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1. INTRODUCTION

It is well known experimentally that the strangeness changing non-leptomnic
weak decays with isospin transfer |AI] = % are enhanced, by more than one order
of magnitude in amplitude, with respect to the |AI|l = 3/2 transitions. How-
ever, a satisfactory explanation of this |AX] = } "selection rule” within the
framework of the standard model is still lacking.

The short-distance analysis of the product of weak hadronic currentsl
results in an effective AS = 1 Hamiltonian which is a sum of local four-quark
operators, constructed with the 1light (u,d,s) quark fields o¢nly, modulated by
Wilson coefficients which are functions of the heavy (W,t,b,c) masses and an
overall renormalization scale p. The Wilson coefficients are calculated by
successively remeving the heavy fields from explicitly appearing im the
Lagranglian, and by summing the leading logarithms of heavy masses using renor-
malization group techniques. It is then found that the effect of the leading
QCD gluonic corrections indeed gives an enhancement by a factor two to three of
the Wilson coefficient of one of the |AI| = % operators. Nevertheless, this by

itself 1is not enough to explain the experimentally observed rates, without

simultaneously appealing to a further enhancement in the hadronic matrix

element of at least some of the isospin } four—quark operators.

* (n leave of absence from Departament de F{sica Tedrica, Universitat de
Valéncia, and IFIC, Centre Mixte Univ. Valdnecia - CS5IC, 46100 Burjassot,
Spain.



The evaluation of hadroanic matrix elements of local four-quark operators is
a difficult problem due to the fact that they are governed by the long-distance
behaviour of the strong interactions; i.e., the coniinement regime of QCD.
Moreover, these operators have non-zero anomalous dimensions and, therefore,
their matrix elements depend on the renormalization scale p. Since physical
amplitudes are renormalization-scale independent quantities, this p-dependence
should exactly cancel the one appearing in the Wilson cocefficients. 1In order
to keep control of the renormalization-scale dependence, and therefore to get a
meaningful result, a full QCD calculation of the relevant matrix elements is
required. This is a highly non-trivial task.

A method to evaluate pseudoscalar matrix elements, which has the virtue of
being completely defined within the framework of the standard model, was
presented in Ref. 2 and applied to K + nn decays in Refs. 3 and 4, The basic
idea is to combine the information provided by the effective chiral realization
of QCD at long distances with its perturbative short-distance behaviour, via a
duality approach using finite energy sum rules (FESRs). When applied to the
|AI] = 3/2 Hamiltonian, the method has been extremely successful in reprodu-
cing3 the measured Kt + n™n0 amplitude. However, the attempt done in Ref. 4 to
analyze the |Al| = % Hamiltonian in a similar way failed - by an order of
magnitude - to explain the observed enhancement of the K » =nn [AL|] = %
amplitude.

After giving (Sections 2 to 4) a brief review of the work done in Refs. 2,3
and 4, I will try in the following to analyze the reasons of this puzzling
failure. Using a simplified analysiss, it will be shown 1n Section 5 that the
blame can be easily put on the short-distance part of the calculation, where
something fundamental should be missing.

Section 6 will be devoted to the evaluation of radiative gluon corrections
to the results of Ref. 4. Using some formal (but perfectly well defined)
limits, to simplify as much as possible an otherwise invelved computation,
I will show that huge Xy corrections show up in the JAI| = % sector, with the
appropriate sign to produce the required enhancement. The enormous size of
these gluonic contributions provides a strong and rigorous evidence of an
indeed peculiar dynamical behaviour of the |AX| = % weak transitions within the

standard model. The results will be summarized in Section 7.

2. AS = 1 SHORT-DISTANCE HAMILTONIAN
The standard short-—distance analysis of the product of weak hadronic

currents results in the effective |AS| =1 Hamiltonianl
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where GF is the Fermi coupling constant and s, = sinei and c; = cosei are the
conventional Cabibbo-Kobayashi-Maskawa factors. Qi (i=1,...,6) is a complete

basis of four-quark operators, which is usually taken asle
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where q; = 3(l-y5)q and qg = $(l+y5)q; « and B are colour indices and (aLypqL)
= Eaagyuqi. Only five of these operators are independent, since Q+J, = Qu+Q3.
Following the standard convention, we shall choose Q;,Q2, Q3, Qs and Qg as a

basis.
All the information on the heavy mass scales, which have been already

integrated out, is contained in the Wilson coefficients ci(p). The numerical
values of these coefficients can be found in Ref. 4.

From the point of view of chiral SU(3)L><SU(3)R and isospin quantum numbers,
G2~Q1, Q3, Q5 and Qg transform like (SL,IR) and induce }AI| = % tramnsitions;
while Q;+2/3 Q;-1/3 Q3 = Qu transforms like (27L,1R) aud induces both |AI| = &

and |AI] = 3/2 transitions via ité components
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It is then convenient to split the AS = 1 short—-distance Hamiltonian in three

pleces with definite transformation properties:

_ G

3. EFFECTIVE CHIRAL LAGRANGIAN FORMULATION

With c¢hiral symmetry in the u,d,s flavour sector realized & 1la Nambu-
Goldstone, there is an effective chiral Lagrangian formulation which represents
the combined effect of the strong interactions and the AS = 1 first-order non-
leptonic weak transitions of the octet of pseudoscalar particles at low

energies

% g95‘.t:rong 2 Slclc3x A=l (6)

To leading order in derivatives and light quark masses (mu =m, = o,

L # 0), the effective chiral realization of QCD at long-distances is described
by the non-linear sigma model Lagrangian (fﬂ = 93.3 MeV),

f2
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where
_ iv2
U= exp {? @}

denotes the 3x3 special unitary matrix, which incorporates the pseudo-Goldstone

fields &, i.e., the pseudoscalar octet
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The weak perturbation im Eg. (6) can be written most conveniently as a
combination of bilinear products of the 3x3 matrix which represents the octet

4
of V-A currents, Lu = ifan“U+, in the following way :
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The transformation properties under isospin and chiral rotations of these three

terms are the same as those of the corresponding four-quark operators in

Eq. (5).
éﬁ), 353) and g(ggz) are coupling constants which are not fixed by chiral

symmetry requirements alome. From the observed K -+ mn decay rates, it is

possible to extract the values

(i) (i) -
I5§ Iexp_ = 5.1
(11)
Ig(3/2)l ~ 0.16
clearly indicating the enhancement of the {AI] = 4 transitions.
4. QCD-DUALITY CONSTRAINTS
In the short-distance formulation of the AS = 1 non—leptonic weak

Hamiltonian, one is confronted with the problem of the evaluation of hadronic
matrix elements of the various local four-quark operators. On the other hand,
in the chiral formulation, we are confronted with the fact that the coupling
constants g's of the various terms which appear are not fixed by chiral sym-
metry requirements alone. The two pictures are however complementary.
Equations (5) and (9) correspond to effective realizations of the same theory
in different regimes. Therefore, a formulation of duality, which spells out
the consistency of both pictures, can be used to constrain the various effect-

ive parameterss. The key objects to consider are the two-point functions

(I)(qz) 21 [ d*x ' <olz{P 0 w0yt 10> (12)
The QCD-duality approach consists 1in writing down a system of FESRs which
relate integrals of the corresponding hadronic spectral functions

(D
I/n Im 93 (t)hadrons to thelr QCD counterparts,
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The right-hand sides of these sum rules are the result of a short-distance
QCD evaluation. The first term corresponds to the leading asymptotic behaviour
from the three—loop diagrams of the type shown in Fig. la. The second term is
the leading effect of the finite strange quark mass shown in Fig. 1lb; and the
third term is the leading non-perturbative power correction from vacuum conden-

sates 8 la Shifman, Vainshtein and Zakharov7, shown in Figs. lc and 1d.

|
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FIGURE 1
Feynman diagrams which have been taken into account in the evaluation of the
QCD two-point functions. Figure la represents the typical three-loop diagram
of the lowest order (asymptotic freedom); Figure 1b represents the correction
from finite strange quark leading mass ingertions; Figure lc and 1d the lead-
ing non-perturbative power corrections 3 la SVZ from the light quark conden-
sate, Fig. lc; and from the gluon-condensate, Fig, 1d.

The effective chiral Lagranglan in Eq. (6) glves a precise framework to
evaluate the threshold behaviour of the possible intermediate pseudoscalar

states (I' = Kmn,Knn,...) which contribute to the hadronic spectral function in
(I}
R

mine appears then as an overall normalization factor. The value of sg (the

the left~hand side of the FESRs. The coupling constant g we want to deter-
onset of the QCD continuum} in the upper limit of the hadronic integrals, has
to be chosen sufficiently high so that the QCD asymptotic expansion in the
right-hand side of the FESRs is meaningful. Therefore, we also need a parame-—

trization of the hadronie spectral functien which reproduces well the inter-



mediate energy region where resonances are produced. Im fact, what we need
preclsely is a description of the final state strong interactions between
pseudoscalar states which can lead to the formation of resonances. To a good
approximation this can be done by modulating the various spectral function
subchannels which appear in the course of the chiral evaluation of
i/n Im¢é1)(t)hadrons’ with appropriate Breit-Wigner like factors which incorpo-—
rate phenomenologically the masses and widths of the observed 1~, 0, 1* and O~
resonant states with strangemess § = | and S = 0, The precise way this has
been done can be found in Ref. 4,

Two different FESRs (u=0,1) are needed to determine sg and the coupling
(L)

constant gR

we are looking for. The ratioc of both sum rules

<tél)> = Fél)(so,l)/FéI)(50-0): (o

(D
R
fix the duality region in the sy variable.

does not depend on g and therefore can be used as an eigenvalue equation to

To illustrate how this procedure works, we have plotted3 in Fig. 2 the ratio
<t§?/2)>, normalized to its asymptotic freedem behavicur 5 sg/6, versus sg.
The continuous line represents the QCD prediction; it approaches the asympto-
tic freedom limit (the dashed line) at large sy values. The dotted line shows
the behavicur obtained with the hadronic effective parametrization. There is a
clear overlapping region of both descriptions in the range 8 GeV? < sp < 11
GevZ, With sg fized in this duality range, one finds from either of the two
sum rules in Eq. (13}
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FIGURE 3
The ratio 6/53s; < té1/2)> is plotted F%?g 3
versus sg. The contimucus line repre- The quantity |g3z’'“’/| is plotted versus
sents the QCD behaviour. It approaches Sg- The continuGus line corresponds to
the asymptotic freedom limit (the the result with the inclusion of the
dashed line) at large values of sg. calculated QCD corrections. The dashed
The dotted curve shows the behaviour curve corresponds to the result with
obtained with the hadronic effective the asymptotic freedom term only.

parametrization.
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to be compared with the experimental value given in Eq. (1l1). The agreement is

quite remarkable. The stability of this result can best be seen by plotting

(3/2)
I%&l
Fig. 3 (the solid line) where for the sake of comparison, the result obtained

|, as obtained from the first FESR (n = 0), versus sg. This is shown in

in the asymptotic freedom limit (the dashed line) is also shown.
4
For the second (27L,1R) coupling constant cne finds similarly

15881 = 3.2.102 (16)

showing as expected that the |AIL] = 4 enhancement cannot come from the 27
operator. This result is in perfect agreement with the relation ggi) =
(3/2)
(1/5) g 27
The same method has also been applied to the determination of the so-called

predicted In the exact SU(3) limit.

B-parameter which governs the K'-K? matrix element of the AS = 2 Hamiltonian
(another 27 -operators), with the result2

as(uz)—Z/g

IBl = 0.33 (173
This value agrees with the one extracted phenomenologically8 from the decay
Kkt +» otn? (1.e., from gé?/z)) using SU(3) symmetry.

In spite of these successful predictions for all the 27 couplings, the
result obtained in Ref. 4 for the octet coupling constant fails dramatically to
reproduce the observed enhancement of the K + nn |AI| = % amplitude. It was

found that

1501 = 0.4, (18)
which 1s an order of magnitude smaller than the experimental value quoted in
Eq. (11). The small enhancement exhibited in Eq. (18) is essentially due to
the short—-distance enhancement in the Wilson coefficient of the @;,-Q; four-
quark operatorla'lb. No additional enhancement was found. 1In particular,
looking at the separate contribution of the different four—quark operators to
the octet correlator, it was realized9 that the Penguin operators contribute a

very small amount to the result in Eq. (18).



5. CHIRAL BOUND ON géi)

The results obtained so far are really puzzling. We have applied exactly
the same method to four different sectors of the strangeness changing
Hamiltonian. For the three (27L,1R) operators [the 02%) and 053/2) pieces of
HAS=1, and the AS = 2 effective Hamiltonian) we have been extremely successful,
while at the same time we fail dramatically in the (8L,1R) case. Why is
it so, if after all the different calculations are conceptually quite similar?
In fact, this is actually the problem: in our analysis we have not found any
crucial difference (aside from the fact that the octet sector is techaically
more complicated because of operator mixing) between Hgglz) and H(g). In order
to explain the experimental octet enhancement {a factor 20 in amplitude!) some~
thing should be really different. We are then missing some fundamental
ingredient.

In our duality approach, the coupling constant gé*) appears, roughly speak-
ing, as a ratio of the short-distance behaviour of a two=point function which
we evaluate using QCD, to an integral of the corresponding hadronic spectral
function. Since we got a far too small value for Igéi)l, either the hadronic
integral in the denominator has been grossly overestimated, or the QCD numera-
tor has been badly underestimated. The following simple argumenc5 shows that
our short distance calculation is in fact unable to explain the required enhan-
cement independently of any hadronic parametrization used.

The twe-point function ¢§é)(q2) obeys a dispersion relation in Q% = —q2 up

to an arbitrary polynomial in Q2 of degree four. Five derivatives are thus

required to get rid of this arblitrariness, with the result

25¢{P(q2)
(2Q2)3 (e+Q2)® =

Let us split the full domain of integration in three regions: a very low
reglon 0 < t < A2, with A some chiral cut-off sufficiently low to justify a
chiral perturbation theory evaluation of the spectral function; an interme-
diate reglon A2 < t < Q2; and a very high energy region Q2 £t <= , where we
can use perturbative QCD with leading l/Q2 power corrections i1ncerporated.
Since the spectral function is a positive semi~-definite quantity at all t-

values, we can write the following inequality

2yoey (o _dt 1 (%) A2 _de 1o (B) 20
F(Q*)~5! [ P Tmgg™'(t) > 5t [ praverE i (e) (20)
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This inequality becomes an identity in the extreme case where the spectral
function vanishes in the intermediate region, i.e.

% Imq,é%)(t) =0 for A2 < t < Q2 (21)
The left-hand side of Eq. (20) can be easily evaluated from our short-distance
calculation in Ref. 4. Putting only the contribution of the lowest Kn and Kn
intermediate states in the hadronic spectral function of the right-hand side,
Eq. (20) glves an upper bound on the coupling ]gg#)l. With the cut-off values
AZ = MS = 0.59 GeV2 and Q2 = 4 GeVZ, and doing for simplicity all computations
in the chiral limit, one gets Igé%)l < 4.3 GeV, already smaller than the empi-—
rical determination 1in Eq. (11). Additional intermediate states 1in the
hadronlc parametrization could only decrease this bound, due to the positivity
of the spectral function. A similar result is obtained when mass effects are
carefully taken into accountB.

&)l

Admitcedly, we can find upper bounds for Igé compatible with the

experimental value im Eq. (11) by lowering AZ and/ofr raising Q2. However, it
is very striking that for Iggé)l to reach the upper bound value, an extremely
peculiar behaviour of the spectral function 1s required: it has to vanish in a
large intermediate energy region A2 <t < Q2, where resonance production is
coplous. The more sensible conclusion to extract from this exercise is that
the left-hand side of Eq. (20) is, by far, too small to reproduce the empirical

octet enhancement.

6., GLUONIC CORRECTIONS TO THE TWO-POINT FUNCTIONS
(

The spectral function assoclated with the ¢RI)(q2) correlator describes, in

(1)

an inclusive (and averaged) way, how the weak HR operator couples the vacuum
to physical states of a gilven invariant mass. Since the |AIL} = 4 enhancement
is an intrinsic property of the octet operator, and not of a particular final
state, 1t should obviously show up at the inclusive level; 1i.e., the strength
of the octet spectral function should be much bigger than that of the 27 one.
This 1s not, however, what we found in our short-distance calculation.

Let us try to investigate what happens when gluonic corrections to the two-
polnt functions (12) are incorporated. In fact, we already took into account
the leading [as(pz)ln(t/pz)]n contributions, by doing the rescaling p? =t
which sums all leading logarithms inte the Wilson coefficients. The question
is now what is the size of the next-to-leading effects?

The non-logarithmic as-correction to the 27-correlators was also computed in

Ref. 2, and it was found to be moderate. The corresponding calculation for the
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octet case 1s, however, much more involved due to the fgct that we have to deal

now with several operators (Q;-Q;,Q3,Q5,Q0¢) which mix under renormalization,

i.e.
0 R
o) = 1 2, (e, (22)
j J J
(®) R
where Qi {(¢) are the bare operators and Qj(p) the renormalized ones. (Here, ¢

= (D=4)/2 and p is the MS renormalization scale.) We need then to compute, at
the four-loop level, all possible two point functions built with the four octet

operators

byy@?) = 1fdx e 9 <0IT(q (x)Q5(0) ) 105, (23)

i.e., a 4x4 matrix correlator, which must be renormalized in matrix form.

Figure 4 shows the kind of diagrams contributing to this order

A AR A
\§:::::::77' éEEEEEEEEE§> \Q:::::::57' \§t::::::77f
(c) (d)

(a) (b)

= S S

(e) (f) (g) (h

FIGURE 4
Feynman diagrams co%tributing to the short-distance calculation of the two-—
point correlators bR (q2), at lowest order (a,b) and order ag {c~h).

Before starting such a formidable calculation, it would be useful to see if
there i1s any limit or approximaticn which allows a much simpler computation, in
order to get a feeling of what 1s going on. The relevant quantity to loock at
is the anomalous dimension matrix of the set of operators Q, (i=1,...,6) which

1s known at the one-loop level. For three flavours, one has e, 10
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where the dependence on the number of colours N has been explicitly displayed.
Note that in the large N limit all entries are zero but for ygs, i.e., in this
limit there is no mixing among operators, and only Qg gets renormalized.
Working at leading order in 1/N , we can then try to compute the a_-correc-
tions to the penguin two-point function ¢66(q2), without worrying about the
other operators, Moreover, in this limit only diagrams 4c and 4d (together
with the lowest order contribution of diagram 4a) need to be computed because

all the others are 1/N-suppressed. One gets

(1) ,,(1)
2 2 2 Y66 /8 1
o6 (tsp”) = {a_(u) T mee(e) ],y =
(25)
2,18/11 12 t* 2y (1) 9 2 423 2
= a (b?) Y L+ = [ 5 an(t/p2)+53] + 0((-—) )}

18/11 factor coming from the Wilson coefficient

where I have included the as(uz)
in order to have a meaningful, pz-independent (to the computer order) quantity.

Here, y(l) and ﬁ(l) are the first coefficients of y and the QCD B-function

respectively (y = ag /n Y(l) + ..., BZa /ﬂ ﬂ(l) + e
The coefficient of the logarithmic term is Yé6)’l/N -9/2 as it should,

which provides a check of the calculation. The amazing thing is the very big
positive factor, 423/20, one gets for the non-logarithmic g correction. 1If
one does the usual u2 = t rescaling, to eliminate all logarithms in the
spectral function, the remaining as~term amounts to a 110¥ (140%) correction,
for A = 100 (200) MeV, at values of momentum transfer as high as t = 10 GeVZ,
The perturbative calculation (with the scaling u? = t) has therefore blown up.
At this point, one should ask if this is a peculiar phenomencn of the
penguin, or if something similar happens with the other four-quark operators.

The same 1/N-calculation can also be done for the other correlators by how—
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ever the fact that their anomalous dimensions are zerc in this limit can make
us already suspect that this is not a sensible approximation in this case,
because the short-distance octet enhancement in the Wilson coefficient just
disappears iIn this limit. Doing the computation for the octet operator
Q- = Q;-Q; and its orthogonal combination Q4 = Qy#+Q), one easily gets, to
leading order im 1/N,

[ Tmba(e) ]y = [ Tme(0)] )/
(26)
a_(u) x
S+ 25T (D))
(16r2)3 T K

showing that in this case the as-correction not only is moderate, but in
addition is exactly the same for the |AI| = % and |AIL]l = 3/2 channels.

It is then clear that for the non-penguin operators we should compute the
1/N-suppressed contributions, in order to keep the important physics (the
short-distance enhancement). However, there is still some useful simplifica-
tion that one can do. The mixing of @, with Qj {j=3,4,5,6) is generated by the
penguin diagram shown in Fig. 5.

q q

FIGURE 5
"Penguin” diagram responsible for the mixing of Q, with the operators Qz, Qu,

Qs and QG'

If this diagram were absent =0 (j=3,4,5,6), and we would only need to

r Y

consider the operators and?jQZ. The associated 2x2 anomalous dimension
matrix has the eigenvalues yil) = 1 and Yﬂl) = =2 which correspond to the
operators Q4 and Q. defined before. Although the penguin diagram is obviously
there, we can take the (maybe academic) attitude of not taking it into account;
the only justification being that this simplifies a lot the calculation (mo
mixing) and still keeps the important effects coming from the anomalous

dimension factors. For the two-point function calculation, this means that we
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will not consider the contribution of diagram 4e. With this prescription,

I get
(L (1)
2y = 2y2v= /B L =
¢—(t!|-]' ) - [as(u ) / ; Im¢—-(t)]n0 penguin -
(27a)
= ( 2)8/9 16 £h 1 + aS(HZ) -2 / 2 47 (IS 2
a (n -1_5“(T6nT)3—{ — [ Rn(tu)+—-g]+0(("n—)]}
(1) (L)
0+(t,u2) = e wHTF TP S mey o)) -
(27b)
- 2y-479 32 t* 25 () 2y - 49 “sy2

which lock completely different from the 1/N results of Eq. (26).
*
For ¢44 we have obtained the already known moderate and negative

non-logarithmic as—correction of the 27-correlators (the penguin diagram is

purely octet, so this 1s in fact an exact result). However, as in the ¢gg
case, we have got a big and positive non-logarithmic as—correction for the
octet ¢._ correlator. Note that although this correction was a factor of
about twe bigger for ¢gg, the one in (.. will be more important phenomenologi-

cally due to the bilgger Wilson coefficient of the Q_ operator.

7. DISCUSSION AND OUTLOOK

Preliminary results of an exact calculation to order X taking the full
mixing structure into account, confirm the behaviour found in the previous
section and show that Eqs. (25) and (27) are very good approximations to the
true results. As a byproduct, this computation alsc shows that the 1/N results
obtained for the Q  operators in Eq. (26) are completely misleading; leading
1/N calculations fo; weak amplitudes, should therefore not be trusted in the
cases where the ancmalous dimensicon of the relevant operator becomes zero at
leading order in 1/N. However, as exemplified by the (gg calculation, the 1/N
approximation11 can glve good (and easy) estimates when the important physical

ingredient is already present at the leading 1/N order.

* The ag-correction in Eq. (27b) differs slightly from the one quoted in
Refs. 2 and 3, due to an additional contribution which was missing there.
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The blowing-up of as-corrections to the [AI{ = } two-point functions
provides a nice indication of a dynamical mechanism for the 1ALl = } rule
within the standard model. The O{x )} calculation also indicates, however, that
a quantitative estimate of the 88%) coupling will require much more effort.
When the scaling pz = t is used, perturbation theory seems to break down, even
at quite high values of momentum transfer. Full non—-perturbative methods, like
lattice calculations, appear to be therefore the ideal way of dealing with the
problem. Nevertheless, lattice simulations present their own technical
difficultie512 and scme time will be needed to have them well under control,
In any case, other approaches giving complementary information should be

pursued.

Let us try to see if something more can be learned from our approximate
results of the previous section. Equations (25) and (27) are telling us that
the usual scaling p? = t leads to as-corrections bigger than 100% and therefore
corresponds to a non-perturbative regime. This scaling is a natural one in the
sense that it cancels, to all orders in the strong coupling constant, all
logarithmic corrections to the two—point functions, summing them into the
Wilson coefficients (at the level these coefficients have been computed) via
renormalization group equatiomns. However, this is not the only choice. Since
the physical amplitudes are renormalization scale independent quantities, one
can try to see if there is some region of p? where the as—corrections are small
and, therefore, a perturbative calculation still makes sense. Surprisingly,
there 1s one selection of scale

=47/10, (28)

w2 =u(e)2 = e
which cancels the @ ~terms both in ¢6(t,u2) and ¢.(t,p?), while leaving a cor-
rection of normal size in ¢+(t,u2). Dropping the free quark prediction for
these correlators [i.e., ¢i(z,u2) = Aic" '&i(t,pz)/(len?ﬁ, Ag = 12/5,
A_ = 16/15, A, = 32/15), one has

Fo(e,i2) = a (2)18/11

36,57 = o, 52)8/° (29)
— o ()

Fole i) = e, GO0 1 3 2
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Although the reasons for this simultanecus cancellation are still not very
clear to me, it is hard to believe that this is just a coincidence. I have
checked numerically that in the exact calculation of the 4x4 matrix |ALl = 3
correlator, all as—corrections become small when the scaling (28} is used.

-=47/10 ~ 1072 is a very small factor, it is necessary to go to high

Since e
values of momentum transfer in order that the scale E(t) makes sense for a
perturbative calculation. If we are interested in the behaviour of the two-
point function at not too big values of t, this means that we should choose the
renormalization scale as low as possible, and therefore, we are going to obtain
big values for Ee(t,pz) and $_(t,p2) because the |AI| = % Wilson cocefficients
increase substantially when lowering p. In fact, a small value of p has been
frequently used in the literature to "fit"” the experimental |AI| = % amplitude.
It is surprising that such ad hoc and a priori meaningless selection of scale
happens to be the one required in order to minimize the as—corrections to the
matrix elements.

In the following table, I present values for the ratios

a
R (6) = 3(6, 000 () By (L = 6,m,4)
(30)
ag = 18/11; a_ = 8/9; ay = -4/9

which compare the result (29), obtained by doing naively the scaling p = H(t)
with the leading logarithm calculation at p¢ = t, used in Ref. 4:

A (GeV) | t (Gev2) as(ﬁz)/n Rg R. Ry
0.1 2 0.74 35.5 | 6.9 | 1.01
" 5 0.29 10.1 | 3.5 | o0.89
" 10 0.20 6.5 | 2.8 | 0.88
" 20 0.15 4.8 | 2.4 |0.88
0.2 5 3.46 378.6 |25.1 | 1.75
. 10 0.54 22.6 | 5.4 | o0.95
" 20 0.29 10.1 | 3.5 | 0.89
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The size of the relevant expansion parameter, as(ﬁ2)/n is also given to illus-
trate in which region of momentum transfer the results begin to make sense (for
instance, A = 0.2 GeV and t = 5 GeV? is clearly meaningless). For Rg, the
strong coupling should be reduced by a factor 9/11 due to the different value
of the B-function in the 1/N limit. It 1s apparent from the Table, that not
ouly substantial enhancement factors (Rg; and R_) appear in the octet sector,
but in addition the predicted 27-spectral functionm turns out to be completely
stable (Ry ~ 0.9) under the rescaling.

The numbers given in the Table show a very nice pattern and could offer
indeed a qualitative understanding of the AS = 1 dyunamics. However, they
should be taken with a lot of care. There are two points that one should
investigate before using this kind of rescaling for an actual evaluation of the

octet coupling constant:

i) It is not fully justified to play with the renormalization scale because
the functions Ei(typz) are not really uz-independent at next-to-leading order.
The point is that, although we have done a complete O(as) calculation of the
gpectral functions, we are still using the leading logarithm approximation for
the Wilson coefficients. The next-to-leading order correctiomns to these coef-
ficients are needed for consistency; however, such a calculation has still not
been done. Nevertheless, partial results exist in the literature which,
fortunately, can be directly applied to our approximate expressious.

The two-loop anomalous dimensions of the Q, operators, in the absence of
"penguin”~like diagrams are already knownlS.-‘Inclusion of next-to-leading
effects in the Qt Wilson coefficients, amounts to the following redefinition of
the Ei(t,pz) functions

a_(n?)

-0.443
‘j’t (

11,2701 8,(6,u2) (31)

$,(t) = (1 + 2
The additional as-correction is moderate and therefore will not change too much
our previous results. Note, however, that it further reinforces the enhance-—
ment (suppression) of the octet (27) two-point functioms,

For the penguin operator it can be easily shown14 that, at leading order in
1/N, its Wilson coefficient scales as the square of the running quark mass,
i.e., cg(u) ~ m(p)2. Therefore, the known two-loop anomalous dimension of the

running mass15 implies the redefinition

2
3027 %g¢H)

96(e) = [1 + =22 —=——1] Je(t,p2) (32)

which again provides an additional enhancement factor.



ii) Since O(ag) corrections to the spectral functions are not known, one
does not have any control on what happens to the higher order terms, when the
O(as) corrections are minimized by doing an appropriate rescaling. It could
happen, for instance, that the selection of renormalization scale in Eq. (28)
would generate huge ag—corrections, invalidating the use of perturbation theory

also in this region.

Thanks to the factorization property of the quark currents in the large N
limit, the O(ag) correction to $6(t) can be easily computed, because this
correlator can be expressed as a convolution of simpler two-point functions
which are already known at this orderlﬁ. This calculation, which will be
reported elsewherelh, could provide a valuable test of the quality of a given
rescaling for improving the perturbative expansion. In addition, it will be
interesting to see if the behaviour found in the O(as) corrections, generalizes
to higher orders.

In conclusion, the calculated as—corrections to the |AIL| = % and |AL| = 3/2
correlators clearly show that a dynamical enhancement mechanism appears in the
octet weak amplitudes, as a consequence of the interplay of the strong inter-
actions. However, while some |AI| = } enhancement is found in one Wilson coef-
ficlent, already in the leading logarithmic approximation, it 1s necessary to
go to the next-to-leading order to see an additional enhancement in the matrix
elements of the four-quark operators (the corresponding two—point functions in
our approach). It remains to be seen whether this strong qualitative evidence
for an explanation of the |AI{ = 3 rule within the standard model, can be

translated into a quantitative estimate of the octet K + 7% amplitude,
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