence of δψ, δφ and δξ, we find (see appendix B for the derivation)

θ̂ = −1
2 arctan

(∫ dν SCMB(ν) [mqu +muq] (ν)∫
dν SCMB(ν) [mqq −muu] (ν)

)
+ δξ − δψ − 2δφ . (5.6)

The sign difference between the contributions from δξ and δψ + 2δφ is due to the presence
of the HWP. Ideally, the HWP acts on a polarization vector by reflecting it over its fast
axis. This causes counterclockwise rotations applied before the HWP to look clockwise after,
meaning that δφ+ δψ should be subtracted from δξ − δφ (see eq. (2.2)).

6 Conclusions and outlook

In this work, we studied how overlooking HWP non-idealities during map-making can affect
the reconstructed angular power spectra of CMB temperature and polarization fields. We
focused on the impact of non-idealities on the measurement of the CB angle, β.

As a concrete working case, we considered a single frequency channel (140 GHz) of
a space CMB mission with LiteBIRD-like specifics: scanning strategy, sampling frequency,
detectors’ pointing offsets and their polarization sensitivity directions, FWHM of the Gaussian
beam and HWP specifics (rotation frequency and Mueller matrix elements). We employed
the publicly available beam-convolution code beamconv to simulate the noiseless TOD for the
above instrument and scanning specifications. We ran two different simulations: the HWP
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has been assumed to be ideal in the first simulation, while a realistic Mueller matrix has
been employed in the second. We then converted both TODs to maps by a bin averaging
map-maker that neglects the HWP non-idealities. As expected, the output spectra computed
from the ideal simulation faithfully recovered the input spectra, while the spectra of the
non-ideal maps showed a very different behavior (figure 3). We also derived a set of analytical
formulae (see eq. (4.4)) that accurately model the reconstructed angular power spectra as
functions of the input spectra and the HWP Mueller matrix elements.

We studied the impact of the HWP non-idealities on β. We found that neglecting them
in the map-making step induces an additional miscalibration of the polarization angle which
might be erroneously interpreted as CB. For the concrete case we studied, the miscalibration
angle induced by the HWP non-idealities amounts to θ ' 3.8◦. This value, obtained by fitting
the output angular power spectra from the simulation, is compatible with the prediction from
the analytical formulae (see eq. (5.4)).

Definitive confirmation of the current hint of CB [38, 40–42] requires the systematic
uncertainty in the absolute position angle of linear polarization to be well below 0.1◦ [27]. We
must therefore acquire accurate knowledge of the Mueller matrix elements via calibration, so
that the systematic uncertainty in θ due to HWP non-idealities is well below 0.1◦. With such
knowledge, one can take into account HWP non-idealities either during the map-making step or
when interpreting the angular power spectra. As one cannot know the Mueller matrix elements
perfectly, any remaining mismatch between the true Mueller matrix and the matrix assumed
by the map-maker still affects the power spectra. Our simulation and analytical formulae will
be useful for deriving the required accuracy of HWP calibration to meet specific science goals.

The situation we considered in this paper is still simplistic: we simulated a single
frequency channel in the absence of noise, and we used a Gaussian beam and a simple bin
averaging map-maker. However, a similar analysis can be carried out for more complex
cases. It is of utmost importance to make better predictions about how HWP non-idealities
realistically affect the data collected by CMB experiments and, therefore, the cosmological
information extracted from them. In this direction, we plan to carry on the following steps: i)
drop the single frequency approximation, generalizing the results discussed here to a finite
frequency bandwidth; ii) add a noise component to the TOD; iii) study the combined effect of
beam asymmetries and HWP non-idealities; iv) include non-idealities in the map-maker and
study how the uncertainties in our knowledge of non-idealities might propagate to the observed
angular power spectra; and v) derive requirements for the accuracy of HWP calibration. We
leave these topics for future work.
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A Finite frequency bandwidth

Taking into account the frequency dependence of both the HWP Mueller matrix elements
and the CMB signal, we write the data model of eq. (2.4) as

d = aTMdetRξ−φ
∫

dνMhwp(ν)Rφ+ψS(ν) + n . (A.1)

Repeating the analysis presented in section 4, eq. (4.4) reads
ĈTT` '〈mii〉2C̄TT`,in, (A.2a)

ĈEE` ' 〈mqq−muu〉2

4 C̄EE`,in + 〈mqu+muq〉2

4 C̄BB`,in + 〈mqq−muu〉〈mqu+muq〉
2 C̄EB`,in , (A.2b)

ĈBB` ' 〈mqq−muu〉2

4 C̄BB`,in + 〈mqu+muq〉2

4 C̄EE`,in−
〈mqq−muu〉〈mqu+muq〉

2 C̄EB`,in , (A.2c)

ĈTE` ' 〈mii〉〈mqq−muu〉
2 C̄TE`,in + 〈mii〉〈mqu+muq〉

2 C̄TB`,in , (A.2d)

ĈEB` ' 〈mqq−muu〉2−〈mqu+muq〉2

4 C̄EB`,in−
〈mqq−muu〉〈mqu+muq〉

4 (C̄EE`,in−C̄BB`,in ), (A.2e)

ĈTB` ' 〈mii〉〈mqq−muu〉
2 C̄TB`,in−

〈mii〉〈mqu+muq〉
2 C̄TE`,in , (A.2f)

where the brackets denote frequency integrals weighted over the SED of the CMB,

〈f〉 ≡
∫
dν SCMB(ν)f(ν)∫
dν SCMB(ν) , (A.3)

and C̄XY`,in the input angular power spectra at some reference frequency ν̄. This modifies
eq. (5.4) to

θ̂ = −1
2 arctan

(∫ dν SCMB(ν) [mqu +muq] (ν)∫
dν SCMB(ν) [mqq −muu] (ν)

)
. (A.4)

B Additional miscalibration angles

So far, we neglected any miscalibration angles in the map-maker, i.e. we assumed the response
matrix Â to encode the true values of the telescope, HWP, and detector angles: ψ̂ ≡ ψ, φ̂ ≡ φ,
and ξ̂ ≡ ξ, where the hat denotes the values assumed by the map-maker. We now consider a
more general case by allowing for deviations: ψ = ψ̂ + δψ, φ = φ̂+ δφ, and ξ = ξ̂ + δξ.

Single frequency. Repeating the analysis presented in section 4 with miscalibration angles,
eq. (4.3) reads

Î ' miiIin , (B.1a)
Q̂ ' [cos(2δθ)(mqq −muu) + sin(2δθ)(mqu +muq)]Qin/2

+ [cos(2δθ)(mqu +muq)− sin(2δθ)(mqq −muu)]Uin/2 , (B.1b)
Û ' [cos(2δθ)(mqq −muu) + sin(2δθ)(mqu +muq)]Uin/2

− [cos(2δθ)(mqu +muq) + sin(2δθ)(mqq −muu)]Qin/2 , (B.1c)
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where δθ ≡ δξ − δψ − 2δφ. This modifies eq. (5.4) to

θ̂ = −1
2 arctan

(cos(2δθ)(mqu +muq)− sin(2δθ)(mqq −muu)
cos(2δθ)(mqq −muu) + sin(2δθ)(mqu +muq)

)
= −1

2 arctan
(
mqu +muq
mqq −muu

)
+ δθ . (B.2)

Therefore, the additional miscalibration angles simply shift θ̂, as expected.

Finite frequency bandwidth. Taking into account a finite frequency bandwidth and
miscalibration angles simultaneously is slightly more complicated, but does not spoil the
analytic treatment as long as δθ is assumed to be frequency-independent. The generalization
of eq. (5.4) in this case reads

θ̂ = −1
2 arctan

(∫ dν SCMB(ν) [mqu +muq] (ν)∫
dν SCMB(ν) [mqq −muu] (ν)

)
+ δθ . (B.3)
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